Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter March 2, 2018

Enhanced thermal conductivity and flame retardancy of polyamide 6/flame retardant composites with hexagonal boron nitride

  • Liang Wang , Luchong Zhang , Andreas Fischer , Yuhua Zhong , Dietmar Drummer and Wei Wu EMAIL logo


High performance composite of polyamide 6 (PA6)/flame retardant (FR)/hexagonal boron nitride (hBN) was prepared via twin screw extrusion, followed by injection molding. The heat dissipation of the composite was significantly improved by incorporating 40 vol% of hBN, and the corresponding thermal conductivity was up to 5.701 W/(m·K), nearly 17 times that of the PA6/FR composites. In addition, the combination effect of hBN and FR to the flame retardancy of the composites was observed, and the addition of hBN could dramatically enhance the flame retardancy of composites, achieving a UL94 V-0 rating with a limited oxygen index (LOI) value of 37%. This multifunctional modification would broaden the application field of PA6 composites in light-emitting diode (LED) lamps, electronic products, and so on.


This work is supported by the China Scholarship Council (CSC) and the German Academic Exchange Service (DAAD) for the international scientific exchange of PPP project.


[1] Gu J, Meng X, Tang Y. Compos. Part A-Appl. S. 2017, 92, 27–32.10.1016/j.compositesa.2016.11.002Search in Google Scholar

[2] Ngo IL, Jeon S, Chan B. Int. J. Heat Mass Transfer 2016, 98, 219–226.10.1016/j.ijheatmasstransfer.2016.02.082Search in Google Scholar

[3] Ding P, Zhang J, Song N. Compos. Sci. Technol. 2015, 109, 25–31.10.1016/j.compscitech.2015.01.015Search in Google Scholar

[4] Shahil KMF, Balandin AA. Nano Lett. 2012, 12, 861–867.10.1021/nl203906rSearch in Google Scholar PubMed

[5] Jung H, Yu S, Bae NS. ACS Appl. Mater. Interfaces 2015, 7, 15256–15262.10.1021/acsami.5b02681Search in Google Scholar PubMed

[6] Li M, Wan Y, Gao Z. Mater. Des. 2013, 51, 257–261.10.1016/j.matdes.2013.03.076Search in Google Scholar

[7] Wang S, Cheng Y, Wang R. ACS Appl. Mater. Interfaces 2014, 6, 6481–6486.10.1021/am500009pSearch in Google Scholar PubMed

[8] Li M, Xiao Y, Zhang Z. ACS Appl. Mater. Interfaces 2015, 7, 9157–9168.10.1021/acsami.5b01341Search in Google Scholar PubMed

[9] Li TL, Hsu SLC. J. Phys. Chem. B 2010, 114, 6825–6829.10.1021/jp101857wSearch in Google Scholar PubMed

[10] Gu J, Zhang Q, Dang J. Polym. Adv. Technol. 2012, 23, 1025–1028.10.1002/pat.2063Search in Google Scholar

[11] Hong JP, Yoon SW, Hwang T. Thermochim. Acta 2012, 537, 70–75.10.1016/j.tca.2012.03.002Search in Google Scholar

[12] Teng CC, Ma CCM, Chiou KC. Mater. Chem. Phys. 2011, 126, 722–728.10.1016/j.matchemphys.2010.12.053Search in Google Scholar

[13] Huang X, Iizuka T, Jiang P. J. Phys. Chem. C 2012, 116, 13629–13639.10.1021/jp3026545Search in Google Scholar

[14] Choi S, Kim J. Compos. Part B-Eng. 2013, 51, 140–147.10.1016/j.compositesb.2013.03.002Search in Google Scholar

[15] Kim K, Kim J. Compos. Part B-Eng. 2016, 93, 67–74.10.1016/j.compositesb.2016.02.052Search in Google Scholar

[16] Cao JP, Zhao X, Zhao J. ACS Appl. Mater. Interfaces 2013, 5, 6915–6924.10.1021/am401703mSearch in Google Scholar

[17] Mazov IN, Ilinykh IA, Kuznetsov VL. J. Alloys Compd. 2014, 586, S440–S442.10.1016/j.jallcom.2012.10.167Search in Google Scholar

[18] Song SH, Park KH, Kim BH. Adv. Mater. 2013, 25, 732–737.10.1002/adma.201202736Search in Google Scholar

[19] Jin W, Yuan L, Liang G. ACS Appl. Mater. Interfaces 2014, 6, 14931–14944.10.1021/am502364kSearch in Google Scholar

[20] Lu SY, Hamerton I. Prog. Polym. Sci. 2002, 27, 1661–1712.10.1016/S0079-6700(02)00018-7Search in Google Scholar

[21] Braun U, Bahr H, Schartel B. E-Polymers 2010, 10, 443–456.10.1515/epoly.2010.10.1.443Search in Google Scholar

[22] Samyn F, Bourbigot S. Polym. Degrad. Stab. 2012, 97, 2217–2230.10.1016/j.polymdegradstab.2012.08.004Search in Google Scholar

[23] Doğan M, Bayramlı E. Fire Mater. 2014, 38, 92–99.10.1002/fam.2165Search in Google Scholar

[24] Samyn F, Bourbigot S. J. Fire Sci. 2014, 32, 241–256.10.1177/0734904113510685Search in Google Scholar

[25] Braun U, Schartel B, Fichera MA. Polym. Degrad. Stab. 2007, 92, 1528–1545.10.1016/j.polymdegradstab.2007.05.007Search in Google Scholar

[26] Zhang F, Li Q, Wu C. Polym. Mater. Sci. Eng. 2016, 32, 49–53.Search in Google Scholar

[27] Ghaffari MS, Liu MW, Palhares HG. J. Polym. Sci., Part B: Polym. Phys. 2016, 54.4, 457–464.10.1002/polb.23908Search in Google Scholar

[28] Li M, Zhong Y, Wang Z. J. Appl. Polym. Sci. 2016, 133.10.1002/app.44126Search in Google Scholar

[29] Kizilkaya C, Mülazim Y, Vezir Kahraman M. J. Appl. Polym. Sci. 2012, 124, 706–712.10.1002/app.35054Search in Google Scholar

Received: 2017-11-29
Accepted: 2018-01-26
Published Online: 2018-03-02
Published in Print: 2018-08-28

©2018 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 2.6.2023 from
Scroll to top button