Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter December 7, 2018

Preparation of particulate polyvinylidene fluoride membranes of different particle sizes for membrane distillation applications

  • Cheng-Dau Yang , Hsu-Hsien Chang and Liao-Ping Cheng EMAIL logo


Microporous polyvinylidene fluoride (PVDF) membranes were prepared by immersion precipitation of dimethylformamide/PVDF solutions, dissolved at 50°C, 60°C, 70°C, and 80°C in a nonsolvent bath. The formed membranes (M50, M60, M70, and M80) exhibited symmetric structures consisting of spherical particles whose size increased from ~1 μm for M50 to ~3 μm for M80. The desalination capabilities of the membranes were assessed via the direct contact membrane distillation process. For the case of desalting 3.5% NaCl(aq), very high rejection ratios (>99.7%) were achieved for all tested membranes under the operation conditions: Thot stream=52°C, Tcold stream=18°C, circulation rate=0.7 l/min, while the highest permeation flux obtainable was 16.3 l/m2h (LMH). When the feed temperature or circulation rate was raised, the permeation flux increased correspondingly. On the other hand, raising the salt concentration resulted in a strong decrease of the permeation flux. For the membrane M60 operated over the period of 48 h, the flux decreased slightly from 11.6 to 10.5 LMH, while the conductivity increased from 1.5 to 27 μs/cm indicating the occurrence of slight surface wetting during this extended operation period.


The authors thank the Ministry of Science and Technology of Taiwan for the financial support (Funder Id: 10.13039/501100004663, MOST 102-2221-E-032-067-MY2).


[1] Findley ME. Ind. Eng. Chem. Res. 1967, 6, 226–230.10.1021/i260022a013Search in Google Scholar

[2] Findley ME, Tanna VV, Rao YB, Yeh CL. AICHE J. 1969, 15, 483–489.10.1002/aic.690150404Search in Google Scholar

[3] Khayet M. Adv. Colloid Interface Sci. 2011, 164, 56–88.10.1016/j.cis.2010.09.005Search in Google Scholar PubMed

[4] Guan GQ, Wang R, Wicaksana F, Yang X, Fane AG. Ind. Eng. Chem. Res. 2012, 51, 13405–13413.10.1021/ie3002183Search in Google Scholar

[5] Camacho LM, Dumee L, Zhang J, Li JD, Duke M, Gomez J, Gray S. Water 2013, 5, 94–196.10.3390/w5010094Search in Google Scholar

[6] Zhang J, Song Z, Li B, Wang Q, Wang S. Desalination 2013, 324, 1–9.10.1016/j.desal.2013.05.018Search in Google Scholar

[7] Kim AS. J. Membr. Sci. 2013, 428, 410–424.10.1016/j.memsci.2012.10.054Search in Google Scholar

[8] Yang X, Fane AG, Wang R. In Desalination: Water from Water, Kucera, J. Ed. Wiley-Scrivener: MA, USA, 2014. pp. 373–424.10.1002/9781118904855.ch8Search in Google Scholar

[9] Bonyadi S, Chung TS. J. Membr. Sci. 2009, 331, 66–74.10.1016/j.memsci.2009.01.014Search in Google Scholar

[10] Wang P, Teoh MM, Chung TS. Water Res. 2011, 45, 5489–5500.10.1016/j.watres.2011.08.012Search in Google Scholar PubMed

[11] Zheng L, Wang J, Li J, Zhang Y, Li K, Wei Y. Desalination 2017, 402, 162–172.10.1016/j.desal.2016.10.003Search in Google Scholar

[12] Buonomenna MG, Macchi P, Davoli M, Drioli E. Eur. Polym. J. 2007, 43, 1557–1572.10.1016/j.eurpolymj.2006.12.033Search in Google Scholar

[13] Madaeni SS, Yeganeh MK. J. Porous. Mater. 2003, 10, 131–138.10.1023/A:1026035830187Search in Google Scholar

[14] Moghareh Abed MR, Kumbarkar SC, Groth AM, Li K. J. Membr. Sci. 2012, 407, 145–154.10.1016/j.memsci.2012.03.029Search in Google Scholar

[15] Yeow ML, Liu YT, Li K. J. Appl. Polym. Sci. 2004, 92, 1782–1789.10.1002/app.20141Search in Google Scholar

[16] Zuo J, Bonyadi S, Chung TS. J. Membr. Sci. 2016, 497, 239–247.10.1016/j.memsci.2015.09.038Search in Google Scholar

[17] Chang HH, Chang LK, Yang CD, Lin DJ, Cheng LP. Polymer, 2017, 115, 164–175.10.1016/j.polymer.2017.03.044Search in Google Scholar

[18] Lu KJ, Zuo J, Chung TS. J. Membr. Sci. 2016, 514, 165–175.10.1016/j.memsci.2016.04.058Search in Google Scholar

[19] Ashoor BB, Mansour S, Giwa A, Dufour V, Hasana SW. Desalination 2016, 398, 222–246.10.1016/j.desal.2016.07.043Search in Google Scholar

[20] Lu KJ, Zuo J, Chung TS. J. Membr. Sci. 2017, 539, 34–42.10.1016/j.memsci.2017.05.064Search in Google Scholar

[21] Nejati S, Boo C, Osuji CO, Elimelech M. J. Membr. Sci. 2015, 492, 355–363.10.1016/j.memsci.2015.05.033Search in Google Scholar

[22] Fadhil S, Marino T, Makki HF, Alsalhy QF, Blefari S, Macedonio F, Nicolò ED, Giorno L, Drioli E, Figoli A. Chem. Eng. Process 2016, 102, 16–26.10.1016/j.cep.2016.01.007Search in Google Scholar

[23] Sun D, Liu MQ, Guo JH, Zhang JY, Li BB, Li DY. Desalination 2015, 370, 63–71.10.1016/j.desal.2015.05.017Search in Google Scholar

[24] Xiao T, Wang P, Yang X, Cai X, Lu J. J. Membr. Sci. 2015, 489, 160–174.10.1016/j.memsci.2015.03.081Search in Google Scholar

[25] Lin DJ, Beltsios K, Young TH, Jeng YS, Cheng LP. J. Membr. Sci. 2006, 274, 64–72.10.1016/j.memsci.2005.07.043Search in Google Scholar

[26] Lin DJ, Chang HH, Beltsios K, Don TM, Jeng YS, Cheng LP. J. Polym. Sci. Polym. Phys. 2009, 47, 1880–1893.10.1002/polb.21791Search in Google Scholar

[27] Park YS, Hatae T, Itoh H, Jang MY, Yamazaki Y. Electrochim Acta 2004, 50, 595–599.10.1016/j.electacta.2003.12.073Search in Google Scholar

[28] Lin DJ, Chang HH, Chen TC, Lee YC, Cheng LP. Eur. Polym. J. 2006, 42, 1581–1594.10.1016/j.eurpolymj.2006.01.027Search in Google Scholar

[29] Lin DJ, Beltsios K, Chang CL, Cheng LP. J. Polym. Sci. Polym. Phys. 2003, 41, 1578–1588.10.1002/polb.10513Search in Google Scholar

[30] Lin DJ, Chang CL, Lee CK, Cheng LP. Eur. Polym. J. 2006, 42, 356–367.10.1016/j.eurpolymj.2005.07.007Search in Google Scholar

[31] Young TH, Chang HH, Lin DJ, Cheng LP. J. Membr. Sci. 2010, 350, 32–41.10.1016/j.memsci.2009.12.009Search in Google Scholar

[32] Chang HH, Chang LK, Yang CD, Lin DJ, Cheng LP. J. Membr. Sci. 2016, 513, 186–196.10.1016/j.memsci.2016.04.052Search in Google Scholar

[33] Atkins P, de Paula J, Physical Chemistry, 10th ed.; Oxford University Press: Oxford, UK, 2010.Search in Google Scholar

[34] Fan H, Peng Y. Chem. Eng. Sci. 2012, 79, 94–102.10.1016/j.ces.2012.05.052Search in Google Scholar

[35] Martinez L. Desalination 2004, 168, 359–365.10.1016/j.desal.2004.07.022Search in Google Scholar

[36] Hou D, Dai G, Fan H, Huang H, Wang J. J. Membr. Sci. 2015, 476, 59–67.10.1016/j.memsci.2014.11.028Search in Google Scholar

[37] Li J, Guan Y, Cheng F, Liu Y. Chemosphere 2015, 140, 143–149.10.1016/j.chemosphere.2014.12.006Search in Google Scholar

[38] Lawson KW, Lloyd DR. J. Membr. Sci. 1997, 124, 1–25.10.1016/S0376-7388(96)00236-0Search in Google Scholar

[39] Lawson KW, Lloyd DR. J. Membr. Sci. 1996, 120, 123–133.10.1016/0376-7388(96)00141-XSearch in Google Scholar

[40] Leopold HG, Johnston J. J. Am. Chem. Soc. 1927, 49, 1974–1988.10.1021/ja01407a019Search in Google Scholar

[41] Gryta M. J. Membr. Sci. 2005, 265, 153–159.10.1016/j.memsci.2005.04.049Search in Google Scholar

[42] Gryta M, Grzechulska-Damszel J, Markowska A, Karakulski K. J. Membr. Sci. 2009, 326, 493–502.10.1016/j.memsci.2008.10.022Search in Google Scholar

Supplementary Material

The online version of this article offers supplementary material (

Received: 2018-06-16
Accepted: 2018-09-23
Published Online: 2018-12-07
Published in Print: 2019-02-25

©2019 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 9.12.2023 from
Scroll to top button