Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter January 1, 2019

Polyaniline enfolded hybrid carbon array substrate electrode for high performance supercapacitors

  • Preetam Bhardwaj , Shivani Kaushik , Preeti Gairola and S.P. Gairola EMAIL logo


Composites with thin layers of polyaniline (PANI) draped on the surface of a hybrid carbon (HC) array or assemblage were prepared by the oxidative polymerization route. The carbon array substrate is a consistent network architecture of carbon nanotubes and graphene, with the benefit of elevated conductivity and surface area of the carbon components. The exceptional improved electrochemical performances of PANI enfolded HC array electrodes are due to the synergistic effect of the pseudocapacitance of PANI and the electric double layer capacitance of the carbon array. The supercapacitive characteristics of composite materials were inspected by using cyclic voltammetry, the galvanostatic charge-discharge test and electrochemical impedance analysis. The 025PANI-HC composite sample revealed a maximum specific capacitance of 1397.82 F g−1 at a scan rate of 5 mV s−1 and 1430 F g−1 at 1 A g−1 from galvanostatic charge-discharge data, respectively, in 1 m H2SO4. The composites exhibited a much larger specific capacitance value than pristine PANI. Also, the 025PANI-HC electrode had an unwavering operation and its specific capacitance retention was 89%, even after 5000 charge-discharge cycles at 1 A g−1.

Corresponding author: Dr. S.P. Gairola, Research and Development Cell, Uttaranchal University, Prem Nagar, Dehradun 248007, India


[1] Conway BE, Pell W. InProceedings of the Eighth International Seminar on Double-layer Capacitors and Similar Energy Storage Devices, Florida Educational Seminars: Deerfield Beach, FL, 1998, 7–9 December.Search in Google Scholar

[2] Conway BE. Electrochemical Capacitors, Kluwer Academic/Plenum Publishers: New York, 1999).Search in Google Scholar

[3] Stoller MD, Park S, Zhu Y, An J, Ruoff RS. Nano. Lett. 2008, 8, 3498–3502.10.1021/nl802558ySearch in Google Scholar PubMed

[4] Sharma AK, Sharma Y. Anal. Lett. 2012, 45, 2075–2085.10.1080/00032719.2012.680057Search in Google Scholar

[5] Sharma AK, Bhardwaj P, Dhawan SK, Sharma Y. Adv. Mater. Lett. 2015, 6, 414–420.10.5185/amlett.2015.5690Search in Google Scholar

[6] Zhang J, Zhao X. J. Phys. Chem. 2012, C116, 5420–5426.10.1021/jp211474eSearch in Google Scholar

[7] Sharma AK, Sharma Y, Malhotra R, Sharma JK. Adv. Mat. Lett. 2012, 3, 82–86.10.5185/amlett.2012.1315Search in Google Scholar

[8] Kim JH, Lee Y, Sharma AK, Liu CG. Electrochim. Acta 2006, 52, 1727–1732.10.1016/j.electacta.2006.02.059Search in Google Scholar

[9] Kim JH, Sharma AK, Lee Y. Mater. Lett. 2006, 60, 1697–1701.10.1016/j.matlet.2005.12.002Search in Google Scholar

[10] Li J, Cui L, Zhang X. Appl. Surf. Sci. 2010, 256, 4339–4343.10.1016/j.apsusc.2010.02.028Search in Google Scholar

[11] Liu K, Hu Z, Xue R, Zhang J, Zhu J. J. Power Sources 2008, 179, 858–862.10.1016/j.jpowsour.2008.01.024Search in Google Scholar

[12] Meyer JC, Geim AK, Katsnelson MI, Novoselov KS, Booth TJ, Roth S. Nature 2007, 446, 60–63.10.1038/nature05545Search in Google Scholar PubMed

[13] Novoselov KS, Jiang D, Booth T, Khotkevich VV, Morozov SV, Geim AK. PNAS 2005, 102, 10451–10453.10.1073/pnas.0502848102Search in Google Scholar PubMed PubMed Central

[14] Iijima S, Ichihashi T. Nature 1993, 363, 603–605.10.1038/363603a0Search in Google Scholar

[15] Byon HR, Lee SW, Chen S, Hammond PT, Shao-Horn Y. Carbon 2011, 49, 457–467.10.1016/j.carbon.2010.09.042Search in Google Scholar

[16] Fan Z, Yan J, Zhi L, Zhang Q, Wei T, Feng J, Zhang M, Qian W, Wei F. Adv. Mater. 2010, 22, 3723–3728.10.1002/adma.201001029Search in Google Scholar PubMed

[17] Sharma K, Shukla M. J. Nanomater. 2013, 2014, 10, Article ID 837492.Search in Google Scholar

[18] Saini P, Choudhary V, Singh BP, Mathur RB, Dhawan SK. Mater. Chem. Phys. 2009, 113, 919–926.10.1016/j.matchemphys.2008.08.065Search in Google Scholar

[19] Ozkazanca E, Zorb S, Ozkazancb H, Yuksel Guneya H, Abacia U. Mater. Chem. Phys. 2012, 133, 356–362.10.1016/j.matchemphys.2012.01.037Search in Google Scholar

[20] Yang K, Gu MY, Guo YP, Pan XF, Mu GH. Carbon 2009, 47, 1723–1737.10.1016/j.carbon.2009.02.029Search in Google Scholar

[21] Jimeno A, Goyanes S, Eceiza A, Kortaberria G, Mondragon I, Corcueral MA. J. Nanosci. Nanotechnol. 2009, 9, 1–6.10.1166/jnn.2009.J01aSearch in Google Scholar

[22] Yu G, Xie X, Pan L, Bao Z, Cui Y. Nano Energy 2013, 2, 213–234.10.1016/j.nanoen.2012.10.006Search in Google Scholar

[23] Ganesh V, Pitchumani S, Lakshminarayanan V. J. Power Sources 2006, 158, 1523.10.1016/j.jpowsour.2005.10.090Search in Google Scholar

[24] Qu QT, Shi Y, Tian S, Chen YH, Wu YP, Holze R. J. Power Sources 2009, 194, 1222–1225.10.1016/j.jpowsour.2009.06.068Search in Google Scholar

[25] Khomenko V, Frackowiak E, Beguin F. Electrochim. Acta 2005, 50, 2499.10.1016/j.electacta.2004.10.078Search in Google Scholar

[26] Chaudhary G, Sharma AK, Bhardwaj P. J. Energy Chem. 2017, 26, 175–181.10.1016/j.jechem.2016.09.013Search in Google Scholar

Received: 2018-09-06
Accepted: 2018-11-28
Published Online: 2019-01-01
Published in Print: 2019-02-25

©2019 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 6.12.2023 from
Scroll to top button