Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter June 7, 2021

Pyrolysis and combustion of polystyrene composites based on graphene oxide functionalized with 3-(methacryloyloxy)-propyltrimethoxysilane

  • Ion Anghel , Gabriela Lisa EMAIL logo , Ioana-Emilia Şofran , Flavia-Corina Mitroi-Symeonidis , Mihai Marius Rusu , Monica Baia , Lucian Baia , Klára Magyari , Virginia Danciu , Liviu Cosmin Cotet , Malvina Stroe and Mihaela Baibarac


In this study, polystyrene composites (PS–GOf) with variable concentration (0.5; 1; 2; 3; 4; and 5 wt%) of GOf were obtained through the in-situ polymerisation of the styrene in the presence of benzoyl peroxide and graphene oxide(GO) functionalized with 3-(methacryloyloxy)-propyltrimethoxysilane(γ-MPTS). For determining the morphological and structural particularities of polymeric composites transmission electron microscopy (TEM) measurements were performed. The influence of functionalized GO on thermal and combustion properties of polystyrene (PS)-based composite materials was determined through several methods: Thermogravimetry (TGA); derived thermogravimetry (DTG); microscale combustion calorimetry analysis (MCC); and chemical kinetic studies through TGA and MCC determinations at similar heating rates.

Corresponding authors: Gabriela Lisa, Department of Chemical Engineering, Faculty of Chemical Engineering and Environmental Protection “Cristofor Simionescu”, Gheorghe Asachi Technical University of Iasi, Bd. Mangeron 73, 700050Iasi, Romania, E-mail:

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This work was supported by a grant of the Romanian Ministry of Research and Innovation, CCCDI - UEFISCDI, project number PN-III-P1-1.2-PCCDI-2017-0350/38PCCDI within PNCDI III.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.


1. Xu, Q., Jin, C., Griffin, G., Jiang, Y. Fire safety evaluation of expanded polystyrene foam by multi-scale methods. J. Therm. Anal. Calorim. 2014, 115, 1651–1660; in Google Scholar

2. Fernandes, L., Gaspar, H., Bernardo, G. Inhibition of thermal degradation of polystyrene by C60 and PCBM: a comparative study. Polym. Test. 2014, 40, 63–69; in Google Scholar

3. Mikkola, E., Hakkarainen, T., Matala, A. Fire Safety of EPS in Residential Multi-Storey Buildings; Research Report VTT-R-04632-13, Finland, 2013.10.1051/matecconf/20130904002Search in Google Scholar

4. Simionescu, T. M., Minea, A. A. The effect of montmorillonite clay and fire retardants on the heat of combustion of recycled acrylonitrile-butadiene styrene. Environ. Eng. Manag. J. 2019, 18, 317–326.Search in Google Scholar

5. Lalu, O., AnghelI, Şerban, M., MocioiI, A., Branisteanu, B. Experimental researches on determining the fire action response of improved exterior cladding systems provided with incombustible barriers. Energy Procedia 2017, 112, 287–295; in Google Scholar

6. Sprânceană, A. C., Darie, M., Ciauşu, S., Tudorachi, N., Lisa, G. Comparative analysis of thermal stability of building insulation materials. Environ. Eng. Manag. J. 2017, 16, 2831–2842.10.30638/eemj.2017.292Search in Google Scholar

7. Mouritz, A. P., Gibson, A. G. Fire Properties of Polymer Composite Materials; Springer Science & Business Media: Dordrecht, 2006.Search in Google Scholar

8. McGrattan, K., Hostikka, S., McDermott, R., Floyd, J., Weinschenk, C., Overholt, K. Fire Dynamics Simulator User’s Guide, Vol. 1019(16); NIST special publication, 2020.Search in Google Scholar

9. McGrattan, K., Hostikka, S., McDermott, R., Floyd, J., Weinschenk, C., Overholt, K. Fire Dynamics Simulator Technical Reference Guide Volume 3: Validation, Vol. 1018-3(6); NIST Special Publication, 2020; p. 175.Search in Google Scholar

10. Bakar, A., Sharikin, A. Characterization of Fire Properties for Coupled Pyrolysis and Combustion Simulation and their Optimised Use. Ph.D. Thesis, VictoriaUniversity, Melbourne, 2015.Search in Google Scholar

11. Matala, A., Hostikka, S., Mangs, J. Estimation of pyrolysis model parameters for solid materials using thermogravimetric data. Fire Saf. Sci. 2008, 9, 1213–1223; in Google Scholar

12. Grause, G., Karakita, D., Ishibashi, J., Kameda, T., Bhaskar, T., Yoshioka, T. Impact of brominated flame retardants on the thermal degradation of high-impact polystyrene. Polym. Degrad. Stab. 2013, 98, 306–315; in Google Scholar

13. Lu, H., Wilkie, C. A. Synergistic effect of carbon nanotubes and decabromodiphenyl oxide/Sb2O3 in improving the flame retardancy of polystyrene. Polym. Degrad. Stab. 2010, 95, 564–571; in Google Scholar

14. Hu, W., Zhan, J., Hong, N., Hull, T. R., Stec, A. A., Song, L., Wang, J., Hu, Y. Flame retardant polystyrene copolymers: preparation, thermal properties, and fire toxicities. Polym. Adv. Technol. 2014, 25, 631–637; in Google Scholar

15. Liu, J., Zhang, Y., Peng, S., Pan, B., Lu, C., Liu, H., Ma, J., Niu, Q. Fire property and charring behavior of high impact polystyrene containing expandable graphite and microencapsulated red phosphorus. Polym. Degrad. Stab. 2015, 121, 261–270; in Google Scholar

16. Zhou, K., Jiang, S., Bao, C., Song, L., Wang, B., Tang, G., Hu, Y., Gui, Z. Preparation of poly (vinyl alcohol) nanocomposites with molybdenum disulfide (MoS2): structural characteristics and markedly enhanced properties. RSC Adv. 2012, 2, 11695–11703; in Google Scholar

17. Majoni, S. Thermal and flammability study of polystyrene composites containing magnesium–aluminum layered double hydroxide (MgAl–C16 LDH), and an organophosphate. J. Therm. Anal. Calorim. 2015, 120, 1435–1443; in Google Scholar

18. Xing, W., Wang, X., Song, L., Hu, Y. Enhanced thermal stability and flame retardancy of polystyrene by incorporating titanium dioxide nanotubes via radical adsorption effect. Compos. Sci. Technol. 2016, 133, 15–22; in Google Scholar

19. Wang, J., Yuan, B., Cai, W., Qiu, S., Tai, Q., Yang, H., Hu, Y. Facile design of transition metal based organophosphorus hybrids towards the flame retardancy reinforcement and toxic effluent elimination of polystyrene. Mater. Chem. Phys. 2018, 214, 209–220; in Google Scholar

20. Han, Y., Wu, Y., Shen, M., Huang, X., Zhu, J., Zhang, X. Preparation and properties of polystyrene nanocomposites with graphite oxide and graphene as flame retardants. J. Mater. Sci. 2013, 48, 4214–4222; in Google Scholar

21. Afzal, A., Kausar, A., Siddiq, M. Perspectives of polystyrene composite with fullerene, carbon black, graphene, and carbon nanotube: a review. Polym. Plast. Technol. Eng. 2016, 55, 1988–2011; in Google Scholar

22. Stankovich, S., Dikin, D. A., Dommett, G. H. B., Kohlhaas, K. M., Zimney, E. J., Stach, E. A., Piner, R. D., Nguyen, S. T., Ruoff, R. S. Graphene based composite materials. Nature 2006, 442, 282–286; in Google Scholar

23. Tang, H., Zhang, J., Zhang, Y. J., Xiong, Q. Q., Tong, Y. Y., Li, Y., Tu, J. P. Porous reduced graphene oxide sheet wrapped silicon composite fabricated by steam etching for lithium-ion battery application. J. Power Sources 2015, 286, 431–437; in Google Scholar

24. Cotet, L. C., Baia, G. L., Danciu, V. Procedeu de obtinere prin exfoliere chimica a unor materiale pe baza de grafen (oxid de grafen si oxid de grafen redus) de suprafete foarte mari, proprietar: Universitatea Babes-Bolyai. Romanian Patent OSIM, 131216 B1, 2018.Search in Google Scholar

25. Cotet, L. C., Magyari, K., Todea, M., Dudescu, M. C., Danciu, V., Baia, L. Versatile self-assembled graphene oxide membranes obtained in ambient conditions by using a water-ethanol suspension. J. Mater. Chem. 2017, 5, 2132–2142; in Google Scholar

26. Stroe, M., Cristea, M., Matei, E., Galatanu, A., Cotet, L. C., Pop, L. C., Baia, M., Danciu, V., Anghel, I., Baia, L., Baibarac, M. A. Optical properties of composites based on graphene oxide and polystyrene. Molecules 2020, 25, 2419; in Google Scholar

27. Dong, R., Liu, L. Preparation and properties of acrylic resin coating modified by functional graphene oxide. Appl. Surf. Sci. 2016, 368, 378–387; in Google Scholar

28. Standard Test Method for Determining Flammability Characteristics of Plastics and Other Solid Materials Using Microscale Combustion Calorimetry, ASTM D7309, American Society for Testing and Materials: West Conshohocken, PA, USA, 2013.Search in Google Scholar

29. Xu, Q., Jin, C., Jiang, Y. Compare the flammability of two extruded polystyrene foams with micro-scale combustion calorimeter and cone calorimeter tests. J. Therm. Anal. Calorim. 2017, 127, 2359–2366; in Google Scholar

30. Walters, R. N., Safronava, N., Lyon, R. E. A microscale combustion calorimeter study of gas phase combustion of polymers. Combust. Flame 2015, 162, 855–863.10.1016/j.combustflame.2014.08.008Search in Google Scholar

31. Lyon, R. E., Speitel, L., Walters, R. N., Crowley, S. Fire-resistant elastomers. Fire Mater. 2003, 27, 195–208; in Google Scholar

32. Cogen, J. M., Lin, T. S., Lyon, R. E. Correlations between pyrolysis combustion flow calorimetry and conventional flammability tests with halogen-free flame retardant polyolefin compounds. Fire Mater. 2009, 33, 33–50; in Google Scholar

33. Reinaldo, J. S., Pereira, L. M., Silva, E. S., Macedo, T. C. P., DamascenoI, Z., ItoE, N. Thermal, mechanical and morphological properties of multicomponent blends based on acrylic and styrenic polymers. Polym. Test. 2020, 82, 106265; in Google Scholar

34. Peterson, J. D., VzazovkinS, Wight, C. A. Kinetic of thermal and thermo-oxidative degradation of polystyrene, polyethylene and poly(propylene). Macromol. Chem. Phys. 2001, 202, 775–784;<775::aid-macp775>;2-g.10.1002/1521-3935(20010301)202:6<775::AID-MACP775>3.0.CO;2-GSearch in Google Scholar

35. Yang, M., TsukameT, Saitoh, H., Shibasaki, Y. Investigation of the thermal degradation mechanisms of poly(styrene-co-methacrylonitrile)s by ash pyrolysis and TG-FTIR measurements. Polym. Degrad. Stab. 2000, 67, 479–489; in Google Scholar

36. Aguirresarobe, R. H., Irusta, L., Fernandez-Berridi, M. J. Application of TGA/FTIR to the study of the thermal degradation mechanism of silanized poly (ether-urethanes). Polym. Degrad. Stab. 2012, 97, 1671–1679; in Google Scholar

37. Standard Test Method for Arrhenius Kinetic Constants for Thermally Unstable Materials, ASTM Test method E698, Philadelphia: American Society for Testing and Materials, 1984.Search in Google Scholar

38. Standard Test Method for Decomposition Kinetics by Thermogravimetry Using the Ozawa/Flynn/Wall Method, ASTM Test method E1641, American Society for Testing and Materials, 2016.Search in Google Scholar

39. Jiao, L., Xu, G., Wang, Q., Xu, Q., Sun, J. Kinetics and volatile products of thermal degradation of building insulation materials. Thermochim. Acta 2012, 547, 120–125; in Google Scholar

40. Cheng, J., Pan, Y., Yao, J., Wang, X., Pan, F., Jiang, J. Mechanisms and kinetics studies on the thermal decomposition of micron poly (methyl methacrylate) and polystyrene. J. Loss Prev. Process. Ind. 2016, 40, 139–146; in Google Scholar

41. Lyon, R. E., Walters, R. N., Stoliarov, S. I., Safronava, N. Principles and Practice of Microscale Combustion Calorimetry; Federal Aviation Administration: Atlantic City International Airport, NJ, USA, 2013.Search in Google Scholar

42. Safronava, N., Lyon, R. E. A simple method for obtaining first-order kinetic parameters from thermal analysis data. In 38th Meeting of the North American Thermal Analysis Society (NATAS): Philadelphia, Pennsylvania, August 15–18, 2010.Search in Google Scholar

Supplementary Material

The online version of this article offers supplementary material (

Received: 2021-03-20
Accepted: 2021-05-04
Published Online: 2021-06-07
Published in Print: 2021-08-26

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 23.2.2024 from
Scroll to top button