Accessible Unlicensed Requires Authentication Published online by De Gruyter November 24, 2021

Enhancement of thermoelectric and mechanical properties of thermoplastic vulcanizates (TPVs) with hydroxylated graphene by dynamic vulcanization

Qi Tang, Lan Cao, Xiurui Lang, Yingxia Zong and Chengzhong Zong

Abstract

In order to obtain higher thermoelectric and mechanical properties in nonpolar thermoplastic vulcanizates (TPVs), the butyl rubber/polypropylene (TPVs)/hydroxylated graphene (HGE) composites with nanosheet network were prepared through masterbatch technique and based on thermodynamic calculations, using polypropylene-graft-maleic anhydride (PP-MA) as a compatibilizer. The Fourier transform infrared (FTIR) and Raman spectra revealed the introduced maleic anhydride group on PP-MA can form strong interfacial interaction with hydroxyl-containing functional groups on HGE. Morphology study indicated the rubber particles in the composites occupied the most volume of the PP phase, as expected to hinder the aggregation of HGE and form the effective nanosheet network. The nanosheet network can be combined with the butyl rubber (IIR) cross-linked particles during the dynamic vulcanization process to improve the interface bonding between PP and IIR, thus increasing the tensile strength of TPVs. The prepared TPVs/HGE composites have significantly improved in mechanical properties, thermal properties and dielectric properties, which provides a guarantee for their potential application as multifunctional TPVs polymers.


Corresponding authors: Qi Tang and Chengzhong Zong, School of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China; and Key Laboratory of Rubber-Plastics, Ministry of Education, Qingdao University of Science and Technology, Qingdao 266042, China, E-mail: ,

Funding source: Natural Science Foundation of Shandong Province

Award Identifier / Grant number: ZR2020QE072

  1. Author contributions: Conceptualization, Q.T. and Y.Z.; methodology, X.L.; software, L.C.; writing—review and editing, Q.T.; funding acquisition, Z.Z. All authors have read and agreed to the published version of the manuscript.

  2. Research funding: This research was funded by the Natural Science Foundation of Shandong Province, grant number ZR2020QE072.

  3. Conflict of interest statement: The authors declare no conflict of interest regarding this article.

References

1. Ning, N. Y., Li, S. Q., Wu, H. G., Tian, H. C., Yao, P. J., Hu, G. H., Tian, M., Zhang, L. Q. Prog. Polym. Sci. 2018, 79, 61–97; https://doi.org/10.1016/j.progpolymsci.2017.11.003. Search in Google Scholar

2. Wu, D. F., Lv, Q. L., Feng, S. H., Chen, J. X., Chen, Y., Qiu, Y. X., Yao, X. Carbon 2015, 95, 380–387; https://doi.org/10.1016/j.carbon.2015.08.062. Search in Google Scholar

3. Li, Q., Xue, Q., Zheng, Q., Hao, L. Z., Gao, X. L. Mater. Lett. 2008, 62, 4229–4231; https://doi.org/10.1016/j.matlet.2008.06.047. Search in Google Scholar

4. Yoshihiko, K., Yoshikawa, H., Kunio, A., Masaki, M., Tatsuo, T., Kayano, S., Bandow, S. J., Sumio, L. Langmuir 2008, 24, 547–550. Search in Google Scholar

5. Yang, D., Zhang, L. Q., Liu, H. L., Dong, Y. C. Appl. Polym. 2012, 125, 2196–2201; https://doi.org/10.1002/app.36428. Search in Google Scholar

6. Tian, H. C., Tian, M., Zou, H., Dang, Z. M. J. Appl. Polym. Sci. 2010, 117, 691–699; https://doi.org/10.1002/app.30917. Search in Google Scholar

7. Yan, N., Xia, H. S., Wu, J. K., Zhan, G. X., Chen, C. J. Appl. Polym. Sci. 2012, 127, 933–941; https://doi.org/10.1002/app.37861. Search in Google Scholar

8. Li, C. Q., Zha, J. W., Li, Z. J., Zhang, D. L., Wang, S. J. Compos. Sci. Technol. 2018, 157, 134–143; https://doi.org/10.1016/j.compscitech.2018.01.038. Search in Google Scholar

9. Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D., Katsnelson, M. L., Grigorieva, I. V., Dubonos, S. V., Firsov, A. A. Nature 2005, 438, 197–200; https://doi.org/10.1038/nature04233. Search in Google Scholar

10. Kim, H., Abdala, A. A., Macosko, C. W. Macromolecules 2010, 43, 6515–6530; https://doi.org/10.1021/ma100572e. Search in Google Scholar

11. Weiss, N. O., Zhou, H. L., Liao, L., Liu, L., Jiang, S., Huang, Y., Duan, X. F. Adv. Mater. 2012, 24, 782–825; https://doi.org/10.1002/adma.201201482. Search in Google Scholar

12. Liang, J. Z., Du, Q., Tsui, G. C. P., Tang, C. Y. Compos. B Eng. 2016, 95, 166–171; https://doi.org/10.1016/j.compositesb.2016.04.011. Search in Google Scholar

13. Sethuraman, K., Alagar, M. RSC Adv. 2015, 5, 9607–9617; https://doi.org/10.1039/c4ra14383c. Search in Google Scholar

14. Katbab, A. A., Hrymak, A. N., Kasmadjian, K. J. Appl. Polym. Sci. 2010, 107, 3425–3433. Search in Google Scholar

15. Ranjbar, B., Mirzazadeh, H., Katbab, A. A., Hrymak, A. N. J. Appl. Polym. Sci. 2012, 123, 32–40; https://doi.org/10.1002/app.34414. Search in Google Scholar

16. Yang, B. X., Shi, J. H., Pramoda, K. P., Goh, S. H. Compos. Sci. Technol. 2008, 68, 2490–2497; https://doi.org/10.1016/j.compscitech.2008.05.001. Search in Google Scholar

17. Madni, I., Hwang, C. Y., Park, S. D., Choa, Y. H., Kim, H. T. Colloid. Surface. Physicochem. Eng. Aspect. 2010, 358, 101–107; https://doi.org/10.1016/j.colsurfa.2010.01.030. Search in Google Scholar

18. Yuan, B. H., Bao, C. L., Song, L., Hong, N. N., Liew, K. M., Hu, Y. Chem. Eng. J. 2014, 237, 411–420; https://doi.org/10.1016/j.cej.2013.10.030. Search in Google Scholar

19. Wang, D. R., Zhang, X. M., Zha, J. W., Zhao, J., Dang, Z. M., Hu, G. H. Polymer 2013, 54, 1916–1922; https://doi.org/10.1016/j.polymer.2013.02.012. Search in Google Scholar

20. Li, C. Q., Zha, J. W., Long, H. Q., Wang, S. J., Zhang, D. L., Dang, Z. M. Compos. Sci. Technol. 2017, 153, 111–118; https://doi.org/10.1016/j.compscitech.2017.10.015. Search in Google Scholar

21. Song, P. G., Cao, Z. H., Cai, Y. Z., Zhao, L. P., Fang, Z. P., Fu, S. Y. Polymer 2011, 52, 4001–4010; https://doi.org/10.1016/j.polymer.2011.06.045. Search in Google Scholar

22. Mohiuddin, T. M. G., Lombardo, A., Nair, R. R., Bonetti, A., Savini, G., Jalil, R., Bonini, N., Basko, D. M., Galiotis, C., Marzari, N. Phys. Rev. 2009, 79, 205433; https://doi.org/10.1103/physrevb.79.205433. Search in Google Scholar

23. Sumita, M., Sakata, K., Asai, S., Miyasaka, K., Nakagawa, H. Polym. Bull. 1991, 25, 265–271; https://doi.org/10.1007/bf00310802. Search in Google Scholar

24. Wu, S. H. Polymer Interface and Adhesion; Inc: New York, 1982; p. 256. Search in Google Scholar

25. Owens, D. K., Wendt, R. C. J. Appl. Polym. Sci. 1969, 13, 1741–1747; https://doi.org/10.1002/app.1969.070130815. Search in Google Scholar

26. Perrozzi, F., Croce, S., Treossi, E., Palermo, V., Santucci, S., Fioravanti, G., Ottaviano, L. Carbon 2014, 77, 473–480; https://doi.org/10.1016/j.carbon.2014.05.052. Search in Google Scholar

27. Wang, S., Zhang, Y., Abidi, N., Cabrales, L. Langmuir 2009, 25, 11078–11081; https://doi.org/10.1021/la901402f. Search in Google Scholar

28. Huy, T. A., Luepke, T., Radusch, H. J. J. Appl. Polym. Sci. 2001, 80, 148–158; https://doi.org/10.1002/1097-4628(20010411)80:2<148::aid-app1083>3.0.co;2-w. Search in Google Scholar

29. Koval’chuk, A. A., Shevchenko, V. G., Shchegolikhin, A., Nedorezova, P. M. Macromolecules 2008, 41, 7536–7542. Search in Google Scholar

30. Xia, X. D., Zhong, Z., Weng, G. J. Mech. Mater. 2017, 109, 42–52; https://doi.org/10.1016/j.mechmat.2017.03.014. Search in Google Scholar

31. Salaeh, S. Processing of Natural Rubber Composites and Blends: Relation Between Structure and Properties. Thesis, University Claude Bernard-Lyon I, France, 2014. Search in Google Scholar

Received: 2021-05-26
Accepted: 2021-10-06
Published Online: 2021-11-24

© 2021 Walter de Gruyter GmbH, Berlin/Boston