Skip to content
Licensed Unlicensed Requires Authentication Published online by De Gruyter May 20, 2022

Epoxy resin/graphene nanoplatelets composites applied to galvanized steel with outstanding microwave absorber performance

Henrique Carvalho de Oliveira, Alessandra Lavoratti, Iaci Miranda Pereira, Tamara Indrusiak Silva, Bluma Guenther Soares, Lilian Vanessa Rossa Beltrami ORCID logo and Ademir José Zattera


The necessity of new electromagnetic interference shielding materials has expanded scientific research, especially with regard to microwave frequency range (X-band). In this context, polymer-based composites with nanoparticles – such as graphene – are promising electromagnetic interference shielding materials. In this work, epoxy resin/graphene nanoplatelets (NPG) composites with 0.10, 0.25 and 0.5% w/w were developed and applied to galvanized steel substrates. Dynamic-mechanical tests showed that the addition of NGPs increased the resin rigidity due to molecular restrictions of the organic chains imposed by the NPG. With the increase of the NPG concentration to 0.50%, the impact strength and the adhesion of the composites significantly decreased due to the formation and propagation of large cracks, followed by delamination. The epoxy resin sample containing 0.25% NPG presented the best microwave absorber performance with an increase of 48% in the attenuated energy and 80% in the reflection loss, respectively. Moreover, this sample extended the microwave absorption range to 10 GHz.

Corresponding author: Lilian Vanessa Rossa Beltrami, Programa de Pós-Graduação em Engenharia de Processos e Tecnologias (PGEPROTEC), Universidade de Caxias do Sul (UCS), Rua Francisco Getúlio Vargas, 1130 Bairro Petrópolis, Caxias do Sul 95070-560, Brazil, E-mail:

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: The authors would like to thank CAPES (Brazilian Coordination for the improvement of higher education personnel) and CNPq (the Brazilian National Council for Scientific and Technological Development) for the financial support.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.


1. Chen, Y., Li, J., Li, T., Zhang, L., Meng, F. Recent advances in graphene-based films for electromagnetic interference shielding: review and future prospects. Carbon 2021, 180, 163–184; in Google Scholar

2. Yao, Y., Jin, S., Ma, X., Yu, R., Zou, H., Wang, H., Lv, X., Shu, Q. Graphene-containing flexible polyurethane porous composites with improved electromagnetic shielding and flame retardancy. Compos. Sci. Technol. 2020, 200, 108457; in Google Scholar

3. Pang, K., Liu, X., Liu, Y., Chen, Y., Xu, Z., Shen, Y., Gao, C. Highly conductive graphene film with high-temperature stability for electromagnetic interference shielding. Carbon 2021, 179, 202–208; in Google Scholar

4. Godoy, A. P., Amurim, L. G., Mendes, A., Gonçalves, A. E., Ferreira, A., de Andrade, C. S., Kotsilkova, R., Ivanov, E., Lavorgna, M., Saito, L. A. M., Ribeiro, H., Andrade, R. J. E. Enhancing the electromagnetic interference shielding of flexible films with reduced graphene oxide-based coatings. Prog. Org. Coating 2021, 158, 106341; in Google Scholar

5. Maruthi, N., Faisal, M., Raghavendra, N. Conducting polymer based composites as efficient EMI shielding materials: a comprehensive review and future prospects. Synth. Met. 2021, 272, 116664; in Google Scholar

6. Vyas, M. K., Chandra, A. Synergistic effect of conducting and insulating fillers in polymer nanocomposite films for attenuation of X-band. J. Mater. Sci. 2019, 54, 1304–1325; in Google Scholar

7. Sista, K. S., Dwarapudi, S., Kumar, D., Sinha, G. R., Moon, A. P. Carbonyl iron powders as absorption material for microwave interference shielding: a review. J. Alloys Compd. 2021, 853, 157251; in Google Scholar

8. Sánchez-Hidalgo, R., Yuste-Sanchez, V., Verdejo, R., Blanco, C., Lopez-Manchado, M. A., Menéndez, R. Main structural features of graphene materials controlling the transport properties of epoxy resin-based composites. Eur. Polym. J. 2018, 17, 32287–32295; in Google Scholar

9. Jin, F.-L., Li, X., Park, S.-J. Synthesis and application of epoxy resins: a review. J. Ind. Eng. Chem. 2015, 29, 1–11; in Google Scholar

10. Prolongo, S. G., Moriche, R., Jiménez-Suárez, A., Sánchez, M., Ureña, A. Advantages and disadvantages of the addition of graphene nanoplatelets to epoxy resins. Eur. Polym. J. 2014, 61, 206–214; in Google Scholar

11. Nobile, M. R., Guadagno, L., Naddeo, C., Vertuccio, L., Raimondo, M. Graphene/epoxy resins: rheological behavior and morphological analysis by atomic force microscopy (AFM). Mater. Today Proc. 2021, 34, 160–163; in Google Scholar

12. Chen, L., Liu, H., Liu, Z., Song, Q. Thermal conductivity and anti-corrosion of epoxy resin based composite coatings doped with graphene and graphene oxide. Compos. Part C 2021, 5, 100124; in Google Scholar

13. Mohammad, R., Bahram, R., Mohammad, M., Ghasem, B. Development of metal-organic framework (MOF) decorated graphene oxide nanoplatforms for anti-corrosion epoxy coatings. Carbon 2020, 161, 231–251; in Google Scholar

14. Rahman, M., Mohammad, R., Sajjad, A., Ghasem, B., Bahram, R. Graphene oxide nanoplatforms reduction by green plant-sourced organic compounds for tion of an active anti-corrosion coating; experimental/electronic-scale DFT-D mod studies. Chem. Eng. J. 2020, 397, 125433; in Google Scholar

15. Raimondo, M., Naddeo, C., Vertuccio, L., Lafdi, K., Sorrentino, A., Guadagno, L. Carbon-based aeronautical epoxy nanocomposites: effectiveness of atomic force microscopy (AFM) in investigating the dispersion of different carbonaceous nanoparticles. Polymers 2019, 11, 832; in Google Scholar

16. Nguyen, B. H., Nguyen, V. H. Promising applications of graphene and graphene-based nanostructures. Adv. Nat. Sci. Nanosci. Nanotechnol. 2016, 7, 023002; in Google Scholar

17. Lavoratti, A., Zattera, A. J., Amico, S. C. Mechanical and dynamic-mechanical properties of silane-treated graphite nanoplatelet/epoxy composites. J. Appl. Polym. Sci. 2018, 135, 46724; in Google Scholar

18. Kunst, S. R., Beltrami, L. V. R., Cardoso, H. R. P., Veja, M. R. O., Menezes, T. L., Malfatti, C. F. The effects of curing temperature on bilayer and monolayer hybrid films: mechanical and electrochemical properties. Appl. Electrochem. 2014, 44, 759–771; in Google Scholar

19. Beltrami, L. V. R., Kunst, S. R., Birriel, E. J., Malfatti, C. F. Magnetoelastic biosensors: corrosion protection of an FeNiMoB alloy from alkoxide precursors. Thin Solid Films 2017, 624, 83–94; in Google Scholar

20. Chen, M., Zhu, Y., Pan, Y., Kou, H., Xu, H., Guo, J. Gradient multilayer structural design of CNTs/SiO2 composites for improving microwave absorbing properties. Mater. Des. 2011, 32, 3013–3016; in Google Scholar

21. Jabbar, A., Militký, J., Wiener, J., Kale, B. M., Ali, U., Rwawiire, S. Nanocellulose coated woven jute/green epoxy composites: characterization of mechanical and dynamic mechanical behavior. Comp. Struct. 2017, 161, 340–349; in Google Scholar

22. Aradhana, R., Mohanty, S., Nayak, S. K. Comparison of mechanical, electrical and thermal properties in graphene oxide and reduced graphene oxide filled epoxy nanocomposite adhesives. Polymer 2018, 141, 109–123; in Google Scholar

23. Koziol, M., Jesionek, M., Szperlich, P. Addition of a small amount of multiwalled carbon nanotubes and flaked graphene to epoxy resin. J. Reinforc. Plast. Compos. 2017, 36, 640–654; in Google Scholar

24. Lavoratti, A., Zattera, A. J., Amico, S. C. Effect of carbonaceous nanofillers and triblock copolymers on the toughness of epoxy resin. Polym. Bull. 2021, 78, 5467–5480; in Google Scholar

25. Verma, C., Olasunkanmi, L. O., Akpan, E. D., Quraishi, M. A., Dagdag, O., El Gouri, M., Sherif, E.-S. M., Ebenso, E. E. Epoxy resins as anticorrosive polymeric materials: a review. React. Funct. Polym. 2020, 156, 104741; in Google Scholar

26. Wei, H., Xia, J., Zhou, W., Zhou, L., Hussain, G., Li, Q., Ostrikov, K. Adhesion and cohesion of epoxy-based industrial composite coatings. Comp. Part B: Eng. 2020, 193, 108035; in Google Scholar

27. Chandrasekaran, S., Seidel, C., Schulte, K. Preparation and characterization of graphite nano-platelet (GNP)/epoxy nano-composite: mechanical, electrical and thermal properties. Eur. Polym. J. 2013, 49, 3878–3888; in Google Scholar

28. Monti, M., Rallini, M., Puglia, D., Peponi, L., Torre, L., Kenny, J. M. Morphology and electrical properties of graphene–epoxy nanocomposites obtained by different solvent assisted processing methods. Composites Part A 2013, 46, 166–172; in Google Scholar

29. Liu, H., Liang, C., Chen, J., Huang, Y., Cheng, F., Wen, F., Xu, B., Wang, B. Novel 3D network porous graphene nanoplatelets /Fe3O4/ epoxy nanocomposites with enhanced electromagnetic interference shielding efficiency. Compos. Sci. Technol. 2019, 169, 103–109; in Google Scholar

Received: 2021-07-28
Accepted: 2022-03-25
Published Online: 2022-05-20

© 2022 Walter de Gruyter GmbH, Berlin/Boston