Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter May 26, 2022

Synthesis of composite membranes from polyacrylonitrile/carbon resorcinol/formaldehyde xerogels: gamma effect study, characterization and ultrafiltration of salted oily wastewater

  • Ahmed Awadallah-F EMAIL logo , Hassan H. H. Hefni , Ahmed E. Awadallah , Emad A. Badr and Magd M. Badr

Abstract

The subsequent activated carbons of resorcinol-formaldehyde xerogels are synthesized and exposed to wide range of gamma irradiation dose. Xerogels and their subsequent activated carbons are characterized by diverse techniques; FTIR, Raman, porosity analysis, SEM, EDX and AFM. The composite membranes are fabricated from polyacrylonitrile and activated carbon xerogels as composite membranes to be utilized in ultrafiltration process of salted oily wastewater. The soybean oil is exploited as organic feeding solution. The results declared that values of flux and rejection reach 157 (L m−2 h−1) and 99.8 (%), respectively. Overall, the best performing composite membrane is conducted by maximizing pure water flux. The optimally synthesized membrane performs well for purification of salted oily wastewater, and a significant increment in permeate flux is obtained with soybean oil rejection is at ∼99.8% and with maximum flux is at 32 (L m−2 h−1). Further, the composite membranes showed good promise for ultrafiltration of salted oily wastewater.


Corresponding author: Ahmed Awadallah-F, Radiation Research of Polymer Department, Industrial Irradiation Division, National Centre for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), P.O. Box 29, Cairo, Egypt, E-mail:

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Singh, S., Prasher, S. The etching and structural studies of gamma irradiated induced effects in CR-39 plastic track recorder. Nucl. Instrum. Methods Phys. Res. B 2004, 222, 518–524; https://doi.org/10.1016/j.nimb.2004.03.004.Search in Google Scholar

2. Mindemark, J., Sobkowiak, A., Oltean, G., Brandell, D., Gustafsson, T. Mechanical stabilization of solid polymer electrolytes through gamma irradiation. Electrochim. Acta 2017, 230, 189–195; https://doi.org/10.1016/j.electacta.2017.02.008.Search in Google Scholar

3. Raghuvanshi, S. K., Ahmad, B., Siddhartha, S. A. K., Krishna, J. B. M. Wahab MA. Effect of gamma irradiation on the optical properties of UHMWPE (Ultra-high-molecular-weight-polyethylene) polymer. Nucl. Instrum. Methods Phys. Res. B 2012, 271, 44–47; https://doi.org/10.1016/j.nimb.2011.11.001.Search in Google Scholar

4. Calcagno, L., Compgnini, G., Foti, G. Structural modification of polymer films by ion irradiation. Nucl. Instrum. Methods Phys. Res. B 1992, 65, 413–422; https://doi.org/10.1016/0168-583x(92)95077-5.Search in Google Scholar

5. Mishra, R., Tripathy, S. P., Dwivedi, K. K., Khathing, D. T., Ghosh, S., Muller, M., Fink, D. Electron induced modification in poly(ethylene terephthalate). Radiat. Eff. Defect Solid 2001, 153, 257–269; https://doi.org/10.1080/10420150108211843.Search in Google Scholar

6. Chikwe, T. N., Okwa, F. A. Evaluation of the physico-chemical properties of produced water from oil producing well in the Niger Delta area, Nigeria. J. Appl. Sci. Environ. Manag. 2016, 20, 1113–1117.10.4314/jasem.v20i4.27Search in Google Scholar

7. Neff, J. M. Bioaccumulation In Marine Organisms: Effect of Contaminants From Oil Well Produced Water; Elsevier Science: Amsterdam, 2002.10.1016/B978-008043716-3/50002-6Search in Google Scholar

8. Ahmad, T., Guria, C., Mandal, A. Optimal synthesis of high fouling-resistant PVC-based ultrafiltration membranes with tunable surface pore size distribution and ultralow water contact angle for the treatment of oily wastewater. Separ. Purif. Technol. 2021, 257, 117829; https://doi.org/10.1016/j.seppur.2020.117829.Search in Google Scholar

9. Abdolhamid, S., Ali, G., Toraj, M., Sayed, M. Experimental performance evaluation of polymeric membranes for treatment of an industrial oily wastewater. Desalination 2010, 262, 235–242.10.1016/j.desal.2010.06.021Search in Google Scholar

10. Behboudi, A., Jafarzadeh, Y., Yegani, R. Preparation and characterization of TiO2 embedded PVC ultrafiltration membranes. Chem. Eng. Res. Des. 2016, 114, 96–107.10.1016/j.cherd.2016.07.027Search in Google Scholar

11. Rabiee, H., Vatanpour, V., Farahani, M. H. D. A., Zarrabi, H. Improvement in flux and antifouling properties of PVC ultrafiltration membranes by incorporation of zinc oxide (ZnO) nanoparticles. Separ. Purif. Technol. 2015, 156, 299–310; https://doi.org/10.1016/j.seppur.2015.10.015.Search in Google Scholar

12. Rana, D., Matsuura, T., Narbaitz, R. M., Khulbe, K. C. Influence of hydroxyl-terminated polybutadiene additives on the poly(ether sulfone) ultra-filtration membranes. J. Appl. Polym. Sci. 2006, 101, 2292–2303; https://doi.org/10.1002/app.23723.Search in Google Scholar

13. Noamani, S., Niroomand, S., Rastgar, M. Carbon-based polymers nanocomposite memebranes for oily wastewater treatment. Npj Clean Water 2019, 2, 20; https://doi.org/10.1038/s41545-019-0044-z.Search in Google Scholar

14. Rana, D., Mandal, B. M., Bhattacharyya, S. N. Analogue calorimetry of polymer blends: poly(styrene-co-acrylonitrile) and poly(phenyl acrylate) or poly(vinyl benzoate). Polymer 1996, 37, 2439–2443; https://doi.org/10.1016/0032-3861(96)85356-0.Search in Google Scholar

15. Rana, D., Kim, H. L., Rhee, C., Woo, T., Park, S. H., Choe, S. Binary blends ZieglerNatta and metallocene catalyzed polyethylenes: Rheological properties. In Annual Technical Conference at ANTEC, Vol. 98: Atlanta, Georgia. April 26–30, 1998.Search in Google Scholar

16. Rana, D., Mandal, B. M., Bhattacharyya, S. N. Miscibility and phase diagrams of poly (phenyl acrylate) and poly (styrene-coacrylonitrile) blends. Polymer 1993, 34, 1454–1459; https://doi.org/10.1016/0032-3861(93)90861-4.Search in Google Scholar

17. Rana, D., Cho, K., Lee, B. H., Choe, S. Is metallocene polyethylene blend with HDPE more compatible than with PP? In Metallocene Technology in Commercial Applications; GM Bendikt: Norwich, 1999.10.1016/B978-188420776-1.50004-1Search in Google Scholar

18. Dana, A. T., Rana, D. Effect of CuCl2 powder on the optical characterization of Methylcellulose (MC) polymer composite. Alex. Eng. J. 2012, 61, 2354–2365.10.1016/j.aej.2021.06.088Search in Google Scholar

19. Gupta, D., Jamwal, D., Rana, D., Katoch, A. Applications of Nanocomposite Materials In Drug Delivery; Duxford: London, 2015.Search in Google Scholar

20. Awadallah, -F. A., Elkhatat, A. M., Al-Muhtaseb, S. A. Impact of synthesis conditions on meso- and macropore structures of resorcinol–formaldehyde xerogels. J. Mater. Sci. 2011, 46, 7760–7769; https://doi.org/10.1007/s10853-011-5755-6.Search in Google Scholar

21. Oh, N.-W., Jegal, J., Lee, K.-H. Preparation and characterization of nanofiltration, composite membranes using polyacrylonitrile (PAN).Preparation and modification of PAN supports. J. Appl. Polym. Sci. 2011, 80, 1854–1862.10.1002/app.1282Search in Google Scholar

22. Nie, F.-Q., Xu, Z.-K., Wan, L.-S., Ye, P., Wu, J. Acrylonitrile-based copolymers containing reactive groups: synthesis and preparation of ultrafiltration membranes. J. Membr. Sci. 2004, 230, 1–11; https://doi.org/10.1016/j.memsci.2003.10.016.Search in Google Scholar

23. Bano, S., Mahmood, A., Kim, S. J., Lee, K.-H. Chlorine resistant binary complexed NaAlg/PVA composite membrane for nanofiltration. Separ. Purif. Technol. 2014, 137, 21–27; https://doi.org/10.1016/j.seppur.2014.09.024.Search in Google Scholar

24. Schwan, J., Ulrich, S., Bbtori, V., Ehrhardt, H., Silva, S. R. P. Raman spectroscopy on amorphous carbon films. J. Appl. Phys. 1999, 80, 440–446.10.1063/1.362745Search in Google Scholar

25. Anna, D., Piotr, P., Wojciech, F., Kazimierz, F., Kazimierz, P., Miroslaw, S. Study of CVD diamond layers with amorphous carbon admixture by Raman scattering spectroscopy. Mater. Sci.-Pol. 2015, 33, 799–805.10.1515/msp-2015-0067Search in Google Scholar

26. Ferrari, A. C., Robertson, J. Raman spectroscopy of amorphous, nanostructured, diamond–like carbon, and nanodiamond. Phil. Trans. R. Soc. A 2004, 362, 2477–2512; https://doi.org/10.1098/rsta.2004.1452.Search in Google Scholar PubMed

27. Fakeeha, A. H., Kasim, S. O., Ibrahim, A. A., Al-Awadi, A. S., Alzahrani, E., Abasaeed, A. E., Awadallah, A. E., Al-Fatesh, A. S. Methane decomposition over ZrO2-supported Fe and Fe–Ni catalysts—effects of doping La2O3 and WO3. Front. Chem. 2020, 8, 317; https://doi.org/10.3389/fchem.2020.00317.Search in Google Scholar PubMed PubMed Central

28. Meng, N., Priestley, R. C. E., Zhang, Y., Wang, H., Zhang, X. The effect of reduction degree of GO nanosheets on microstructure and performance of PVDF/GO hybrid membranes. J. Membr. Sci. 2016, 501, 169–178; https://doi.org/10.1016/j.memsci.2015.12.004.Search in Google Scholar

29. Zhao, C., Xu, X., Chen, J., Yang, F. Effect of graphene oxide concentration on the morphologies and antifouling properties of PVDF ultrafiltration membranes. J. Environ. Chem. Eng. 2013, 1, 349–359; https://doi.org/10.1016/j.jece.2013.05.014.Search in Google Scholar

30. Zinadini, S., Zinatizadeh, A. A., Rahimi, M., Vatanpour, V., Zangeneh, H. Preparation of a novel antifouling mixed matrix PES membrane by embedding graphene oxide nanoplates. J. Membr. Sci. 2014, 453, 292–301; https://doi.org/10.1016/j.memsci.2013.10.070.Search in Google Scholar

31. Sethy, N. K., Arif, Z., Kumari, L., Mishra, P. K., Verma, P. Nanocomposite film with green synthesized TiO2 nanoparticles and hydrophobic polydimethylsiloxane polymer: synthesis, characterization, and antibacterial test. J. Polym. Eng. 2019, 39, 545.10.1515/polyeng-2019-0257Search in Google Scholar

32. Zhou, G., Xu, C., Cheng, W., Zhang, Q., Nie, W. Effects of oxygen element and oxygen-containing functional groups on surface wettability of coal dust with various metamorphic degrees based on XPS experiment. J. Anal. Methods Chem. 2015, 2015, 1–8; https://doi.org/10.1155/2015/467242.Search in Google Scholar PubMed PubMed Central

33. Kim, B. S., Lee, J. Macroporous PVDF/TiO2 membranes with three-dimensionally interconnected pore structures produced by directional melt crystallization. Chem. Eng. J. 2016, 301, 158–165; https://doi.org/10.1016/j.cej.2016.05.003.Search in Google Scholar

34. Bae, T. H., Tak, T. M. Effect of TiO2 nanoparticles on fouling mitigation of ultrafiltration membranes for activated sludge filtration. J. Membr. Sci. 2005, 49, 1–8; https://doi.org/10.1016/j.memsci.2004.09.008.Search in Google Scholar

Received: 2022-03-06
Accepted: 2022-04-04
Published Online: 2022-05-26
Published in Print: 2022-09-27

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 4.10.2023 from https://www.degruyter.com/document/doi/10.1515/polyeng-2022-0030/html
Scroll to top button