Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter May 11, 2018

Transition metal-catalyzed dehydrogenation of amines

Daniël L. J. Broere

Daniël Broere obtained his bachelors degree with honors in 2010 at the HU University of Applied Sciences, Utrecht. He obtained his master’s degree cum laude in 2012 at the VU University Amsterdam. Subsequently, he moved to the University of Amsterdam where he obtained his PhD in Chemistry cum laude in 2016, under supervision of Jarl Ivar van der Vlugt and Joost Reek, working on redox-active ligands. Currently, he is a postdoctoral fellow in the group of Patrick Holland at Yale University on a NWO Rubicon fellowship, and a part-time assistant professor at the Utrecht University. In September 2018, Daniel will start his own independent research group and tenure track at Utrecht University focusing on the development of well defined homogeneous multimetallic catalyst systems.

ORCID logo EMAIL logo
From the journal Physical Sciences Reviews

Abstract

This review focuses on the use of homogeneous transition metal complexes for the catalytic dehydrogenation of amines for synthetic purposes, and for hydrogen storage applications. The catalytic dehydrogenation of primary, secondary and cyclic amines is reviewed looking at reaction conditions, different catalysts and common side reactions. Recent developments in this active field of research showcase how cooperative ligands and photocatalysts can overcome the need for noble metals or harsh reaction conditions.

Funding statement: The author thanks Dr Andrew Walden and Gannon Connor MSc for providing critical feedback, and The Netherlands Organization for Scientific Research for financial support (Rubicon Postdoctoral Fellowship 680-50- 1517)

About the author

Daniël L. J. Broere

Daniël Broere obtained his bachelors degree with honors in 2010 at the HU University of Applied Sciences, Utrecht. He obtained his master’s degree cum laude in 2012 at the VU University Amsterdam. Subsequently, he moved to the University of Amsterdam where he obtained his PhD in Chemistry cum laude in 2016, under supervision of Jarl Ivar van der Vlugt and Joost Reek, working on redox-active ligands. Currently, he is a postdoctoral fellow in the group of Patrick Holland at Yale University on a NWO Rubicon fellowship, and a part-time assistant professor at the Utrecht University. In September 2018, Daniel will start his own independent research group and tenure track at Utrecht University focusing on the development of well defined homogeneous multimetallic catalyst systems.

References

[1] (a) Liu ZY, Wang YM, Li ZR, Jiang JD, Boykin DW. Synthesis and anticancer activity of novel 3,4-diarylthiazol-2(3H)-ones (imines). Bioorg Med Chem Lett. 2009;19:5661–64; (b) Goetz AE, Garg NK. Regioselective reactions of 3,4-pyridynes enabled by the aryne distortion model. Nat Chem. 2013;5:54–60; (c) Fleming FF, Yao L, Ravikumar PC, Funk L, Shook BC. Nitrile-containing pharmaceuticals: efficacious roles of the nitrile pharmacophore. J Med Chem. 2010;53:7902–17.10.1016/j.bmcl.2009.08.025Search in Google Scholar PubMed

[2] (a) Luo S, Zhang E, Su Y, Cheng T, Shi C. A review of NIR dyes in cancer targeting and imaging. Biomaterials. 2011;32:7127–38; (b) Argazzi R, Iha NY, Zabri H, Odobel F, Bignozzi CA. Design of molecular dyes for application in photoelectrochemical and electrochromic devices based on nanocrystalline metal oxide semiconductors. Coord Chem Rev. 2004;248:1299–316; (c) Forgacs E, Cserháti T, Oros G. Removal of synthetic dyes from wastewaters: a review. Environ Int 2004;30:953–71.10.1016/j.biomaterials.2011.06.024Search in Google Scholar PubMed

[3] (a) Erkkilä A, Majander I, Pihko PM. Iminium catalysis. Chem Rev. 2007;107:5416–70; (b) Mukherjee S, Yang JW, Hoffmann S, List B. Asymmetric enamine catalysis. Chem Rev. 2007;107:5471–5569.10.1021/cr068388pSearch in Google Scholar PubMed

[4] (a) Layer RW. The chemistry of imines. Chem Rev. 1963;63:489–510; (b) Kobayashi S, Ishitani H. Catalytic enantioselective addition to imines. Chem. Rev. 1999;99:1069–94; (c) Kobayashi S, Mori Y, Fossey JS, Salter MM. Catalytic enantioselective addition to imines. Chem Rev. 2011;111:2626–2704; (d) Smith MB, March J. Advanced organic chemistry, 5th ed. New York: Wiley, 2001;1509–14.10.1021/cr60225a003Search in Google Scholar

[5] (a) Chen B, Wang L, Gao S. Recent advances in aerobic oxidation of alcohols and amines to imines. ACS Catal. 2015;5:5851–76; (b) Murahashi SI, Zhang D. Ruthenium catalyzed biomimetic oxidation in organic synthesis inspired by cytochrome P-450. Chem Soc Rev. 2008;37:1490–501; (c) Modern oxidation methods. In: Backvall JE, editor, Weinheim: Wiley-VCH, 2004.10.1021/acscatal.5b01479Search in Google Scholar

[6] (a) Murahashi SI, Imada Y. In: Beller M, Bolm C, editors. Transition metals for organic synthesis. Weinheim: Wiley-VCH Verlag GmbH, 2008:497–507. Chapter 2.15; (b) Pinnick HW. In: Trost BM, Fleming I, Ley SV, editors. Oxidation: selectivity, strategy & efficiency in modern organic chemistry. Pergamon Press, 1992:218–32. Chapter 2.5; (c) Green G, Griffith WP, Hollinshead DM, Ley SV, Schroder M. Oxo complexes of ruthenium(VI) and (VII) as organic oxidants. J Chem Soc Perkin Trans. 1984;1:681–6.Search in Google Scholar

[7] (a) Gunanathan C, Milstein D. Applications of acceptorless dehydrogenation and related transformations in chemical synthesis. Science. 2013;341:1229712; (b) Dobereiner GE, Crabtree RH. Dehydrogenation as a substrate-activating strategy in homogeneous transition-metal catalysis. Chem Rev. 2010;110:681–703.10.1126/science.1229712Search in Google Scholar PubMed

[8] Sing S, Jain S, Venkateswaran PS, Tiwari AK, Nouni MR, Pandey JK, et al. Hydrogen: A sustainable fuel for future of the transport sector. Renew Sustain Energy Rev. 2015;51:623–33.10.1016/j.rser.2015.06.040Search in Google Scholar

[9] Ellabban O, Abur-Rub H, Blaabjerg F. Renewable energy resources: current status, future prospects and their enabling technology. Renew Sustain Energy Rev. 2014;39:748–64; (b) Balat M, Balat M. Political, economic and environmental impacts of biomass-based hydrogen. Int J Hydrog Energy. 2009;34:3589–603.10.1016/j.rser.2014.07.113Search in Google Scholar

[10] Ball M, Weeda M. The hydrogen economy – vision or reality?. Int J Hydrog Energy. 2015;25:7903–19.10.1016/B978-1-78242-364-5.00011-7Search in Google Scholar

[11] Preuster P, Papp C, Wasserscheid P. Liquid organic hydrogen carriers (LOHCs): toward a hydrogen-free hydrogen economy. Acc Chem Res. 2017;50:74–85.10.1021/acs.accounts.6b00474Search in Google Scholar PubMed

[12] Häussinger P, Lohmüller R, Watson AM. Hydrogen. Ullmann’s encyclopedia of industrial chemistry. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2000.10.1002/14356007.a13_297Search in Google Scholar

[13] Cheng X, Shi Z, Glass N, Zhang L, Zhang J, Song D, et al. A review of PEM hydrogen fuel cell contamination: impacts, mechanisms, and mitigation J Power Sources. 2007;165:739–56.10.1016/j.jpowsour.2006.12.012Search in Google Scholar

[14] (a) Crabtree RH. Homogeneous transition metal catalysis of acceptorless dehydrogenative alcohol oxidation: applications in hydrogen storage and to heterocycle synthesis. Chem Rev. 2017;117:9228–46; (b) Bonitatibus PJ, Jr., Chakraborty S, Doherty MD, Siclovan O, Jones WD, Soloveichik GL. Reversible catalytic dehydrogenation of alcohols for energy storage. Proc Natl Acad Sci USA. 2015;112:1687–92; (c) Johnson TC, Morris DJ, Wills M. Hydrogen generation from formic acid and alcohols using homogeneous catalysts. Chem Soc Rev. 2010;39:81–8.10.1021/acs.chemrev.6b00556Search in Google Scholar PubMed

[15] (a) Hu P, Fogler E, Diskin-Posner Y, Iron MA, Milstein D. A novel liquid organic hydrogen carrier system based on catalytic peptide formation and hydrogenation. Nat Commun. 2015;6:6859–6859; (b) Hu P, Ben-David Y, Milstein D. Rechargeable hydrogen storage system based on the dehydrogenative coupling of ethylenediamine with ethanol. Angew Chem Int Ed. 2016;55:1061–4.10.1038/ncomms7859Search in Google Scholar PubMed

[16] (a) Kim D, Park W, Jun C. Metal–organic cooperative catalysis in C–H and C–C bond activation. Chem Rev. 2017;117:8977–9015; (b) Khusnutdinova JR, Milstein D. Metal–ligand cooperation. Angew Chem Int Ed. 2015;54:12236–73; (c) van der Vlugt JI. Cooperative catalysis with first‐row late transition metals. Eur J Inorg Chem. 2012:363–75.10.1021/acs.chemrev.6b00554Search in Google Scholar

[17] (a) Broere DL, Plessius R, van der Vlugt JI. New avenues for ligand-mediated processes – expanding metal reactivity by the use of redox-active catechol, o-aminophenol and o-phenylenediamine ligands. Chem Soc Rev. 2015;44:6886–915; (b) Luca OR, Crabtree RH. Redox-active ligands in catalysis. Chem Soc Rev. 2013;42:1440–1459; (c) Praneeth VK, Ringenberg MR, Ward TR. Redox-active ligands in catalysis. Angew Chem Int Ed. 2012;51:10228–10234; (d) Lyaskovskyy V, de Bruin B. Redox non-innocent ligands: versatile new tools to control catalytic reactions. ACS Catal. 2012;2:270–279; (e) Kaim W. Manifestations of noninnocent ligand behavior. Inorg Chem. 2011;50:9752–9765; (f) Chirik PJ, Wieghardt K. Radical ligands confer nobility on base-metal catalysts. Science 2010;327:794–795.10.1039/C5CS00161GSearch in Google Scholar PubMed

[18] (a) Schiff H. Mittheilungen aus dem Universitäts-laboratorium in Pisa: 2. Eine neue Reihe organischer Basen. Annals. 1864;131:118–19; (b) Moffett RB. In: N. Rabjohn, editor. Organic syntheses, Coll. Vol. 4, New York: Wiley, 1963:605–8.Search in Google Scholar

[19] (a) Hateley MJ, Schidl DA, Kreuzfeld HJ, Beller M. Rhodium-catalysed racemisation of N-acyl α-amino acids. Tetrahedron Lett. 2000;41:3821–24; (b) Hateley MJ, Schichl DA, Fischer C, Beller M. An improved procedure for the mild racemization of N-Acyl α-amino acids. Synlett. 2001;1:25–8; (c) Pàmies O, Éll AH, Samec JMS, Hermanns N, Bäckvall JE. An efficient and mild ruthenium-catalyzed racemization of amines: application to the synthesis of enantiomerically pure amines. Tetrahedron Lett. 2002;43:4699–702.10.1016/S0040-4039(00)00539-6Search in Google Scholar

[20] Blum Y, Czarkie D, Rahamim Y, Shvo Y. (Cyclopentadienone) ruthenium carbonyl complexes-a new class of homogeneous hydrogenation catalysts. Organometallics. 1985;4:1459–61.10.1021/om00127a027Search in Google Scholar

[21] Casey CP, Johnson JB. Isomerization and deuterium scrambling evidence for a change in the rate-limiting step during imine hydrogenation by Shvo’s hydroxycyclopentadienyl ruthenium hydride. J Am Chem Soc. 2005;127:1883–94.10.1021/ja044450tSearch in Google Scholar PubMed

[22] Samec JS, Ell AH, Backvall JE. Efficient ruthenium‐catalyzed aerobic oxidation of amines by using a biomimetic coupled catalytic system. Chem Eur J. 2005;11:2327–34.10.1002/chem.200401082Search in Google Scholar PubMed

[23] a) Gupta M, Hagen C, Kaska WC, Flesher R, Jensen CM. A highly active alkane dehydrogenation catalyst: stabilization of dihydrido rhodium and iridium complexes by a P–C–P pincer ligand. J Chem Soc Chem Commun. 1996:2083–84; b) Xu W, Rosini GP, Gupta M, Jensen CM, Kaska WC, Krough-Jespersen K, Goldman AS. Thermochemical alkane dehydrogenation catalyzed in solution without the use of a hydrogen acceptor. J Chem Soc, Chem Commun. 1997:2273–4; c) Gupta M, Hagen C, Kaska WC, Cramer R, Jensen CM. Catalytic dehydrogenation of cycloalkanes to arenes by a dihydrido iridium P− C− P pincer complex. J Am Chem Soc. 1997;119:840–1; d) Liu F, Pak EB, Singh B, Jensen CM, Goldman AS. Dehydrogenation of n-Alkanes Catalyzed by Iridium “Pincer” Complexes: Regioselective Formation of α-Olefins. J Am Chem Soc 1999;121:4086–7.10.1039/CC9960002083Search in Google Scholar

[24] Gu XQ, Chen W, Morales-Morales D, Jensen CM. Dehydrogenation of secondary amines to imines catalyzed by an iridium PCP pincer complex: initial aliphatic or direct amino dehydrogenation?. J Mol Catal A Chem. 2002;189:119–24.10.1016/S1381-1169(02)00200-5Search in Google Scholar

[25] Zhang X, Fried A, Knapp S, Goldman AS. Novel synthesis of enamines by iridium-catalyzed dehydrogenation of tertiary amines. Chem Commun. 2003;2060–61.10.1002/chin.200345045Search in Google Scholar

[26] Yi CS, Lee DW. Efficient dehydrogenation of amines and carbonyl compounds catalyzed by a tetranuclear ruthenium-μ-oxo-μ-hydroxo-hydride complex. Organometallics. 2009;28:947–49.10.1021/om8010883Search in Google Scholar PubMed PubMed Central

[27] Bähn S, Imm S, Neubert L, Zhang M, Neumann H, Beller M. Synthesis of primary amines from secondary and tertiary amines: ruthenium‐catalyzed amination using ammonia. Chem Eur J. 2011;17:4705–08.10.1002/chem.201100007Search in Google Scholar PubMed

[28] For reviews about borrowing hydrogen methodology, see: a) Dobereiner GE, Crabtree RH. Dehydrogenation as a substrate-activating strategy in homogeneous transition-metal catalysis. Chem Rev. 2010;110:681–703; b) Nixon TD, Whittlesey MK, Williams JMJ. Transition metal catalysed reactions of alcohols using borrowing hydrogen methodology. Dalton Trans. 2009:753–62; c) Lamb GW, Williams JMJ. Borrowing hydrogen-CN bond formation from alcohols. Chim Oggi. 2008;26:17–19; d) Hamid MHSA, Slatford PA, Williams JMJ. Borrowing hydrogen in the activation of alcohols. Adv Synth Catal. 2007;349:1555–75.10.1021/cr900202jSearch in Google Scholar PubMed

[29] Pingen D, Altıntas C, Schaller MR, Vogt D. A ruthenium racemisation catalyst for the synthesis of primary amines from secondary amines. Dalton Trans. 2016;45:11765–71.10.1039/C6DT01525ESearch in Google Scholar PubMed

[30] Valencia M, Pereira A, Müller-Bunz H, Belderraín TR, Pérez PJ, Albrecht M. Triazolylidene‐iridium complexes with a pendant pyridyl group for cooperative metal–ligand induced catalytic dehydrogenation of amines. Chem Eur J. 2017;23:8901–11.10.1002/chem.201700676Search in Google Scholar PubMed

[31] Stubbs JM, Hazlehurst RJ, Boyle PD, Blacquiere JM. Catalytic acceptorless dehydrogenation of amines with Ru(PR2NR′2) and Ru(dppp) complexes. Organometallics. 2017;36:1692–98.10.1021/acs.organomet.6b00870Search in Google Scholar

[32] a) Bullock RM, Helm ML. Molecular electrocatalysts for oxidation of hydrogen using earth-abundant metals: shoving protons around with proton relays. Acc Chem Res. 2015;48:2017–26; b) Bullock RM, Appel AM, Helm ML. Production of hydrogen by electrocatalysis: making the H–H bond by combining protons and hydrides. Chem Commun. 2014;50:3125–43; c) Liu T, DuBois MR, DuBois DL, Bullock RM. Electrochemical oxidation of H 2 catalyzed by ruthenium hydride complexes bearing P2N2 ligands with pendant amines as proton relays. Energy Environ Sci. 2014;7:3630–9.10.1021/acs.accounts.5b00069Search in Google Scholar PubMed

[33] Ho HA, Manna K, Sadow AD. Acceptorless photocatalytic dehydrogenation for alcohol decarbonylation and imine synthesis. Angew Chem Int Ed. 2012;51:8607–10.10.1002/anie.201203556Search in Google Scholar PubMed

[34] Taniguchi K, Jin X, Yamaguchi K, Nozaki K, Mizuno N. Versatile routes for synthesis of diarylamines through acceptorless dehydrogenative aromatization catalysis over supported gold–palladium bimetallic nanoparticles. Chem Sci. 2017;8:2131–42.10.1039/C6SC04455GSearch in Google Scholar PubMed PubMed Central

[35] Fleming FF. Nitrile-containing natural products. Nat Prod Rep. 1999;16:597–606.10.1039/a804370aSearch in Google Scholar

[36] Fleming FF, Yao L, Ravikumar PC, Funk L, Shook BC. Nitrile-containing pharmaceuticals: efficacious roles of the nitrile pharmacophore. J Med Chem. 2010;53:7902–17.10.1021/jm100762rSearch in Google Scholar PubMed PubMed Central

[37] Pollak P, Romeder G, Hagedorn F, Gelbke HP. Nitriles. In: Elvers B, Hawkins S, Schulz G, editors. Ullmann’s encyclopedia of industrial chemistry. Weinheim, Germany: Wiley-VCH; 2012.Search in Google Scholar

[38] Mowry DT. The preparation of nitriles. Chem Rev. 1948;42:189–283.10.1021/cr60132a001Search in Google Scholar PubMed

[39] a) Nicolaou KC, Mathison CJ. Synthesis of imides, N-Acyl vinylogous carbamates and ureas, and nitriles by oxidation of amides and amines with dess-martin periodinane. Angew Chem Int Ed. 2005;44:5992–97; b) Müller P, Gilabert DM. Oxidation of amines to imines with hypervalent iodine. Tetrahedron 1988;44:7171–5.10.1002/anie.200501853Search in Google Scholar PubMed

[40] Aschwanden L, Mallat T, Maciejewski M, Krumeich F, Baiker A. Development of a new generation of gold catalysts for amine oxidation. Chem Cat Chem. 2010;2:666–73.10.1002/cctc.201000092Search in Google Scholar

[41] a) Tang R, Diamond SE, Neary N, Mares F. Homogeneous catalytic oxidation of amines and secondary alcohols by molecular oxygen. J Chem Soc Chem Commun. 1978;13:562–562; b) Yamaguchi K, Mizuno N. Efficient heterogeneous aerobic oxidation of amines by a supported ruthenium catalyst. Angew Chem Int Ed. 2003;42:1480–83.10.1039/c39780000562Search in Google Scholar

[42] Hammond C, SchüMperli MT, Hermans I. Insights into the oxidative dehydrogenation of amines with nanoparticulate iridium oxide. Chem Eur J. 2013;19:13193–98.10.1002/chem.201301596Search in Google Scholar PubMed

[43] Schü Mperli MT, Hammond C, Hermans I. Developments in the aerobic oxidation of amines. ACS Catal. 2012;2:1108–17.10.1021/cs300212qSearch in Google Scholar

[44] Griffth WP, Reddy B, Shoair AG, Suriaatmaja M, White AJ, Williams DJ. Ruthenate(VI)-catalysed dehydrogenation of primary amines to nitriles, and crystal structures of cis-[Ru(bipy)2(NH2CH2Ph)2][PF6]2·0.5MeOH and cis-[Ru(bipy)2(NCPh)2][PF6]2·CH2Cl2. Dalton Trans. 1998;2819–25.10.1039/a804071kSearch in Google Scholar

[45] Yamazaki S, Yamazaki Y. Nickel-catalyzed dehydrogenation of amines to nitriles. Bull Chem Soc Jpn. 1990;63:301–03.10.1246/bcsj.63.301Search in Google Scholar

[46] Bernskoetter WH, Brookhart M. Kinetics and mechanism of iridium-catalyzed dehydrogenation of primary amines to nitriles. Organometallics. 2008;27:2036–45.10.1021/om701148tSearch in Google Scholar

[47] Grellier M, Sabo-Etienne S. New perspectives in hydrogen storage based on RCH 2 NH 2/RCN couples. Dalton Trans. 2014;43:6283–86.10.1039/C3DT53583ESearch in Google Scholar

[48] Bagal DB, Bhanage BM. Recent advances in transition metal‐catalyzed hydrogenation of nitriles. Adv Synth Catal. 2015;357:883–900.10.1002/adsc.201400940Search in Google Scholar

[49] Recent examples using base metal catalysts: a) Bornschein C, Werkmeister S, Wendt B, Jiao H, Alberico E, Baumann W, et al. Mild and selective hydrogenation of aromatic and aliphatic (di) nitriles with a well-defined iron pincer complex. Nat Commun. 2014;5:4111; b) Mukherjee A, Srimani D, Chakraborty S, Ben-David Y, Milstein D. Selective hydrogenation of nitriles to primary amines catalyzed by a cobalt pincer complex. J Am Chem Soc. 2015;137:8888–91; c) Elangovan S, Topf C, Fischer S, Jiao H, Spannenberg A, Baumann W, Ludwig R, Junge K, Beller M. Selective Catalytic Hydrogenations of Nitriles, Ketones, and Aldehydes by Well-Defined Manganese Pincer Complexes. J Am Chem Soc. 2016;138:8809–14.10.1038/ncomms5111Search in Google Scholar PubMed

[50] Wang Z, Belli J, Jensen CM. Homogeneous dehydrogenation of liquid organic hydrogen carriers catalyzed by an iridium PCP complex. Faraday Discuss. 2011;151:297–305.10.1039/c1fd00002kSearch in Google Scholar PubMed

[51] Li T, Bergner I, Haque FN, Zimmer-De Luliis M, Song D, Morris RH. Hydrogenation of benzonitrile to benzylamine catalyzed by ruthenium hydride complexes with P−NH−NH−P tetradentate ligands: evidence for a hydridic−protonic outer sphere mechanism. Organometallics. 2007;26:5940–49.10.1021/om700783eSearch in Google Scholar

[52] Tseng KN, Rizzi AM, Szymczak NK. Oxidant-free conversion of primary amines to nitriles. J Am Chem Soc. 2013;135:16352–55.10.1021/ja409223aSearch in Google Scholar PubMed

[53] Hale LV, Malakar T, Tseng KN, Zimmerman PM, Paul A, Szymczak NK. The mechanism of acceptorless amine double dehydrogenation by N,N,N-amide ruthenium(II) hydrides: a combined experimental and computational study. ACS Catal. 2016;6:4799–813.10.1021/acscatal.6b01465Search in Google Scholar

[54] Conley BL, Pennington-Boggio MK, Boz E, Williams TJ. Discovery, applications, and catalytic mechanisms of Shvo’s catalyst. Chem Rev. 2010;110:2294–312.10.1021/cr9003133Search in Google Scholar PubMed

[55] Ventura-Espinosa D, Marzá-Beltrán A, Mata JA. Catalytic hydrogen production by ruthenium complexes from the conversion of primary amines to nitriles: potential application as a liquid organic hydrogen carrier. Chem Eur J. 2016;22:17758–66.10.1002/chem.201603423Search in Google Scholar PubMed

[56] Giustra ZX, Ishibashi JS, Liu SY. Homogeneous metal catalysis for conversion between aromatic and saturated compounds. Coord Chem Rev. 2016;314:134–81.10.1016/j.ccr.2015.11.006Search in Google Scholar

[57] He T, Pei Q, Chen P. Liquid organic hydrogen carriers. J Energ Chem. 2015;24:587–94.10.1016/j.jechem.2015.08.007Search in Google Scholar

[58] Crabtree RH. Nitrogen-containing liquid organic hydrogen carriers: progress and prospects. ACS Sustainable Chem Eng. 2017;5:4491–98.10.1021/acssuschemeng.7b00983Search in Google Scholar

[59] Clot E, Eisenstein O, Crabtree RH. Computational structure–activity relationships in H 2 storage: how placement of N atoms affects release temperatures in organic liquid storage materials. Chem Commun. 2007;2231–33.10.1039/B705037BSearch in Google Scholar PubMed

[60] Pez GP, Scott AR, Cooper AC, Cheng H, Wilhelm FC, Abdourazak AH Hydrogen storage by reversible hydrogenation of piconjugated substrates. U.S. Patent 7351395B1, April 1, 2008; Pez GP, Scott AR, Cooper AC, Cheng H, Bagzis L, Appleby J. Hydrogen storage. Reversible hydrogenated of π-conjugated substrates. International patent WO 2005/000457, 2005; Pez GP, Scott AR, Cooper AC, Cheng H. Hydrogen storage by reversible hydrogenation of pi-conjugated substrates. European Patent 1475349A2, 2004.Search in Google Scholar

[61] Amende M, Schernich S, Sobota M, Nikiforidis I, Hieringer W, Assenbaum D, et al. Dehydrogenation mechanism of liquid organic hydrogen carriers: dodecahydro‐N‐ethylcarbazole on Pd (111). Chem Eur J. 2013;19:10854–65.10.1002/chem.201301323Search in Google Scholar PubMed

[62] Amende M, Gleichweit C, Werner K, Schernich S, Zhao W, Lorenz MP, et al. Model catalytic studies of liquid organic hydrogen carriers: dehydrogenation and decomposition mechanisms of dodecahydro-N-ethylcarbazole on Pt(111). ACS Catal. 2014;4:657–65.10.1021/cs400946xSearch in Google Scholar PubMed PubMed Central

[63] Forberg D, Schwob T, Zaheer M, Friedrich M, Miyajima N, Kempe R. Single-catalyst high-weight% hydrogen storage in an N-heterocycle synthesized from lignin hydrogenolysis products and ammonia. Nat Commun. 2016;7:13201−13201.10.1038/ncomms13201Search in Google Scholar PubMed PubMed Central

[64] Vispute TP, Zhang H, Sanna A, Xiao R, Huber GW. Renewable chemical commodity feedstocks from integrated catalytic processing of pyrolysis oils. Science. 2010;330:1222–27.10.1126/science.1194218Search in Google Scholar PubMed

[65] Yamaguchi R, Ikeda C, Takahashi Y, Fujita K. Homogeneous catalytic system for reversible dehydrogenation− hydrogenation reactions of nitrogen heterocycles with reversible interconversion of catalytic species. J Am Chem Soc. 2009;131:8410–12.10.1021/ja9022623Search in Google Scholar PubMed

[66] Zhang XB, Xi Z. A theoretical study of the mechanism for the homogeneous catalytic reversible dehydrogenation – hydrogenation of nitrogen heterocycles. Phys Chem Chem Phys. 2011;13:3997–4004.10.1039/c0cp02419hSearch in Google Scholar PubMed

[67] Fujita K, Tanaka Y, Kobayashi M, Yamaguchi R. Homogeneous perdehydrogenation and perhydrogenation of fused bicyclic N-heterocycles catalyzed by iridium complexes bearing a functional bipyridonate ligand. J Am Chem Soc. 2014;136:4829–32.10.1021/ja5001888Search in Google Scholar PubMed

[68] Manas MG, Sharninghausen LS, Lin E, Crabtree RH. Iridium catalyzed reversible dehydrogenation–hydrogenation of quinoline derivatives under mild conditions. J Organomet Chem. 2015;792:184–89.10.1016/j.jorganchem.2015.04.015Search in Google Scholar

[69] Wu J, Talwar D, Johnston S, Yan M, Xiao J. Acceptorless dehydrogenation of nitrogen heterocycles with a versatile iridium catalyst. Angew Chem Int Ed. 2013;52:6983–87.10.1002/anie.201300292Search in Google Scholar PubMed

[70] Wu J, Barnard JH, Zhang Y, Talwar D, Robertson CM, Xiao J. Robust cyclometallated Ir (III) catalysts for the homogeneous hydrogenation of N-heterocycles under mild conditions. Chem Commun. 2013;49:7052–54.10.1039/c3cc44567dSearch in Google Scholar PubMed

[71] Drover MW, Schafer LL, Love JA. Dehydrogenation of cyclic amines by a coordinatively unsaturated Cp* Ir (III) phosphoramidate complex. Dalton Trans. 2017;46:8621–25.10.1039/C7DT01499FSearch in Google Scholar PubMed

[72] Fujita K, Wada T, Shiraishi T. Reversible interconversion between 2,5-dimethylpyrazine and 2,5-dimethylpiperazine by iridium-catalyzed hydrogenation/dehydrogenation for efficient hydrogen storage. Angew Chem Int Ed. 2017;56:10886–89.10.1002/anie.201705452Search in Google Scholar PubMed

[73] Muthaiah S, Hong SH. Acceptorless and base‐free dehydrogenation of alcohols and amines using ruthenium‐hydride complexes. Adv Synth Catal. 2012;354:3045–53.10.1002/adsc.201200532Search in Google Scholar

[74] Luca OR, Huang DL, Takase MK, Crabtree RH. Redox-active cyclopentadienyl Ni complexes with quinoid N-heterocyclic carbene ligands for the electrocatalytic hydrogen release from chemical fuels. New J Chem. 2013;37:3402–05.10.1039/c3nj00276dSearch in Google Scholar

[75] Luca OR, Want T, Konezny SJ, Batista VS, Crabtree RH. DDQ as an electrocatalyst for amine dehydrogenation, a model system for virtual hydrogen storage. New J Chem. 2011;35:998–99.10.1039/c0nj01011aSearch in Google Scholar

[76] Chakraborty S, Brennessel WW, Jones WD. A molecular iron catalyst for the acceptorless dehydrogenation and hydrogenation of N-heterocycles. J Am Chem Soc. 2014;136:8564–67.10.1021/ja504523bSearch in Google Scholar PubMed

[77] Alberico E, Sponholz P, Cordes C, Nielsen M, Drexler HJ, Baumann W, et al. Selective hydrogen production from methanol with a defined iron pincer catalyst under mild conditions. Angew Chem Int Ed. 2013;52:14162–66.10.1002/anie.201307224Search in Google Scholar PubMed

[78] Koehne I, Schmeier TJ, Bielinski EA, Pan JC, Lagaditis PO, Bernskoetter WH, et al. Synthesis and structure of six-coordinate iron borohydride complexes supported by PNP ligands. Inorg Chem. 2014;53:2133–43.10.1021/ic402762vSearch in Google Scholar PubMed

[79] Chakraborty S, Dai H, Bhattacharya P, Fairweather NT, Gibson MS, Krause JA, et al. Iron-based catalysts for the hydrogenation of esters to alcohols. J Am Chem Soc. 2014;136:7869–72.10.1021/ja504034qSearch in Google Scholar PubMed

[80] Bellows SM, Chakraborty S, Gary JB, Jones WD, Cundari TR. An uncanny dehydrogenation mechanism: polar bond control over stepwise or concerted transition states. Inorg Chem. 2017;56:5519–24.10.1021/acs.inorgchem.6b01800Search in Google Scholar PubMed

[81] Sawatlon B, Surawatanawong P. Mechanisms for dehydrogenation and hydrogenation of N-heterocycles using PNP-pincer-supported iron catalysts: a density functional study. Dalton Trans. 2016;45:14965–78.10.1039/C6DT02431ASearch in Google Scholar PubMed

[82] Xu R, Chakraborty S, Yuan H, Jones WD. Acceptorless, reversible dehydrogenation and hydrogenation of N-heterocycles with a cobalt pincer catalyst. ACS Catal. 2015;5:6350–54.10.1021/acscatal.5b02002Search in Google Scholar

[83] Kojima M, Kanai M. Tris (pentafluorophenyl) borane‐catalyzed acceptorless dehydrogenation of N‐heterocycles. Angew Chem Int Ed. 2016;55:12224–27.10.1002/anie.201606177Search in Google Scholar PubMed

[84] Maier AF, Tussing S, Schneider T, Flӧrke U, Qu ZW, Grimme S, et al. Frustrated lewis pair catalyzed dehydrogenative oxidation of indolines and other heterocycles. Angew Chem Int Ed. 2016;55:12219–23.10.1002/anie.201606426Search in Google Scholar PubMed

[85] Yin Q, Oestreich M. Photocatalysis enabling acceptorless dehydrogenation of benzofused saturated rings at room temperature. Angew Chem Int Ed. 2017;56:7716–18.10.1002/anie.201703536Search in Google Scholar PubMed

[86] Chen S, Wan Q, Badu-Tawiah AK. Picomole‐scale real‐time photoreaction screening: discovery of the visible‐light‐promoted dehydrogenation of tetrahydroquinolines under ambient conditions. Angew Chem. 2016;128:9491–95.10.1002/ange.201603530Search in Google Scholar

[87] He KH, Tan FF, Zhou CZ, Zhou GJ, Yang XL, Li Y. Acceptorless dehydrogenation of n‐heterocycles by merging visible‐light photoredox catalysis and cobalt catalysis. Angew Chem Int Ed. 2017;56:3080–84.10.1002/anie.201612486Search in Google Scholar PubMed

[88] Kato S, Saga Y, Kojima M, Fuse H, Matsunaga S, Fukatsu A, et al. Hybrid catalysis enabling room-temperature hydrogen gas release from n-heterocycles and tetrahydronaphthalenes. J Am Chem Soc. 2017;139:2204–07.10.1021/jacs.7b00253Search in Google Scholar PubMed

[89] a) Wang X, Zhu W, Liu Y. Tryptophan lyase (NosL): mechanistic insights into amine dehydrogenation and carboxyl fragment migration by QM/MM calculations. Catal Sci Technol. 2017;7:2846–56; b) Ji X, Liu W-Q, Yuan S, Yin Y, Ding W, Zhang Q. Mechanistic study of the radical SAM-dependent amine dehydrogenation reactions. Chem. Commun. 2016;52:10555–8.10.1039/C7CY00573CSearch in Google Scholar

Published Online: 2018-05-11

© 2018 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 30.1.2023 from https://www.degruyter.com/document/doi/10.1515/psr-2017-0029/html
Scroll Up Arrow