Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter August 11, 2018

Fundamental principles of battery design

  • Matthias Zschornak EMAIL logo , Falk Meutzner , Jessica Lück , Arnulf Latz , Tilmann Leisegang , Juliane Hanzig , Melanie Nentwich , Jens Zosel and Perla B. Balbuena
From the journal Physical Sciences Reviews

Abstract

With an increasing diversity of electrical energy sources, in particular with respect to the pool of renewable energies, and a growing complexity of electrical energy usage, the need for storage solutions to counterbalance the discrepancy of demand and offer is inevitable. In principle, a battery seems to be a simple device since it just requires three basic components – two electrodes and an electrolyte – in contact with each other. However, only the control of the interplay of these components as well as their dynamics, in particular the chemical reactions, can yield a high-performance system. Moreover, specific aspects such as production costs, weight, material composition and morphology, material criticality, and production conditions, among many others, need to be fulfilled at the same time. They present some of the countless challenges, which make battery design a long-lasting, effortful task. This chapter gives an introduction to the fundamental concepts of batteries. The principles are exemplified for the basic Daniell cell followed by a review of Nernst equation, electrified interface reactions, and ionic transport. The focus is addressed to crystalline materials. A comprehensive discussion of crystal chemical and crystal physical peculiarities reflects favourable and unfavourable local structural aspects from a crystallographic view as well as considerations with respect to electronic structure and bonding. A brief classification of battery types concludes the chapter.

References

[1] Simon P, Gogotsi Y. Materials for electrochemical capacitors. Nat Mater. 2008;7:845–54.10.1038/nmat2297Search in Google Scholar PubMed

[2] Linpo Y, Chen GZ. Redox electrode materials for supercapatteries. J Power Sources. 2016;326:604–12.10.1016/j.jpowsour.2016.04.095Search in Google Scholar

[3] Meyer DC, Leisegang T, Stöcker H, Zschornak M. Electrochemical storage materials: from crystallography to manufacturing technology. Berlin, Germany: De Gruyter Oldenbourg Publishing House, 2018.Search in Google Scholar

[4] Nernst W. Die elektrolytische Zersetzung wässriger Lösungen. Eur J Inorg Chem. 1897;30:1547–63.10.1002/cber.18970300273Search in Google Scholar

[5] Atkins PW, de Paula J. Physikalische Chemie, 4. vollständig überarbeitete Auflage ed. Weinheim, Germany: Wiley-VCH Verlag, 2006. ISBN: 978-3-527-31807-0.Search in Google Scholar

[6] Mortimer CE, Müller U. Chemie: Das Basiswissen der Chemie, 10. Auflage ed. Stuttgart, Germany: Georg Thieme Verlag, 2007. ISBN: 978-3134843095.10.1055/b-002-35703Search in Google Scholar

[7] Hollemann AF, Wiberg N. Lehrbuch der Anorganischen Chemie, 102. Auflage ed. Berlin, Germany: Walter de Gruyter Verlag, 2007. ISBN: 978-3110177701.10.1515/9783110177701Search in Google Scholar

[8] Schmidt VM. Elektrochemische Verfahrenstechnik – Grundlagen, Reaktionskinetik, Prozessoptimierung. Weinheim, Germany: Wiley-VCH Verlag, 2003. ISBN: 978-3-527-29958-4.10.1002/3527602143Search in Google Scholar

[9] Riedel E, Janiak C. Anorganische Chemie, 7. Auflage ed. Berlin, Germany: Walter de Gruyter Verlag, 2007. ISBN: 978-3110189032.10.1515/9783110189032Search in Google Scholar

[10] Gupta SV. Units of measurement: past, present and future. international system of units. In: Hull R, et al., editor(s). Springer series in materials science, Vol. 122. Heidelberg, Germany: Springer Science & Business Media, 2009. ISBN: 9783642007378.Search in Google Scholar

[11] Kuchling H. Taschenbuch der Physik, 11. Auflage ed. Thun and Frankfurt/Main, Germany: Verlag Harri Deutsch, 1988:635. ISBN: 3-8171-1020-0.Search in Google Scholar

[12] Bergmann L, Schaefer C, Kassing R. Lehrbuch der Experimentalphysik. Band 6: Festkörper, 2. Auflage ed. Berlin, Germany: Walter de Gruyter, 2005:361. ISBN: 3-11-017485-5.Search in Google Scholar

[13] Nernst W. Theoretical Chemistry from the Standpoint of Avogardro’s Rule & Thermodynamics, 4th ed. London,UK, New York, USA: The MacMillan Company, 1904.Search in Google Scholar

[14] von Helmholtz H. Über einige Gesetze der Vertheilung elektrischer Ströme in körperlichen Leitern, mit Anwendung auf die thierisch-elektrischen Versuche. Ann Phys Chem. 1853;89:353–77.10.1002/andp.18531650702Search in Google Scholar

[15] Lippmann G. Beziehungen zwischen den Capillaren und elektrischen Erscheinungen. Ann Phys. 1873;225:546–61.10.1002/andp.18732250807Search in Google Scholar

[16] Gouy M. Sur la constitution de la charge électrique à la surface d'un électrolyte. J Phys Theor Appl. 1910;9:457–68.10.1051/jphystap:019100090045700Search in Google Scholar

[17] Chapman DL. LI. A contribution to the theory of electrocapillarity. Lond Edinb Dubl Phil Mag J Sci. 1913;25:475–81.10.1080/14786440408634187Search in Google Scholar

[18] Stern O. The theory of the electrolytic double-layer. Z Elektrochem. 1924;30:1014–20.Search in Google Scholar

[19] Bikerman J. Structure and capacity of electrical double layer. Lond Edinb Dubl Phil Mag J Sci. 1942;33:384–97.10.1080/14786444208520813Search in Google Scholar

[20] Freise V. Zur Theorie der diffusen Doppelschicht. Z Elektrochem Ber Bunsenges physik Chem. 1952;56:822–7.Search in Google Scholar

[21] Grahame DC. The electrical double layer and the theory of electrocapillarity. Chem Rev. 1947;41:441–501.10.1021/cr60130a002Search in Google Scholar PubMed

[22] Erdey-Gruz T, Volmer M. Zur Theorie der Wasserstoff Überspannung. Z Phys Chem. 1930;150:203–13.10.1515/zpch-1930-15020Search in Google Scholar

[23] Erdey-Gruz T, Volmer M. Zur Frage der elektrolytischen Metallüberspannung. Z Phys Chem. 1931;157:165–81.10.1515/zpch-1931-15710Search in Google Scholar

[24] Butler JAV. The mechanism of overvoltage and its relation to the combination of hydrogen atoms at metal electrodes. Trans Faraday Soc. 1932;28:379–82.10.1039/tf9322800379Search in Google Scholar

[25] Doyle M, Fuller TF, Newman J. Modeling of galvanostatic charge and discharge of the lithium/polymer/insertion cell. J Electrochem Soc. 1993;140:1526–33.10.1149/1.2221597Search in Google Scholar

[26] Frumkin A. Wasserstoffüberspannung und Struktur der Doppelschicht. Z Phys Chem. 1933;164:121–33.10.1515/zpch-1933-16411Search in Google Scholar

[27] Van Soestbergen M. Frumkin-Butler-Volmer theory and mass transfer in electrochemical cells. Russ J Electrochem. 2012;48:570–9.10.1134/S1023193512060110Search in Google Scholar

[28] Latz A, Zausch J. Thermodynamic derivation of a Butler–Volmer model for intercalation in Li-ion batteries. Electrochim Acta. 2013;110:358–62.10.1016/j.electacta.2013.06.043Search in Google Scholar

[29] Rubi J, Kjelstrup S. Mesoscopic Nonequilibrium Thermodynamics Gives the Same Thermodynamic Basis to Butler−Volmer and Nernst Equations. J Phys Chem B. 2003;107:13471–7.10.1021/jp030572gSearch in Google Scholar

[30] Zeng Y, Smith RB, Bai P, Bazant MZ. Simple formula for Marcus–Hush–Chidsey kinetics. J Electroanalytical Chem. 2014;735:77–83.10.1016/j.jelechem.2014.09.038Search in Google Scholar

[31] Lück J, Latz A. Theory of reactions at electrified interfaces. Phys Chem Chem Phys. 2016;18:17799–804.10.1039/C6CP02681HSearch in Google Scholar PubMed

[32] Fick A. Über Diffusion. Annalen der Physik 170.1 (1855): 59-86. Fick A. On liquid diffusion. Phil Mag Series. 1855;4:30–9 .10.1080/14786445508641925Search in Google Scholar

[33] Hanzig J, Zschornak M, Mehner E, Hanzig F, Münchgesang W, Leisegang T, et al. The anisotropy of oxygen vacancy migration in SrTiO3. J Phy Cond Matter. 2016;28:225001.10.1088/0953-8984/28/22/225001Search in Google Scholar PubMed

[34] Hanzig J, Zschornak M, Nentwich M, Hanzig F, Gemming S, Leisegang T, et al. Strontium titanate: an all-in-one rechargeable energy storage material. J Power Sources. 2014;267:700–5.10.1016/j.jpowsour.2014.05.095Search in Google Scholar

[35] Adams S, Prasado Rao R. High power lithium ion battery materials by computational design. Phys Status Solidi. 2011;208:1746–53.10.1002/pssa.201001116Search in Google Scholar

[36] Pearson RG. Hard and soft acids and bases, HSAB, part 1: fundamental principles. J Chem Educ. 1968;45:581–7.10.1021/ed045p581Search in Google Scholar

[37] Wang Y, Richards WD, Ong SP, Miara LJ, Kim JC, Mo Y, et al. Design principles for solid-state lithium superionic conductors. Nat Mater. 2015;14:1026–31.10.1038/nmat4369Search in Google Scholar PubMed

[38] Meutzner F, Münchgesang W, Kabanova NA, Zschornak M, Leisegang T, Blatov VA, et al. On the way to new possible na-ion conductors: the voronoi–dirichlet approach, data mining and symmetry considerations in ternary Na oxides. Chem Eur J. 2015;21:16601–8.10.1002/chem.201501975Search in Google Scholar PubMed

[39] Huggins RA. Chapter 9: Very Rapid Transport in Solids. In: Nowick AS, editor(s). Diffusion in solids: recent developments. New York, USA: Academic Press, 1975:445–86. ISBN: 0-12-522660-8.10.1016/B978-0-12-522660-8.50014-3Search in Google Scholar

[40] Neumann F. In: Meyer OE, editor(s). Vorlesungen über die Theorie der Elastizität der festen Körper und des Lichtäthers. Leipzig, Germany: B. G. Teubner-Verlag, 1885.Search in Google Scholar

[41] van der Veen A, Bhattacharya J, Belak AA. Understanding Li Diffusion in Li-Intercalation Compounds. Acc Chem Res. 2013;46:1216–25.10.1021/ar200329rSearch in Google Scholar PubMed

[42] Rong Z, Malik R, Canepa P, Sai Gautam G, Liu M, Jain A, et al. Materials design rules for multivalent ion mobility in intercalation structures. Chem Mater. 2015;27:6016–21.10.1021/acs.chemmater.5b02342Search in Google Scholar

[43] Yakovenko AA, Wei ZW, Wriedt M, Li JR, Halder GJ, Zhou HC. Study of guest molecules in metal organic frameworks by powder X-ray diffraction: analysis of difference envelope density. Cryst Growth Des. 2014;14:5397–407.10.1021/cg500525gSearch in Google Scholar

[44] Zschornak M, Richter C, Nentwich M, Stöcker H, Gemming S, Meyer DC. Probing a crystal’s short‐range structure and local orbitals by Resonant X‐ray Diffraction methods. Crystal Res Technol. 2014;49:43–5410.1002/crat.201300430Search in Google Scholar

[45] Richter C, Zschornak M, Novikov D, Mehner E, Nentwich M, Hanzig J, Gorfman S, Meyer DC. Picometer polar atomic displacements in strontium titanate determined by resonant X-ray diffraction. Nat Comms. 2018;9:178.10.1038/s41467-017-02599-6Search in Google Scholar PubMed PubMed Central

[46] Wengert S, Nesper R, Andreoni W, Parrinello M. Ionic diffusion in a ternary superconductor: an ab initio molecular dynamics study. Phys Rev Lett. 1996;77:5083–5.10.1103/PhysRevLett.77.5083Search in Google Scholar PubMed

[47] Shi SQ, Lu P, Liu ZY, Qi Y, Hector LG, Li H, et al. Direct calculation of li-ion transport in the solid electrolyte interphase. J Am Chem Soc. 2012;134:15476–87.10.1021/ja305366rSearch in Google Scholar PubMed

[48] Soto FA, Yan P, Engelhard MH, Marzouk A, Wang C, Xu G, et al. Tuning the solid electrolyte interphase for selective li- and na-ion storage in hard carbon. Adv Mater. 2017;29:1606860.10.1002/adma.201606860Search in Google Scholar PubMed

[49] Maiser E. Battery packaging – technology review. AIP Conf Proc. 2014;1597:204–8.10.1063/1.4878489Search in Google Scholar

[50] Korthauer R. Handbuch Lithium-Ionen-Batterien. Berlin/Heidelberg, Germany: Springer-Verlag, 2013. ISBN: 978-3-642-30652-5.10.1007/978-3-642-30653-2Search in Google Scholar

[51] Johnson Matthey Battery Systems (former Axeon © 2012). Our Guide to Batteries. Rooksley, Milton Keynes, UK: Johnson Matthey, Precedent House. 2nd edition, 2018. accessed on Jan 26th.Search in Google Scholar

[52] Dunn B, Kamath H, Tarascon J-M. Electrical energy storage for the grid: a battery of choices. Science. 2011;334:928–35.10.1126/science.1212741Search in Google Scholar PubMed

[53] Kraytsberg A, Ein-Eli Y. Higher, stronger, better? a review of 5 volt cathode materials for advanced lithium-ion batteries. Adv Ene Mat. 2012;2:922–39.10.1002/aenm.201200068Search in Google Scholar

[54] Reddy TD, Linden D. Chapter 19 – 21: Nickel-Cadmium Batteries. Linden’s handbook of batteries, 4th ed. New York City, USA: McGrawHill Verlag, 2011. ISBN: 978-0071624213.Search in Google Scholar

[55] Page KA, Soles CL, Runt J. Polymers for energy storage and delivery: polyelectrolytes for batteries and fuel cells, Vol. 1096. Washington D.C., USA: American Chemical Society, 2012. ISBN: 9780841226319.10.1021/bk-2012-1096Search in Google Scholar

[56] Skyllas-Kazacos M, Chakrabarti MH, Hajimolana SA, Mjalli FS, Saleem M. Progress in flow battery research and development. J Electrochem Soc. 2011;158:R55–R79.10.1149/1.3599565Search in Google Scholar

[57] Wang W, Luo Q, Li B, Wei X, Li L, Yang Z. Recent progress in redox flow battery research and development. Adv Funct Mater. 2013;23:970–86.10.1002/adfm.201200694Search in Google Scholar

[58] Ponce De León C, Frías-Ferrer A, González-García J, Szánto DA, Walsh FC. Redox flow cells for energy conversion. J Power Sources. 2006;160:716–32.10.1016/j.jpowsour.2006.02.095Search in Google Scholar

[59] Cheng F, Chen J. Metal–air batteries: from oxygen reduction electrochemistry to cathode catalysts. Chem Soc Rev. 2012;41:2172–92.10.1039/c1cs15228aSearch in Google Scholar PubMed

[60] Reddy TD, Linden D. Chapter 16 & 17: Lead-Acid Batteries & Valve Regulated Lead-Acid Batteries. Linden’s Handbook of Batteries, 4th ed. New York City, Vereinigte Staaten: McGrawHill Verlag, 2011. ISBN: 978-0071624213.Search in Google Scholar

[61] Beattie GW. Nernst’s theory of the concentration cell. Charleston SC, USA: BiblioBazaar, 2015. ISBN: 9781343047952.Search in Google Scholar

[62] Hahn T (Hrsg.). International tables for crystallography. Bd. A: Space-group symmetry. 5., rev. ed., repr. with corr. Dordrecht: Kluwer Academic Publishers, 2002. ISBN: 0-7923-6591-7.Search in Google Scholar

Published Online: 2018-08-11

© 2018 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 25.3.2023 from https://www.degruyter.com/document/doi/10.1515/psr-2017-0111/html
Scroll Up Arrow