Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter July 11, 2018

Magnetic resonance spectroscopy approaches for electrochemical research

Anastasia Vyalikh, Thomas Köhler, Tatiana Zakharchenko, Daniil M. Itkis, Andraž Krajnc and Gregor Mali
From the journal Physical Sciences Reviews

Abstract

In this review paper, we provide a short overview of the application of magnetic resonance techniques in electrochemical studies. Brief theoretical descriptions, sensitivity aspects, challenges and new opportunities of nuclear magnetic resonance and electron paramagnetic resonance have been presented here. Particular attention will be paid to the studies using ex situ and in situ methodologies and their combination to address the questions concerning the intrinsic structures and the structural transformations, ionic mobility and interfacial interactions in the energy storage and energy conversion systems. In addition, theoretical approaches to support the experimental NMR observables as well as magnetic resonance imaging have been discussed in the context of improving electrochemical performance, cycling stability and safety of batteries.

Acknowledgements

The authors gratefully acknowledge the Bundesministerium für Bildung und Forschung (Project “SyNeSteSia”, Grant No. 05K14OFA), Sächsische Aufbaubank (SAB, Grant No. 100245339) and the CERIC-ERIC Consortium (Proposal No. 20157010) for the financial support and the access to experimental facilities. The authors are particularly grateful to Prof. J. Niklas and Dr. K. Dornich for critical discussions, Freiberg Instruments GmbH for providing the graphical materials and Ch. Irmer for technical support.

References

[1] Slichter CP. Principles of magnetic resonance, ed. Berlin, New York: Springer-Verlag, 1978.10.1007/978-3-662-12784-1Search in Google Scholar

[2] Abragam A. The principles of nuclear magnetism, Reprint. Oxford u.a.: Oxford University Press, 2006.Search in Google Scholar

[3] Grey CP, Lee YJ. Lithium MAS NMR studies of cathode materials for lithium-ion batteries. Solid State Sci. 2003;5:883–94.10.1016/S1293-2558(03)00113-4Search in Google Scholar

[4] Abbrent S, Greenbaum S. Recent progress in NMR spectroscopy of polymer electrolytes for lithium batteries. Curr Opin Colloid Interface Sci. 2013;18:228–44.10.1016/j.cocis.2013.03.008Search in Google Scholar

[5] Blanc F, Leskes M, Grey CP. In situ solid-state NMR spectroscopy of electrochemical cells: Batteries, supercapacitors, and fuel cells. Acc Chem Res. 2013;46:1952–6310.1021/ar400022uSearch in Google Scholar PubMed

[6] Oschatz M, Borchardt L, Hippauf F, Nickel W, Kaskel S, Brunner E. Interactions between electrolytes and carbon-based materials—NMR studies on electrical double-layer capacitors, lithium-ion batteries, and fuel cells. In: Webb GA, editor. Annual reports on NMR spectroscopy, Vol. 87. Oxford: Academic Press, 2016:237–318.Search in Google Scholar

[7] Griffin JM, Forse AC, Grey CP. Solid-state NMR studies of supercapacitors. Solid State Nucl Magn Reson. 2016;74–5:16–35.10.1016/j.ssnmr.2016.03.003Search in Google Scholar PubMed

[8] Vinod Chandran C, Heitjans P. Solid-state NMR studies of lithium ion dynamics across materials classes. In: Webb GA, editor. Annual reports on NMR spectroscopy, Vol. 89. Saint Louis: Elsevier Science, 2016:1–102.Search in Google Scholar

[9] Borzutzki K, Brunklaus G. Magnetic resonance imaging studies of the spatial distribution of charge carriers. In: Webb GA, editor. Annual reports on NMR spectroscopy, 1st ed. Vol. 91. London: Academic Press, 2017:115–41.Search in Google Scholar

[10] Stone NJ. Table of nuclear magnetic dipole and electric quadrupole moments. Parks Road, OXFORD OX1 3PU U.K.: Clarendon Laboratory,2005;90:175–6.10.1016/j.adt.2005.04.001Search in Google Scholar

[11] Vyalikh A, Vizgalov V, Itkis DM, Meyer DC. Investigation of ionic mobility in NASICON-type solid electrolytes. J Phys: Conf Ser. 2016;758:12014.10.1088/1742-6596/758/1/012014Search in Google Scholar

[12] Masquelier C, Croguennec L. Polyanionic (phosphates, silicates, sulfates) frameworks as electrode materials for rechargeable Li (or Na) batteries. Chem Rev. 2013;113:6552–91.10.1021/cr3001862Search in Google Scholar PubMed

[13] Leo CJ, Chowdari B, Subba Rao GV, Souquet JL. Lithium conducting glass ceramic with NASICON structure. Mater Res Bull. 2002;37:1419–30.10.1016/S0025-5408(02)00793-6Search in Google Scholar

[14] París MA, Sanz J. Structural changes in the compounds LiM2IV(PO4)3 (MIV =Ge, Ti, Sn, and Hf) as followed by 31P and 7Li NMR. Phys Rev B. 1997;55:14270–78.10.1103/PhysRevB.55.14270Search in Google Scholar

[15] Vizgalov VA, Nestler T, Trusov LA, Bobrikov IA, Ivankov OI, Avdeev MV, Motylenko M, et al. Enhancing lithium-ion conductivity in NASICON glass-ceramics by adding yttria. Cryst Eng Comm. 2018;20:1375–82.10.1039/C7CE01910FSearch in Google Scholar

[16] Van Vleck JH. The dipolar broadening of magnetic resonance lines in crystals. Phys Rev. 1948;74:1168–83.10.1103/PhysRev.74.1168Search in Google Scholar

[17] Arbi K, Tabellout M, Lazarraga MG, Rojo JM, Sanz J. Non-Arrhenius conductivity in the fast lithium conductor Li1.2Ti1.8Al0.2(PO4)3: a 7Li NMR and electric impedance study. Phys Rev B. 2005;72.10.1103/PhysRevB.72.094302Search in Google Scholar

[18] Arbi K, Paris MA, Sanz J. Li mobility in NASICON-type materials LiM2(PO4)3, M = Ge, Ti, Sn, Zr and Hf, followed by 7Li NMR spectroscopy. Dalton Transactions (Cambridge, England: 2003). 2011;40:10195–202.10.1039/c1dt10516gSearch in Google Scholar PubMed

[19] Soman S, Iwai Y, Kawamura J, Kulkarni A. Crystalline phase content and ionic conductivity correlation in LATP glass–ceramic. J Solid State Electrochem. 2012;16:1761–6.10.1007/s10008-011-1592-4Search in Google Scholar

[20] Arbi K, Mandal S, Rojo JM, Sanz J. Dependence of ionic conductivity on composition of fast ionic conductors Li1+xTi2-xAlx(PO4)3, 0 ≤ x ≤ 0.7. A parallel NMR and electric impedance study. Chem Mater. 2002;14:1091–7.10.1021/cm010528iSearch in Google Scholar

[21] Xu X, Wen Z, Wu X, Yang X, Gu Z. Lithium ion-conducting glass-ceramics of Li1.5Al0.5Ge1.5(PO4)3×Li2O (x=0.0<0.20) with good electrical and electrochemical properties. J Am Ceramic Soc. 2007;90:2802–6.10.1111/j.1551-2916.2007.01827.xSearch in Google Scholar

[22] Santagneli SH, Baldacim HVA, Ribeiro SJL, Kundu S, Rodrigues ACM, Doerenkamp C, Eckert H. Preparation, structural characterization, and electrical conductivity of highly ion-conducting glasses and glass ceramics in the system Li1+xAlxSnyGe2-(x+y)(PO4)3. J Phys Chem C. 2016;120:14556–67.10.1021/acs.jpcc.6b04839Search in Google Scholar

[23] Kuhn A, Kunze M, Sreeraj P, Wiemhöfer H-D, Thangadurai V, Wilkening M, Heitjans P. NMR relaxometry as a versatile tool to study Li ion dynamics in potential battery materials. Solid State NMR. 2012;42:2–810.1016/j.ssnmr.2012.02.001Search in Google Scholar PubMed

[24] Messinger RJ, Ménétrier M, Salager E, Boulineau A, Duttine M, Carlier D, Ateba Mba J-M, et al. Revealing defects in crystalline lithium-ion battery electrodes by solid-state NMR: applications to LiVPO4F. Chem Mater. 2015;27:5212–21.10.1021/acs.chemmater.5b01234Search in Google Scholar

[25] Liu Z, Hu -Y-Y, Dunstan MT, Huo H, Hao X, Zou H, Zhong G, Yang Y, Grey CP. Local structure and dynamics in the Na ion battery positive electrode material Na3V2(PO4)2F3. Chem Mater. 2014;26:2513–21.10.1021/cm403728wSearch in Google Scholar

[26] Toffoletti L, Kirchhain H, Landesfeind J, Klein W, Van Wullen L, Gasteiger HA, Fassler TF. Lithium ion mobility in lithium phosphidosilicates: crystal structure, 7Li, 29Si, and 31P MAS NMR spectroscopy, and impedance spectroscopy of Li8SiP4 and Li2SiP2. Chemistry. 2016;22:17635–45.10.1002/chem.201602903Search in Google Scholar PubMed

[27] Salager E, Sarou-Kanian V, Sathiya M, Tang M, Leriche J-B, Melin P, Wang Z, et al. Solid-state NMR of the family of positive electrode materials Li2Ru1–ySnyO3 for lithium-ion batteries. Chem Mater. 2014;26:7009–19.10.1021/cm503280sSearch in Google Scholar

[28] Freitag KM, Kirchhain H, Van Wullen L, Nilges T. Enhancement of Li ion conductivity by electrospun polymer fibers and direct fabrication of solvent-free separator membranes for Li ion batteries. Inorg Chem. 2017;56:2100–7.10.1021/acs.inorgchem.6b02781Search in Google Scholar PubMed

[29] Guérin K, Dubois M, Houdayer A, Hamwi A. Applicative performances of fluorinated carbons through fluorination routes: a review. J Fluor Chem. 2012;134:11–7.10.1016/j.jfluchem.2011.06.013Search in Google Scholar

[30] Koroteev VO, Münchgesang W, Shubin Y, Palyanov Y, Plyusnin PE, Smirnov DA, Kovalenko KA, et al. Multiscale characterization of 13C-enriched fine-grained graphitic materials for chemical and electrochemical applications. Carbon. 2017;124:161–9.10.1016/j.carbon.2017.08.038Search in Google Scholar

[31] Bösebeck K, Chandran CV, Licht BK, Binnewies M, Heitjans P. Improved electrochemical performance of modified mesocarbon microbeads for lithium-ion batteries studied using solid-state nuclear magnetic resonance spectroscopy. Energy Technol. 2016;4:1598–603.10.1002/ente.201600211Search in Google Scholar

[32] Girishkumar G, McCloskey B, Luntz AC, Swanson S, Wilcke W. Lithium−air battery: promise and challenges. J Phys Chem Lett. 2010;1:2193–203.10.1021/jz1005384Search in Google Scholar

[33] Lu Y-C, Gallant BM, Kwabi DG, Harding JR, Mitchell RR, Whittingham MS, Shao-Horn Y. Lithium–oxygen batteries: bridging mechanistic understanding and battery performance. Energy Environ Sci. 2013;6:750.10.1039/c3ee23966gSearch in Google Scholar

[34] Itkis DM, Semenenko DA, Kataev EY, Belova AI, Neudachina VS, Sirotina AP, Havecker M, et al. Reactivity of carbon in lithium-oxygen battery positive electrodes. Nano Lett. 2013;13:4697–701.10.1021/nl4021649Search in Google Scholar PubMed

[35] Huff LA, Rapp JL, Zhu L, Gewirth AA. Identifying lithium–air battery discharge products through 6Li solid-state MAS and 1H–13C solution NMR spectroscopy. J Power Sources. 2013;235:87–94.10.1016/j.jpowsour.2013.01.158Search in Google Scholar

[36] Leskes M, Moore AJ, Goward GR, Grey CP. Monitoring the electrochemical processes in the lithium–air battery by solid state NMR spectroscopy. J Phys Chem C. 2013;117:26929–39.10.1021/jp410429kSearch in Google Scholar PubMed PubMed Central

[37] Leskes M, Drewett NE, Hardwick LJ, Bruce PG, Goward GR, Grey C. Direct detection of discharge products in lithium-oxygen batteries by solid-state NMR spectroscopy. Angew Chem Int Ed. 2012;51:8560–3.10.1002/anie.201202183Search in Google Scholar PubMed

[38] Reeve ZEM, Pauric AD, Harris KJ, Goward GR. Evaluation of the stability of trimethyl phosphate as a Li–O2 battery electrolyte via multinuclear solid-state NMR. J Phys Chem C. 2015;119:26840–8.10.1021/acs.jpcc.5b08488Search in Google Scholar

[39] Harks P, Mulder FM, Notten P. In situ methods for Li-ion battery research: a review of recent developments. J Power Sources. 2015;288:92–105.10.1016/j.jpowsour.2015.04.084Search in Google Scholar

[40] Pecher O, Vyalikh A, Grey CP. Challenges and new opportunities of in situ NMR characterization of electrochemical processes. Electrochemical storage materials: supply, processing, recycling and modelling: Proceedings of the 2nd International Freiberg Conference on Electrochemical Storage Materials, Freiberg, Germany, 2016;20011 .10.1063/1.4961903Search in Google Scholar

[41] Itkis DM, Velasco-Velez JJ, Knop-Gericke A, Vyalikh A, Avdeev MV, Yashina LV. Probing operating electrochemical interfaces by photons and neutrons. Chem Electro Chem. 2015;2:1427–45.10.1002/celc.201500155Search in Google Scholar

[42] Chevallier F, Letellier M, Morcrette M, Tarascon J-M, Frackowiak E, Rouzaud J-N, Béguin F. In situ 7Li-nuclear magnetic resonance observation of reversible lithium insertion into disordered carbons. Electrochem Solid-State Lett. 2003;6:225.10.1149/1.1612011Search in Google Scholar

[43] Letellier M, Chevallier F, Morcrette M. In situ 7Li nuclear magnetic resonance observation of the electrochemical intercalation of lithium in graphite; 1st cycle. Carbon. 2007;45:1025–34.10.1016/j.carbon.2006.12.018Search in Google Scholar

[44] Letellier M, Chevallier F, Béguin F. In situ 7Li NMR during lithium electrochemical insertion into graphite and a carbon/carbon composite. J Phys Chem Solids. 2006;67:1228–32.10.1016/j.jpcs.2006.01.088Search in Google Scholar

[45] Irisarri E, Ponrouch A, Palacin MR. Review—hard carbon negative electrode materials for sodium-ion batteries. J Electrochem Soc. 2015;162:A2476–A2482.10.1149/2.0091514jesSearch in Google Scholar

[46] Stratford JM, Allan PK, Pecher O, Chater PA, Grey CP. Mechanistic insights into sodium storage in hard carbon anodes using local structure probes. Chem Commun. 2016;52:12430–3.10.1039/C6CC06990HSearch in Google Scholar

[47] Key B, Bhattacharyya R, Morcrette M, Seznec V, Tarascon J-M, Grey CP. Real-time NMR investigations of structural changes in silicon electrodes for lithium-ion batteries. J Am Chem Soc. 2009;131:9239–49.10.1021/ja8086278Search in Google Scholar PubMed

[48] Bhattacharyya R, Key B, Chen H, Best AS, Hollenkamp AF, Grey CP. In situ NMR observation of the formation of metallic lithium microstructures in lithium batteries. Nat Mater. 2010;9:504–1010.1038/nmat2764Search in Google Scholar PubMed

[49] Poli F, Wong A, Kshetrimayum JS, Monconduit L, Letellier M. In situ NMR insights into the electrochemical reaction of Cu3P electrodes in lithium batteries. Chem Mater. 2016;28:1787–93.10.1021/acs.chemmater.5b04802Search in Google Scholar

[50] Cattaneo AS, Villa DC, Angioni S, Ferrara C, Melzi R, Quartarone E, Mustarelli P. Operando electrochemical NMR microscopy of polymer fuel cells. Energy Environ Sci. 2015;8:2383–8.10.1039/C5EE01668ASearch in Google Scholar

[51] Kimmich R. NMR: tomography, diffusometry, relaxometry. Berlin, Heidelberg: Springer-Verlag, 1997.10.1007/978-3-642-60582-6Search in Google Scholar

[52] Kuhn A, Choi J-Y, Robben L, Tietz F, Wilkening M, Heitjans P. Li ion dynamics in al-doped garnet-type Li7La3Zr2O12 crystallizing with cubic symmetry. Zeitschrift Für Physikalische Chemie. 2012;226:525–37.10.1524/zpch.2012.0250Search in Google Scholar

[53] Berthier C, Chabre Y, Minier M. NMR investigation of the layered transition metal phosphorus trichalcogenides and the intercalation compounds LixNiPS3. Solid State Commun. 1978;28:327–32.10.1016/0038-1098(78)90434-9Search in Google Scholar

[54] Granier W, Bernier P, Dohri M, Alizon J, Robert H. 19F nuclear relaxation in an ionic conductor: TlSn2F5. J Phyique Lett. 1981;42:301–4.10.1051/jphyslet:019810042013030100Search in Google Scholar

[55] Kuhn A, Sreeraj P, Pöttgen R, Wiemhöfer H-D, Wilkening M, Heitjans P. Li ion diffusion in the anode material Li12Si7: ultrafast quasi-1D diffusion and two distinct fast 3D jump processes separately revealed by 7Li NMR relaxometry. J Am Chem Soc. 2011;133:11018–21.10.1021/ja2020108Search in Google Scholar PubMed

[56] Chowdhury MT, Takekawa R, Lwai Y, Kuwata N, Kawamura J. The study of the lithium ion motion in B-alumina single crystal by NMR spectroscopy. Solid State Ionics. 2014;262:482–5.10.1016/j.ssi.2013.10.022Search in Google Scholar

[57] Šalkus T, Kazakevičius E, Kežionis A, Dindune A, Kanepe Z, Ronis J, Emery J, et al. Peculiarities of ionic transport in Li1.3Al0.15Y0.15Ti1.7(PO4)3 ceramics. J Phys: Condens Matter. 2009;21:185502.Search in Google Scholar

[58] Bloembergen N, Purcell EM, Pound RV. Relaxation effects in nuclear magnetic resonance absorption. Phys Rev. 1948;73:679–712.10.1103/PhysRev.73.679Search in Google Scholar

[59] Heitjans P, Kärger J. Diffusion in condensed matter. Berlin, Heidelberg: Springer-Verlag, 2005.10.1007/3-540-30970-5Search in Google Scholar

[60] Davis LJM, He XJ, Bain AD, Goward GR. Studies of lithium ion dynamics in paramagnetic cathode materials using 6Li 1D selective inversion methods. Solid State Nucl Magn Reson. 2012;42:26–32.10.1016/j.ssnmr.2012.01.002Search in Google Scholar PubMed

[61] Kuhn A, Epp V, Schmidt G, Narayanan S, Thangadurai V, Wilkening M. Spin-alignment echo NMR: probing Li+ hopping motion in the solid electrolyte Li7La3Zr2O12 with garnet-type tetragonal structure. J Phys Condens Matter: An Inst Phys J. 2012;24:35901.10.1088/0953-8984/24/3/035901Search in Google Scholar PubMed

[62] Wilkening M, Heitjans P. Extremely slow cation exchange processes in Li4SiO4 probed directly by two-time 7Li stimulated-echo nuclear magnetic resonance spectroscopy. J Phys: Condens Matter. 2006;18:9849.Search in Google Scholar

[63] Wilkening M, Gebauer D, Heitjans P. Diffusion parameters in single-crystalline Li3N as probed by 6Li and 7Li spin-alignment echo NMR spectroscopy in comparison with results from 8Li β-radiation detected NMR. J Phys: Cond Mat. 2007;20:022201.Search in Google Scholar

[64] Ruprecht B, Billetter H, Ruschewitz U, Wilkening M. Ultra-slow Li ion dynamics in Li2C2—on the similarities of results from 7Li spin-alignment echo NMR and impedance spectroscopy. J Phys: Cond Mat. 2010;22:245901.Search in Google Scholar

[65] Bottke P, Rettenwander D, Schmidt W, Amthauer G, Wilkening M. Ion dynamics in solid electrolytes: NMR reveals the elementary steps of Li+ hopping in the garnet Li6.5La3Zr1.75Mo0.25O12. Chem Mater. 2015;27:6571–82.10.1021/acs.chemmater.5b02231Search in Google Scholar

[66] Forse AC, Griffin JM, Merlet C, Carretero-Gonzalez J, Raji A-RO, Trease NM, Grey CP. Direct observation of ion dynamics in supercapacitor electrodes using in situ diffusion NMR spectroscopy. Nat Energy. 2017;2:16216.10.1038/nenergy.2016.216Search in Google Scholar

[67] Yates JR, Pickard CJ, Mauri F. Calculation of NMR chemical shifts for extended systems using ultrasoft pseudopotentials. Phys Rev B. 2007;76:293.10.1103/PhysRevB.76.024401Search in Google Scholar

[68] Pickard CJ, Mauri F. All-electron magnetic response with pseudopotentials: NMR chemical shifts. Phys Rev B. 2001;63:70.10.1103/PhysRevB.63.245101Search in Google Scholar

[69] Mayo M, Griffith KJ, Pickard CJ, Morris AJ. Ab initio study of phosphorus anodes for lithium- and sodium-ion batteries. Chem Mater. 2016;28:2011–21.10.1021/acs.chemmater.5b04208Search in Google Scholar

[70] Lynch CI. An overview of first-principles calculations of NMR parameters for paramagnetic materials. Mater Sci Technol. 2016;32:181–94.10.1179/1743284715Y.0000000083Search in Google Scholar

[71] Mali G, Rangus M, Sirisopanaporn C, Dominko R. Understanding 6Li MAS NMR spectra of Li2MSiO4 materials (M = Mn, Fe, Zn). Solid State Nucl Magn Reson. 2012;42:33–41.10.1016/j.ssnmr.2011.10.001Search in Google Scholar PubMed

[72] Mali G, Sirisopanaporn C, Masquelier C, Hanzel D, Dominko R. Li2FeSiO4 polymorphs probed by 6Li MAS NMR and 57Fe Mössbauer spectroscopy. Chem Mater. 2011;23:2735–44.10.1021/cm103193aSearch in Google Scholar

[73] Mali G, Meden A, Dominko R. 6Li MAS NMR spectroscopy and first-principles calculations as a combined tool for the investigation of Li2MnSiO4 polymorphs. Chem Commun. 2010;46:3306–8.10.1039/c003065aSearch in Google Scholar PubMed

[74] Carlier D, Ménétrier M, Grey CP, Delmas C, and Ceder G. Understanding the NMR shifts in paramagnetic transition metal oxides using density functional theory calculations. Phys Rev B. 2003;67:1773.10.1103/PhysRevB.67.174103Search in Google Scholar

[75] Kim J, Middlemiss DS, Chernova NA, Zhu BYX, Masquelier C, Grey CP. Linking local environments and hyperfine shifts: a combined experimental and theoretical 31P and 7Li solid-state NMR study of paramagnetic FeIII phosphates. J Am Chem Soc. 2010;132:16825–40.10.1021/ja102678rSearch in Google Scholar PubMed

[76] Pigliapochi R, Pell AJ, Seymour ID, Grey CP, Ceresoli D, Kaupp M. DFT investigation of the effect of spin-orbit coupling on the NMR shifts in paramagnetic solids. Phys Rev B. 2017;95:286.10.1103/PhysRevB.95.054412Search in Google Scholar

[77] Britton MM. MRI of chemical reactions and processes. Prog Nucl Magn Reson Spectrosc. 2017. DOI: 10.1016/j.pnmrs.2017.03.001.Search in Google Scholar PubMed

[78] Krachkovskiy SA, Bazak JD, Werhun P, Balcom BJ, Halalay IC, Goward GR. Visualization of steady-state ionic concentration profiles formed in electrolytes during li-ion battery operation and determination of mass-transport properties by in situ magnetic resonance imaging. J Am Chem Soc. 2016;138:7992–9.10.1021/jacs.6b04226Search in Google Scholar PubMed

[79] Romanenko K, Jin L, Howlett P, Forsyth M. In situ MRI of operating solid-state lithium metal cells based on ionic plastic crystal electrolytes. Chem Mater. 2016;28:2844–51.10.1021/acs.chemmater.6b00797Search in Google Scholar

[80] Rieger PH. Electron spin resonance. Analysis and interpretation. Cambridge: Royal Soc. of Chemistry, 2007.Search in Google Scholar

[81] Skrabal PM. Spektroskopie. Eine methodenübergreifende darstellung vom UV- bis zum NMR-bereich. Zürich: vdf Hochschulverlag AG, 2009.10.3218/3697-8Search in Google Scholar

[82] Weil JA, Bolton JR. Electron paramagnetic resonance. Elementary theory and practical applications, 2nd ed. New York: Wiley-Interscience, 2007.Search in Google Scholar

[83] Harriman JE. Theoretical foundations of electron spin resonance. New York, u.a.: Academic Press; 1978.Search in Google Scholar

[84] Poole CP, Farach HA, editor(s). Handbook of electron spin resonance. Data sources, computer technology, relaxation and ENDOR. Band 1. New York: AIP Press, 1994.Search in Google Scholar

[85] Poole CP, editor(s). Handbook of electron spin resonance. Band 2. New York, NY: AIP Press, 1999.10.1007/978-1-4612-1486-1Search in Google Scholar

[86] Sudant G, Baudrin E, Dunn B, Tarascon J-M. Synthesis and electrochemical properties of vanadium oxide aerogels prepared by a freeze-drying process. J Electrochem Soc. 2004;151:A666.10.1149/1.1687427Search in Google Scholar

[87] Van Nghia N, Long PD, Tan TA, Jafian S, Hung I-M. Electrochemical performance of a V2O5 cathode for a sodium ion battery. J Electron Mater. 2017;217:43.10.1007/s11664-017-5298-ySearch in Google Scholar

[88] Gourier D, Tranchant A, Baffier N, Messina R. EPR study of electrochemical lithium intercalation in V2O5 cathodes. Electrochim Acta. 1992;37:2755–64.10.1016/0013-4686(92)85203-WSearch in Google Scholar

[89] Johnson L, Li C, Liu Z, Chen Y, Freunberger SA, Ashok PC, Praveen BB, et al. The role of LiO2 solubility in O2 reduction in aprotic solvents and its consequences for Li-O2 batteries. Nat Chem. 2014;6:1091–9.10.1038/nchem.2101Search in Google Scholar PubMed

[90] Petr A, Kataev V, Buchner B. First direct in situ EPR spectroelectrochemical evidence of the superoxide anion radical. J Phys Chem B. 2011;115:12036–9.10.1021/jp206540cSearch in Google Scholar PubMed

[91] Wandt J, Marino C, Gasteiger HA, Jakes P, Eichel RA, Granwehr J. Operando electron paramagnetic resonance spectroscopy – formation of mossy lithium on lithium anodes during charge–discharge cycling. Energy & Environ Sci. 2015;8:1358–67.10.1039/C4EE02730BSearch in Google Scholar

[92] Sathiya M, Leriche J-B, Salager E, Gourier D, Tarascon J-M, Vezin H. Electron paramagnetic resonance imaging for real-time monitoring of Li-ion batteries. Nat Commun. 2015;6:6276.10.1038/ncomms7276Search in Google Scholar PubMed PubMed Central

Published Online: 2018-07-11

© 2018 Walter de Gruyter GmbH, Berlin/Boston

Scroll Up Arrow