Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter August 20, 2019

Prediction of toxicity of secondary metabolites

Ricardo Bruno Hernández-Alvarado, Abraham Madariaga-Mazón and Karina Martinez-Mayorga
From the journal Physical Sciences Reviews


The prediction of toxicological endpoints has gained broad acceptance; it is widely applied in early stages of drug discovery as well as for impurities obtained in the production of generic or equivalent products. In this work, we describe methodologies for the prediction of toxicological endpoints compounds, with a particular focus on secondary metabolites. Case studies include toxicity prediction of natural compound databases with anti-diabetic, anti-malaria and anti-HIV properties.


This work was supported by Instituto de Química-UNAM, and DGAPA-UNAM (PAPIIT IN210518). The authors thank ChemAxon and Lhasa Limited, for kindly providing academic licenses of their software.


[1] Tropsha A, Golbraikh A. Predictive QSAR modeling workflow, model applicability domains, and virtual screening. Curr Pharm Des. 2007;13:3494–504.10.2174/138161207782794257Search in Google Scholar PubMed

[2] Tropsha A, Wang SX. QSAR modeling of GPCR ligands: methodologies and examples of applications. In: Bourne H, Horuk R, Kuhnke J, Michel H, editors. GPCRs: from deorphanization to lead structure identification. Berlin: Springer, 2007:49–74.10.1007/2789_2006_003Search in Google Scholar

[3] Veith GD. On the nature, evolution and future of quantitative structure-activity relationships (QSAR) in toxicology. SAR QSAR Environ Res. 2004;15:323–30.10.1080/10629360412331297380Search in Google Scholar PubMed

[4] Demchuk E, Ruiz P, Chou S, Fowler BA. SAR/QSAR methods in public health practice. Toxicol Appl Pharmacol. 2011;254:192–7.10.1016/j.taap.2010.10.017Search in Google Scholar PubMed

[5] Ruiz P, Begluitti G, Tincher T, Wheeler J, Mumtaz M. Prediction of acute mammalian toxicity using QSAR methods: a case study of sulfur mustard and its breakdown products. Molecules. 2012;17:8982–9001.10.3390/molecules17088982Search in Google Scholar PubMed

[6] Guidance Document on the Validation of (Quantitative) Structure-Activity Relationship [(Q)SAR] Models. OECD. 2014. DOI: 10.1787/9789264085442-en.10.1787/9789264085442-enSearch in Google Scholar

[7] Gómez-Jiménez G, Gonzalez-Ponce K, Castillo-Pazos DJ, Madariaga-Mazón A, Barroso-Flores J, Cortés-Guzman F, et al. The OECD principles for (Q)SAR models in the context of knowledge discovery in databases (KDD). In: Karabencheva-Christova T, Christov C, editor(s). Advances in protein chemistry and structural biology Vol. 113. Amsterdam: Elsevier, 2018:85–117.Search in Google Scholar PubMed

[8] Pu L, Naderi M, Liu T, Wu H, Mukhopadhyay S, Brylinski M. eToxPred: a machine learning-based approach to estimate the toxicity of drug candidates. BMC Pharmacol Toxicol. 2019;20:2.10.1186/s40360-018-0282-6Search in Google Scholar PubMed

[9] Mishra N, Singla D, Agarwal S, Consortium OSDD, Raghava GPS. ToxiPred: a server for prediction of aqueous toxicity of small chemical molecules in T. Pyriformis. J Transl Toxicol. 2014;1:21–7.10.1166/jtt.2014.1005Search in Google Scholar

[10] Drwal , Banerjee P, Dunkel M, Wettig MR, Preissner R. ProTox: a web server for the in silico prediction of rodent oral toxicity. Nucleic Acids Res. 2014;42:53–8.10.1093/nar/gku401Search in Google Scholar

[11] Wexler P. TOXNET: an evolving web resource for toxicology and environmental health information. Toxicol. 2001;157:3–10.10.1016/S0300-483X(00)00337-1Search in Google Scholar

[12] Richard A, Williams C. DSSTox chemical-index files for exposure-related experiments in arrayexpress and gene expression omnibus: enabling toxico-chemogenomics data linkages. Bioinformatics. 2009;25:692–4.10.1093/bioinformatics/btp042Search in Google Scholar PubMed

[13] Richard A, Judson RS, Houck KA, Grulke CM, Volarath P, Thillainadarajah I, et al. ToxCast chemical landscape: paving the road to twenty-first century toxicology. Chem Res Toxicol. 2016;26:1225–51.10.1021/acs.chemrestox.6b00135Search in Google Scholar

[14] Judson R, Richard A, Dix D, Houck K, Elloumi F, Martin M, et al. ACToR–aggregated computational toxicology resource. Toxicol Appl Pharmacol. 2008;233:7–13.10.1016/j.taap.2007.12.037Search in Google Scholar PubMed

[15] Williams AJ, Grulke CM, Edwards J, McEachran AD, Mansouri K, Baker NC, et al. The CompTox chemistry dashboard: a community data resource for environmental chemistry. J Chem inform. 2017;9:61.10.1186/s13321-017-0247-6Search in Google Scholar PubMed

[16] Fay M, Donohue J, De Rosa C. ATSDR evaluation of health effects of chemicals. VI. Di(2-ethylhexyl)phthalate. Agency for Toxic Substances and Disease Registry. Toxicol Ind HealthToxicol. 1999;15:651–746.10.1177/074823379901500801Search in Google Scholar

[17] Review of EPA´s Integrated Risk Information System (IRIS) Process. EPA 2014. DOI: 10.17226/18764.10.17226/18764Search in Google Scholar

[18] Schmidt U, Struck S, Gruening B, Hossbach J, Jaeger IS, Parol R, et al. SuperToxic: a comprehensive database of toxic compounds. Nucleic Acids Res. 2008;37:D295–9.10.1093/nar/gkn850Search in Google Scholar PubMed

[19] Pineda S, Chaumeil P, Kunert A, Kaas Q, Thang M, Le L, et al. ArachnoServer 3.0: an online resource for automated discovery, analysis and annotation of spider toxins. Bioinformatics. 2018;34:1074–6. DOI: 10.1093/bioinformatics/btx661.Search in Google Scholar PubMed

[20] Bhatia S, Schultz T, Roberts D, Shen J, Kromidas L, Api AM. Comparison of Cramer classification between Toxtree, the OECD QSAR Toolbox and expert judgment. Regul Toxicol Pharmacol. 2015;71:52–62.10.1016/j.yrtph.2014.11.005Search in Google Scholar PubMed

[21] Sushko I, Salmina E, Potemkin VA, Poda G, Tetko IV. ToxAlerts: a web server of structural alerts for toxic chemicals and compounds with potential adverse reactions. J Chem Inf Model. 2012;52:2310–16.10.1021/ci300245qSearch in Google Scholar PubMed

[22] Loizou G, Hogg A. MEGen: a physiologically based pharmacokinetic model generator. Front Pharmacol. 2011;2:56.10.3389/fphar.2011.00056Search in Google Scholar PubMed

[23] Bessems JG, Loizou G, Krishnan K, Clewell HJ, Bernasconi C, Bois F, et al. PBTK modelling platforms and parameter estimation tools to enable animal-free risk assessment. Regul Toxicol Pharmacol. 2014;68:119–39.10.1016/j.yrtph.2013.11.008Search in Google Scholar PubMed

[24] Gini G, Franchi AM, Manganaro A, Golbamaki A, Benfenati E. ToxRead: a tool to assist in read across and its use to assess mutagenicity of chemicals. SAR QSAR Environ Res. 2014;25:999–1011.10.1080/1062936X.2014.976267Search in Google Scholar PubMed

[25] Chaudhry Q, Piclin N, Cotterill J, Pintore M, Price NR, Chrétien JR, et al. Global QSAR models of skin sensitisers for regulatory purposes. Chem Cent J. 2010;4:S5.10.1186/1752-153X-4-S1-S5Search in Google Scholar PubMed

[26] Gramatica P, Cassani S, Chirico N. QSARINS-chem: insubria datasets and new QSAR/QSPR models for environmental pollutants in QSARINS. J Comput Chem. 2014;35:1036–44.10.1002/jcc.23576Search in Google Scholar PubMed

[27] Capuzzi SJ, Kim IS-J, Lam WI, Thornton TE, Muratov EN, Pozefsky D, et al. Chembench: a publicly accessible, integrated cheminformatics portal. J Chem Inf Model. 2017;57:105–8.10.1021/acs.jcim.6b00462Search in Google Scholar PubMed

[28] Ruusmann V, Sild S, Maran U. QSAR DataBank repository: open and linked qualitative and quantitative structure–activity relationship models. J Cheminform. 2015;7:32.10.1186/s13321-015-0082-6Search in Google Scholar PubMed

[29] LoPachin RM, Gavin T. Molecular mechanisms of aldehyde toxicity: a chemical perspective. Chem Res Toxicol. 2014;27:1081–91.10.1021/tx5001046Search in Google Scholar PubMed

[30] Mehta R, Schrader TJ. Carcinogenic substances in food: mechanisms. In: Caballero B, Finglas P, Toldra F, editor(s). Encyclopedia of food sciences and nutrition. USA: Academic Press, 2005:117.Search in Google Scholar

[31] Matsumoto M, Kano H, Suzuki M, Katagiri T, Umeda Y, Fukushima S. Carcinogenicity and chronic toxicity of hydrazine monohydrate in rats and mice by two-year drinking water treatment. Regul Toxicol Pharmacol. 2016;76:63–73.10.1016/j.yrtph.2016.01.006Search in Google Scholar PubMed

[32] Vale A, Lotti M. Organophosphorus and carbamate insecticide poisoning. In: Lotti M, Bleecker M, editor(s). Handbook of clinical neurology Vol. 131. Amsterdam: Elsevier, 2015:149–68.Search in Google Scholar PubMed

[33] Müller L, Mauthe RJ, Riley CM, Andino MM, De Antonis D, Beels C, et al. A rationale for determining, testing, and controlling specific impurities in pharmaceuticals that possess potential for genotoxicity. Regul Toxicol Pharmacol. 2006;44:198–211.10.1016/j.yrtph.2005.12.001Search in Google Scholar PubMed

[34] Kovacic P, Somanathan R. Nitroaromatic compounds: environmental toxicity, carcinogenicity, mutagenicity, therapy and mechanism. J Appl Toxicol. 2014;34:810–24.10.1002/jat.2980Search in Google Scholar PubMed

[35] Reddy AV, Jaafar J, Umar K, Majid ZA, Aris AB, Talib J, et al. Identification, control strategies, and analytical approaches for the determination of potential genotoxic impurities in pharmaceuticals: a comprehensive review. J Sep Sci. 2015;38:764–79.10.1002/jssc.201401143Search in Google Scholar PubMed

[36] Gehring R, Van Der Merwe D. Toxicokinetic-toxicodynamic modeling. In: Gupta R, editor. Biomarkers in toxicology. USA: Academic Press, 2014.Search in Google Scholar

[37] Raies AB, Bajic VB. In silico toxicology: computational methods for the prediction of chemical toxicity. Wiley Interdiscip Rev Comput Mol Sci. 2016;6:147–72.10.1002/wcms.1240Search in Google Scholar PubMed

[38] Ding B, Hua C, Kepert CJ, D’Alessandro DM. Influence of structure–activity relationships on through-space intervalence charge transfer in metal–organic frameworks with cofacial redox-active units. Chem Sci. 2019;10:1392–400.10.1039/C8SC01128ASearch in Google Scholar PubMed

[39] Romero-Estudillo I, Viveros-Ceballos JL, Cazares-Carreño O, González-Morales A, Flores de Jesus B, López-Castillo M, et al. Synthesis of new α-aminophosphonates: evaluation as anti-inflammatory agents and QSAR studies. Bioorg Med Chem. 2018;27:2376–86.10.1016/j.bmc.2018.12.041Search in Google Scholar PubMed

[40] Begam BF, Kumar JS. Computer assisted QSAR/QSPR approaches – a review. Indian J Sci Technol. 2016;9:8.10.17485/ijst/2016/v9i8/87901Search in Google Scholar

[41] Yousefinejad S, Hemmateenejad B. Chemometrics tools in QSAR/QSPR studies: a historical perspective. Chemom Intell Lab Syst. 2015;149:177–204.10.1016/j.chemolab.2015.06.016Search in Google Scholar

[42] Medina-Franco JL, Navarrete-Vázquez G, Méndez-Lucio O. Activity and property landscape modeling is at the interface of chemoinformatics and medicinal chemistry. Future Med Chem. 2015;7:1197–211.10.4155/fmc.15.51Search in Google Scholar PubMed

[43] Maggiora GM. On outliers and activity cliffs – why QSAR often disappoints. J Chem Inf Model. 2006;46:1535.10.1021/ci060117sSearch in Google Scholar PubMed

[44] Dimova D, Bajorath J. Advances in activity cliff research. Mol Inform. 2016;35:181–91.10.1002/minf.201600023Search in Google Scholar PubMed

[45] Szczepek M, Brondani V, Büchel J, Serrano L, Segal DJ, Cathomen T. Structure-based redesign of the dimerization interface reduces the toxicity of zinc-finger nucleases. Nat Biotechnol. 2007;25:786–93.10.1038/nbt1317Search in Google Scholar PubMed

[46] Allen CHG, Koutsoukas A, Cortés-Ciriano I, Murrell DS, Malliavin TE, Glen RC, et al. Improving the prediction of organism-level toxicity through integration of chemical, protein target and cytotoxicity qHTS data. Toxicol Res (Camb). 2016;5:883–94.10.1039/C5TX00406CSearch in Google Scholar PubMed

[47] Gleeson MP, Modi S, Bender A, Robinson RL, Kirchmair J, Promkatkaew M, et al. The challenges involved in modeling toxicity data in silico: a review. Curr Pharm Des. 2012;18:1266–91.10.2174/138161212799436359Search in Google Scholar PubMed

[48] Kalgutkar A, Didiuk M. Structural alerts, reactive metabolites, and protein covalent binding: how reliable are these attributes as predictors of drug toxicity? Chem Biodivers. 2009;6:2115–37.10.1002/cbdv.200900055Search in Google Scholar PubMed

[49] Lasser KE, Allen PD, Woolhandler SJ, Himmelstein DU, Wolfe SM, Bor DH. Timing of new black box warnings and withdrawals for prescription medications. J Am Med Assoc. 2002;287:2215–20.10.1001/jama.287.17.2215Search in Google Scholar

[50] Mayr A, Klambauer G, Unterthiner T, Hochreiter S. DeepTox: toxicity prediction using deep learning. Front Environ Sci. 2016;3:80.10.3389/fenvs.2015.00080Search in Google Scholar

[51] Glück J, Buhrke T, Frenzel F, Braeuning A, Lampen A. In silico genotoxicity and carcinogenicity prediction for food-relevant secondary plant metabolites. Food Chem Toxicol. 2018;116:298–306.10.1016/j.fct.2018.04.024Search in Google Scholar PubMed

[52] Arvidson KB, Valerio LG, Diaz M, Chanderbhan RF. In silico toxicological screening of natural products. Toxicol Mech Methods. 2008;18:229–32.10.1080/15376510701856991Search in Google Scholar PubMed

[53] Ruiz-Rodríguez MA, Vedani A, Flores-Mireles AL, Cháirez-Ramírez MH, Gallegos-Infante JA, González-Laredo RF. In silico prediction of the toxic potential of lupeol. Chem Res Toxicol. 2017;30:1562–71.10.1021/acs.chemrestox.7b00070Search in Google Scholar PubMed

[54] Valerio LG, Arvidson KB, Chanderbhan RF, Contrera JF. Prediction of rodent carcinogenic potential of naturally occurring chemicals in the human diet using high-throughput QSAR predictive modeling. Toxicol Appl Pharmacol. 2007;222:1–16.10.1016/j.taap.2007.03.012Search in Google Scholar PubMed

[55] Münzner R, Renner HW. Mutagenicity testing of quinine with submammalian and mammalian systems. Toxicol. 1983;26:173–8.10.1016/0300-483X(83)90068-9Search in Google Scholar

[56] Ramel C, Alekperov UK, Ames BN, Kada T, Wattenberg LW. Inhibitors of mutagenesis and their relevance to carcinogenesis: report by ICPEMC expert group on antimutagens and desmutagens. Mutat Res Genet Toxicol. 1986;39:511–7.Search in Google Scholar

[57] Van Went GF. Mutagenicity testing of 3 hallucinogens: LSD, psilocybin and 9-THC using the micronucleus test. Experientia. 1978;34:342–5.10.1007/BF01923013Search in Google Scholar

[58] Noriega-Colima K, Martinez-Mayorga K, Madariaga-Mazon A. DiaNat-DB: una base de datos de agentes antidiabéticos de origen natural: generación y análisis d elas propiedades fisicoquímicas y estructurales. Available at: 2018.Search in Google Scholar

[59] Onguéné A, Simoben C, Fotso G, Andrae-Marobela K, Khalid S, Ngadjiu B, et al. In silico toxicity profiling of natural product compound libraries from African flora with anti-malarial and anti-HIV properties. Comput Biol Chem. 2018;72:136–49.10.1016/j.compbiolchem.2017.12.002Search in Google Scholar PubMed

[60] Ntie-Kang A, Telukunta KK, Döring K, Simoben CV, Moumbock AFA, Malange YI, et al. NANPDB: a resource for natural products from Northern African sources. J Nat Prod. 2017;80:2067–76.10.1021/acs.jnatprod.7b00283Search in Google Scholar PubMed

Published Online: 2019-08-20

© 2019 Walter de Gruyter GmbH, Berlin/Boston