Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter October 31, 2019

Magneto-electric multiferroics: designing new materials from first-principles calculations

Julien Varignon EMAIL logo , Nicholas C. Bristowe , Eric Bousquet and Philippe Ghosez
From the journal Physical Sciences Reviews

Abstract

In parallel with the revival of interest for magneto-electric multiferroic materials in the beginning of the century, first-principles simulations have grown incredibly in efficiency during the last two decades. Density functional theory calculations, in particular, have so become a must-have tool for physicists and chemists in the multiferroic community. While these calculations were originally used to support and explain experimental behaviour, their interest has progressively moved to the design of novel magneto-electric multiferroic materials. In this article, we mainly focus on oxide perovskites, an important class of multifunctional material, and review some significant advances to which contributed first-principles calculations. We also briefly introduce the various theoretical developments that were at the core of all these advances.

Acknowledgements

Ph.G acknowledges support from the F.R.S.-FNRS PDR project HiT4FiT, the ARC project AIMED and the ERA.NET project SIOX.

References

[1] Curie P. Sur la symétrie dans les phénomènes physiques, symétrie d'un champ électrique et d'un champ magnétique. J Phys. 1894;3:393.10.1051/jphystap:018940030039300Search in Google Scholar

[2] Landau LD, Lifshitz EM. Electrodynamics of continuous media, 2nd ed. London: Pergamon Press, 1958.Search in Google Scholar

[3] Fiebig M. Revival of the magnetoelectric effect. J Phys D Appl Phys. 2005;38:R123.10.1088/0022-3727/38/8/R01Search in Google Scholar

[4] Bibes M, Barthélémy A. Multiferroics: towards a magnetoelectric memory. Nat Mater. 2008;7:425.10.1038/nmat2189Search in Google Scholar

[5] Kimura T, Goto T, Shintani H, Ishizaka K, Arima T, Tokura Y. Magnetic control of ferroelectric polarization. Nature. 2003;426:55.10.1038/nature02018Search in Google Scholar

[6] Hur N, Park S, Sharma PA, Ahn JS, Guha S, Cheong SW. Electric polarization reversal and memory in a multiferroic material induced by magnetic fields. Nature. 2004;429:392.10.1038/nature02572Search in Google Scholar

[7] Goto T, Kimura T, Lawes G, Ramirez AP, Tokura Y. Ferroelectricity and giant magnetocapacitance in perovskite rare-earth manganites. Phys Rev Lett. 2004;92:257201.10.1103/PhysRevLett.92.257201Search in Google Scholar

[8] Brown WF, Hornreich RM, Shtrikman S. Upper bound on the magnetoelectric susceptibility. Phys Rev. 1968;168:574.10.1103/PhysRev.168.574Search in Google Scholar

[9] Cohen RE. Origin of ferroelectricity in perovskite oxides. Nature. 1992;358:136.10.1038/358136a0Search in Google Scholar

[10] Vanderbilt D. First-principles based modelling of ferroelectrics. Curr Opin Solid State Mater Sci. 1997;2:701.10.1016/S1359-0286(97)80013-7Search in Google Scholar

[11] Junquera J, Ghosez P. Critical thickness for ferroelectricity in perovskite ultrathin films. Nature. 2003;422:506.10.1038/nature01501Search in Google Scholar PubMed

[12] Junquera J, Ghosez P. First-Principles study of ferroelectric oxide epitaxial thin films and superlattices: role of the mechanical and electrical boundary conditions. J Comput Theor Nanosci. 2008;5:2071.10.1166/jctn.2008.1101Search in Google Scholar

[13] Dawber M, Rabe KM, Scott JF. Physics of thin-film ferroelectric oxides. Rev Mod Phys. 2005;77:1083.10.1103/RevModPhys.77.1083Search in Google Scholar

[14] Seshadri R, Hill NA. Visualizing the role of Bi 6s “lone pairs” in the off-center distortion in ferromagnetic BiMnO3. Chem Mater. 2001;13:2892.10.1021/cm010090mSearch in Google Scholar

[15] Krohns S, Lunkenheimer P. Ferroelectric polarization in multiferroics. Phys Sci Rev. 2019.10.1515/9783110582130-006Search in Google Scholar

[16] Van Aken BB, Palstra TT, Filippetti A, Spaldin NA. The origin of ferroelectricity in magnetoelectric YMnO3. Nat Mater. 2004;3:164.10.1038/nmat1080Search in Google Scholar PubMed

[17] Fennie CJ, Rabe KM. Ferroelectric transition in YMnO3 from first principles. Phys Rev B. 2005;72:100103.10.1103/PhysRevB.72.100103Search in Google Scholar

[18] Malashevich A, Vanderbilt D. First-principles theory of magnetically induced ferroelectricity in TbMnO3. Eur Phys J B. 2009;71:345.10.1140/epjb/e2009-00208-2Search in Google Scholar

[19] Goldschmidt VM. Die gesetze der krystallochemie. Naturwissenschaften. 1926;14:477.10.1007/BF01507527Search in Google Scholar

[20] Hill NA. Why are there so few magnetic ferroelectrics? J Phys Chem B. 2000;104:6694.10.1021/jp000114xSearch in Google Scholar

[21] Baettig P, Spaldin NA. Ab initio prediction of a multiferroic with large polarization and magnetization. Appl Phys Lett. 2005;86:12505.10.1063/1.1843290Search in Google Scholar

[22] Nechache R, Harnagea C, Carignan L-P, Gautreau O, Pintilie L, Singh MP, et al. Epitaxial thin films of the multiferroic double perovskite Bi2FeCrO6 grown on (100)-oriented SrTiO3 substrates: Growth, characterization, and optimization. J Appl Phys. 2009;105:061621.10.1063/1.3073826Search in Google Scholar

[23] Nechache R, Harnagea C, Pignolet A, Normandin F, Veres T, Carignan L-P, et al. Growth, structure, and properties of epitaxial thin films of first-principles predicted multiferroic Bi2FeCrO6. Appl Phys Lett. 2006;89:10290210.1063/1.2346258Search in Google Scholar

[24] Bhattacharjee S, Bousquet E, Ghosez P. Engineering multiferroism in CaMnO3. Phys Rev Lett. 2009;102:117602.10.1103/PhysRevLett.102.117602Search in Google Scholar PubMed

[25] Hohenberg P, Kohn W. Inhomogeneous electron gas. Phys Rev. 1964;136:B864.10.1103/PhysRev.136.B864Search in Google Scholar

[26] Kohn W, Sham LJ. Self-Consistent equations including exchange and correlation effects. Phys Rev. 1965;140:A1133.10.1103/PhysRev.140.A1133Search in Google Scholar

[27] Martin RM. Electronic structure: basic theory and practical methods. Cambridge: Cambridge university press, 2004.10.1017/CBO9780511805769Search in Google Scholar

[28] King-Smith RD, Vanderbilt D. Theory of polarization of crystalline solids. Phys Rev B. 1993;47:1651.10.1103/PhysRevB.47.1651Search in Google Scholar PubMed

[29] Vanderbilt D, King-Smith RD. Electric polarization as a bulk quantity and its relation to surface charge. Phys Rev B. 1993;48:4442.10.1103/PhysRevB.48.4442Search in Google Scholar PubMed

[30] Resta R. Macroscopic polarization in crystalline dielectrics: the geometric phase approach. Rev Mod Phys. 1994;66:899.10.1103/RevModPhys.66.899Search in Google Scholar

[31] Resta R. Theory of the electric polarization in crystals. Ferroelectrics. 1992;136:51.10.1080/00150199208016065Search in Google Scholar

[32] Veithen M, Gonze X, Ghosez P. Nonlinear optical susceptibilities, Raman efficiencies, and electro-optic tensors from first-principles density functional perturbation theory. Phys Rev B. 2005;71:125107.10.1103/PhysRevB.71.125107Search in Google Scholar

[33] Sai N, Rabe KM, Vanderbilt D. Theory of structural response to macroscopic electric fields in ferroelectric systems. Phys Rev B. 2002;66:104108.10.1103/PhysRevB.66.104108Search in Google Scholar

[34] Souza I, Íñiguez J, Vanderbilt D. First-principles approach to insulators in finite electric fields. Phys Rev Lett. 2002;89:117602.10.1103/PhysRevLett.89.117602Search in Google Scholar PubMed

[35] Stengel M, Spaldin NA, Vanderbilt D. Electric displacement as the fundamental variable in electronic-structure calculations. Nat Phys. 2009;5:304.10.1038/nphys1185Search in Google Scholar

[36] Thonhauser T, Ceresoli D, Vanderbilt D, Resta R. Orbital magnetization in periodic insulators. Phys Rev Lett. 2005;95:137205.10.1103/PhysRevLett.95.137205Search in Google Scholar PubMed

[37] Xiao D, Shi J, Niu Q. Berry phase correction to electron density of states in solids. Phys Rev Lett. 2005;95:137204.10.1103/PhysRevLett.95.137204Search in Google Scholar PubMed

[38] Resta R. Electrical polarization and orbital magnetization: the modern theories. J Phys Condens Matter. 2010;22:123201.10.1088/0953-8984/22/12/123201Search in Google Scholar PubMed

[39] Malashevich A, Souza I, Coh S, Vanderbilt D. Theory of orbital magnetoelectric response. New J Phys. 2010;12:53032.10.1088/1367-2630/12/5/053032Search in Google Scholar

[40] Ceresoli D, Gerstmann U, Seitsonen AP, Mauri F. First-principles theory of orbital magnetization. Phys Rev B. 2010;81:60409.10.1103/PhysRevB.81.060409Search in Google Scholar

[41] Anisimov VI, Zaanen J, Andersen OK. Band theory and Mott insulators: Hubbard U instead of Stoner I. Phys Rev B. 1991;44:943.10.1103/PhysRevB.44.943Search in Google Scholar

[42] Cococcioni M, De Gironcoli S. Linear response approach to the calculation of the effective interaction parameters in the LDA+U method. Phys Rev B. 2005;71:035105.10.1103/PhysRevB.71.035105Search in Google Scholar

[43] Morée JB, Amadon B. First-principles calculation of Coulomb interaction parameters for lanthanides: role of self-consistence and screening processes. Phys Rev B. 2018;98:205101.10.1103/PhysRevB.98.205101Search in Google Scholar

[44] Kornev IA, Lisenkov S, Haumont R, Dkhil B, Bellaiche L. Finite-temperature properties of multiferroic BiFeO3. Phys Rev Lett. 2007;99:227602.10.1103/PhysRevLett.99.227602Search in Google Scholar PubMed

[45] Zaanen J, Liechtenstein AI, Anisimov VI. Density-functional theory and strong interactions: Orbital ordering in Mott-Hubbard insulators. Phys Rev B. 1995;52:5467.10.1103/PhysRevB.52.R5467Search in Google Scholar

[46] Dudarev SL, Botton GA, Savrasov SY, Humphreys CJ, Sutton AP. Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study. Phys Rev B. 1998;57:1505.10.1103/PhysRevB.57.1505Search in Google Scholar

[47] Mellan TA, Cora F, Grau-Crespo R, Ismail-Beigi S. Importance of anisotropic Coulomb interaction in LaMnO3. Phys Rev B. 2015;92:085151.10.1103/PhysRevB.92.085151Search in Google Scholar

[48] Bousquet E, Spaldin N. J dependence in the LSDA+U treatment of noncollinear magnets. Phys Rev B. 2010;82:220402.R.10.1103/PhysRevB.82.220402Search in Google Scholar

[49] Lee C, Yang W, Parr RG. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B. 1988;37:785.10.1103/PhysRevB.37.785Search in Google Scholar

[50] Heyd J, Scuseria GE, Ernzerhof M. Hybrid functionals based on a screened Coulomb potential. J Chem Phys. 2003;118:8207.10.1063/1.1564060Search in Google Scholar

[51] Bilc DI, Orlando R, Shaltaf R, Rignanese GM, Iniguez J, Ghosez P. Hybrid exchange-correlation functional for accurate prediction of the electronic and structural properties of ferroelectric oxides. Phys Rev B. 2008;77:165107.10.1103/PhysRevB.77.165107Search in Google Scholar

[52] Stroppa A, Picozzi S. Hybrid functional study of proper and improper multiferroics. Phys Chem Chem Phys. 2010;12:5405.10.1039/b927508hSearch in Google Scholar PubMed

[53] Stroppa A, Marsman M, Kresse G, Picozzi S. The multiferroic phase of DyFeO3: an ab initio study. New J Phys. 2010;12:093026.10.1088/1367-2630/12/9/093026Search in Google Scholar

[54] Hong J, Stroppa A, Iñiguez J, Picozzi S, Vanderbilt D, Iñiguez JJ, et al. Spin-phonon coupling effects in transition-metal perovskites: A DFT+U and hybrid-functional study. Phys Rev B. 2012;85:054417.10.1103/PhysRevB.85.054417Search in Google Scholar

[55] Prikockyte A, Bilc D, Hermet P, Dubourdieu C, Ghosez P. First-principles calculations of the structural and dynamical properties of ferroelectric YMnO3. Phys Rev B. 2011;84:214301.10.1103/PhysRevB.84.214301Search in Google Scholar

[56] Varignon J, Ghosez P. Improper ferroelectricity and multiferroism in 2H-BaMnO3. Phys Rev B. 2013;87:140403.10.1103/PhysRevB.87.140403Search in Google Scholar

[57] Varignon J, Fontaine D, Bousquet E, Bristowe NC, Ghosez P. Ferromagnetism induced by entangled charge and orbital orderings in ferroelectric titanate perovskites. Nat Commun. 2015;6:1.Search in Google Scholar

[58] Sun J, Ruzsinszky A, Perdew J. Strongly constrained and appropriately normed semilocal density functional. Phys Rev Lett. 2015;115:036402.10.1103/PhysRevLett.115.036402Search in Google Scholar PubMed

[59] Varignon Julien, Bibes Manuel, Zunger Alex. Mott gapping in 3dABO3 perovskites without Mott-Hubbard interelectronic repulsion energy U. Physical Review B. 2019;100:035119.10.1103/PhysRevB.100.035119Search in Google Scholar

[60] Furness JW, Zhang Y, Lane C, Buda IG, Barbiellini B, Markiewicz RS, et al. An accurate first-principles treatment of doping-dependent electronic structure of high-temperature cuprate superconductors. Commun Phys. 2018;1:11.10.1038/s42005-018-0009-4Search in Google Scholar

[61] Varignon J, Bibes M, Zunger A. Origin of band gaps in 3d perovskite oxides. Nat Commun. 2019;10:1658.10.1038/s41467-019-09698-6Search in Google Scholar PubMed PubMed Central

[62] Filippetti A, Spaldin NA. Self-interaction-corrected pseudopotential scheme for magnetic and strongly-correlated systems. Phys Rev B. 2003;67:125109.10.1103/PhysRevB.67.125109Search in Google Scholar

[63] Gellé A, Varignon J, Lepetit M-B. Accurate evaluation of magnetic coupling between atoms with numerous open shells: An ab initio method. EPL (Europhysics Lett). 2009;88:37003.10.1209/0295-5075/88/37003Search in Google Scholar

[64] Lepetit MB. How to compute the magneto-electric tensor from ab-initio calculations? Theor Chem Acc. 2016;135:91.10.1007/s00214-016-1844-6Search in Google Scholar

[65] Varignon J, Petit S, Gellé A, Lepetit MB. An ab initio study of magneto-electric coupling of YMnO3. J Phys Condens Matter. 2013;25:496004.10.1088/0953-8984/25/49/496004Search in Google Scholar PubMed

[66] Bousquet E, Spaldin NA, Delaney KT. Unexpectedly large electronic contribution to linear magnetoelectricity. Phys Rev Lett. 2011;106:107202.10.1103/PhysRevLett.106.107202Search in Google Scholar PubMed

[67] Iñiguez J. First-principles approach to lattice-mediated magnetoelectric effects. Phys Rev Lett. 2008;101:117201.10.1103/PhysRevLett.101.117201Search in Google Scholar PubMed

[68] Wojdeł JC, Íñiguez J. Magnetoelectric response of multiferroic BiFeO3 and related materials from first-principles calculations. Phys Rev Lett. 2009;103:267205.10.1103/PhysRevLett.103.267205Search in Google Scholar PubMed

[69] Malashevich A, Coh S, Souza I, Vanderbilt D. Full magnetoelectric response of Cr2O3 from first principles. Phys Rev B. 2012;86:094430.10.1103/PhysRevB.86.094430Search in Google Scholar

[70] Scaramucci A, Bousquet E, Fechner M, Mostovoy M, Spaldin NA. Linear magnetoelectric effect by orbital magnetism. Phys Rev Lett. 2012;109:197203.10.1103/PhysRevLett.109.197203Search in Google Scholar PubMed

[71] Ricci F, Bousquet E. Unveiling the room-temperature magnetoelectricity of troilite FeS. Phys Rev Lett. 2016;116:227601.10.1103/PhysRevLett.116.227601Search in Google Scholar PubMed

[72] Spaldin NA, Fechner M, Bousquet E, Balatsky A, Nordstr L. Monopole-based formalism for the diagonal magnetoelectric response. Phys Rev B. 2013;88:094429.10.1103/PhysRevB.88.094429Search in Google Scholar

[73] Thöle F, Fechner M, Spaldin NA. First-principles calculation of the bulk magnetoelectric monopole density: Berry phase and Wannier function approaches. Phys Rev B. 2016;93:195167.10.1103/PhysRevB.93.195167Search in Google Scholar

[74] Tillack N, Yates JR, Radaelli PG. Ab initio cycloidal and chiral magnetoelectric responses in Cr2O3. Phys Rev B. 2016;94:100405.R.10.1103/PhysRevB.94.100405Search in Google Scholar

[75] Ackermann M, Bohat L, Becker P, Lorenz T, Leo N, Fiebig M. Primary ferrotoroidicity in antiferromagnets. Phys Rev B. 2015;92:094431.10.1103/PhysRevB.92.094431Search in Google Scholar

[76] Spaldin NA, Fiebig M, Mostovoy M. The toroidal moment in condensed-matter physics and its relation to the magnetoelectric effect. J Phys Condens Matter. 2008;20:434203.10.1088/0953-8984/20/43/434203Search in Google Scholar

[77] Gao Y, Vanderbilt D, Xiao D. Microscopic theory of spin toroidization in periodic crystals. Phys Rev B. 2018;97:134423.10.1103/PhysRevB.97.134423Search in Google Scholar

[78] Mostovoy M, Scaramucci A, Spaldin NA, Delaney KT. Temperature-dependent magnetoelectric effect from first principles. Phys Rev Lett. 2010;105:087202.10.1103/PhysRevLett.105.087202Search in Google Scholar PubMed

[79] Prosandeev S, Kornev IA, Bellaiche L. Magnetoelectricity in BiFeO3 films: first-principles-based computations and phenomenology. Phys Rev B. 2011;83:020102.R.10.1103/PhysRevB.83.020102Search in Google Scholar

[80] Rahmedov D, Wang D, Añiguez J, Bellaiche L. Magnetic cycloid of BiFeO3 from atomistic simulations. Phys Rev Lett. 2012;109:037207.10.1103/PhysRevLett.109.037207Search in Google Scholar PubMed

[81] Zhong W, Rabe K, Vanderbilt D. Phase transitions in BaTiO3 from first principles. Phys Rev Lett. 1994;73:1861.10.1103/PhysRevLett.73.1861Search in Google Scholar PubMed

[82] Zhong W, Rabe M, Vanderbilt D. First-principles theory of ferroelectric phase transitions for perovskites: The case of BaTiO3. Phys Rev B. 1995;52:6301.10.1103/PhysRevB.52.6301Search in Google Scholar PubMed

[83] Wojdeł JC, Hermet P, Ljungberg MP, Ghosez P, Íñiguez J. First-principles model potentials for lattice-dynamical studies: general methodology and example of application to ferroic perovskite oxides. J Phys Condens Matter. 2013;25:305401.10.1088/0953-8984/25/30/305401Search in Google Scholar PubMed

[84] García-Fernández P, Wojdel JC, Iniguez J, Junquera J. Second-principles method for materials simulations including electron and lattice degrees of freedom. Phys Rev B. 2016;93:195137.10.1103/PhysRevB.93.195137Search in Google Scholar

[85] Haeni JH, Irvin P, Chang W, Uecker R, Reiche P, Li YL, et al. Room-temperature ferroelectricity in strained SrTiO3. Nature. 2004;430:758.10.1038/nature02773Search in Google Scholar PubMed

[86] Ghosez P, Triscone JM. Multiferroics: Coupling of three lattice instabilities. Nat Mater. 2011;10:269.10.1038/nmat3003Search in Google Scholar PubMed

[87] Rabe KM, Ahn CH, Triscone J-M. Physics of ferroelectrics, 2007.Search in Google Scholar

[88] Glazer AM. The classification of tilted octahedra in perovskites. Acta crystallogr sect B struct crystallogr cryst chem. 1972;28:3384.10.1107/S0567740872007976Search in Google Scholar

[89] Bousquet E, Spaldin N. Induced magnetoelectric response in pnma perovskites. Phys Rev Lett. 2011;107:197603.10.1103/PhysRevLett.107.197603Search in Google Scholar PubMed

[90] Günter T, Bousquet E, David A, Boullay P, Ghosez P, Prellier W, et al. Incipient ferroelectricity in 2.3% tensile-strained CaMnO3 films. Phys Rev B. 2012;85:214120.10.1103/PhysRevB.85.214120Search in Google Scholar

[91] Bousquet E, Cano A. Non-collinear magnetism in multiferroic perovskites. J Phys Condens Matter. 2016;28:123001.10.1088/0953-8984/28/12/123001Search in Google Scholar PubMed

[92] Bellaiche L, Gui Z, Kornev IA. A simple law governing coupled magnetic orders in perovskites. J Phys Condens Matter. 2012;24:312201.10.1088/0953-8984/24/31/312201Search in Google Scholar PubMed

[93] Senn MS, Bristowe NC. A group-theoretical approach to enumerating magnetoelectric and multiferroic couplings in perovskites. Acta Crystallogr Sect A Found Adv. 2018;74:308.10.1107/S2053273318007441Search in Google Scholar PubMed PubMed Central

[94] Béa H, Dupé B, Fusil S, Mattana R, Jacquet E, Warot-Fonrose B, et al. Evidence for room-temperature multiferroicity in a compound with a giant axial ratio. Phys Rev Lett. 2009;102:217603.10.1103/PhysRevLett.102.217603Search in Google Scholar PubMed

[95] Diéguez O, González-Vázquez OE, Wojdeł JC, Íñiguez J. First-principles predictions of low-energy phases of multiferroic BiFeO3. Phys Rev B. 2011;83:094105.10.1103/PhysRevB.83.094105Search in Google Scholar

[96] Yang Y, Ren W, Stengel M, Yan XH, Bellaiche L. Revisiting properties of ferroelectric and multiferroic thin films under tensile strain from first principles. Phys Rev Lett. 2012;109:057602.10.1103/PhysRevLett.109.057602Search in Google Scholar PubMed

[97] Yang Y, Íñiguez J, Mao AJ, Bellaiche L. Prediction of a novel magnetoelectric switching mechanism in multiferroics. Phys Rev Lett. 2014;112:057202.10.1103/PhysRevLett.112.057202Search in Google Scholar PubMed

[98] Varignon J, Bristowe NC, Ghosez P. Electric field control of Jahn-Teller distortions in bulk perovskites. phys Rev Lett. 2016;116:057602.10.1103/PhysRevLett.116.057602Search in Google Scholar PubMed

[99] Song G, Zhang W. First-principles study on the phase diagram and multiferroic properties of (SrCoO3)1/(SrTiO3)1 superlattices. Sci Rep. 2014;4:04564.10.1038/srep04564Search in Google Scholar PubMed PubMed Central

[100] Aguado-Puente P, García-Fernández P, Junquera J. Interplay of couplings between antiferrodistortive, ferroelectric, and strain degrees of freedom in monodomain PbTiO3/SrTiO3 superlattices. Phys Rev Lett. 2011;107:217601.10.1103/PhysRevLett.107.217601Search in Google Scholar PubMed

[101] Bousquet E, Spaldin NA, Ghosez P. Strain-Induced ferroelectricity in simple rocksalt binary oxides. Phys Rev Lett. 2010;104:037601.10.1103/PhysRevLett.104.037601Search in Google Scholar PubMed

[102] Garcia-Castro AC, Spaldin NA, Romero AH, Bousquet E. Geometric ferroelectricity in fluoroperovskites. Phys Rev B. 2014;89:104107.10.1103/PhysRevB.89.104107Search in Google Scholar

[103] Garcia-Castro AC, Romero AH, Bousquet E. Strain-engineered multiferroicity in pnma NaMnF3fluoroperovskite. Phys Rev Lett. 2016;116:117202.10.1103/PhysRevLett.116.117202Search in Google Scholar PubMed

[104] Aschauer U, Pfenninger R, Selbach SM, Grande T, Spaldin NA. Strain-controlled oxygen vacancy formation and ordering in CaMnO3. Phys Rev B. 2013;88:054111.10.1103/PhysRevB.88.054111Search in Google Scholar

[105] Chandrasena RU, Yang W, Lei Q, Delgado-Jaime MU, Wijesekara KD, Golalikhani M, et al. Strain-engineered oxygen vacancies in CaMnO3 thin films. Nano Lett. 2017;17:794.10.1021/acs.nanolett.6b03986Search in Google Scholar PubMed

[106] Copie O, Varignon J, Rotella H, Steciuk G, Boullay P, Pautrat A, et al. Chemical strain engineering of magnetism in oxide thin films. Adv Mater. 2017;29:1604112.10.1002/adma.201604112Search in Google Scholar PubMed

[107] Kalinin SV, Spaldin NA. Functional ion defects in transition. Science. 2014;341:85810.1126/science.1243098Search in Google Scholar PubMed

[108] Xu T, Shimada T, Araki Y, Wang J, Kitamura T. Defect-strain engineering for multiferroic and magnetoelectric properties in epitaxial (110) ferroelectric lead titanate. Phys Rev B. 2015;92:104106.10.1103/PhysRevB.92.104106Search in Google Scholar

[109] Wojdeł JC, Íñiguez J. Ab initio indications for giant magnetoelectric effects driven by structural softness. Phys Rev Lett. 2010;105:037208.10.1103/PhysRevLett.105.037208Search in Google Scholar PubMed

[110] Baltensperger W. Influence of magnetic order on conduction electrons and phonons in magnetic semiconductors. J Appl Phys. 1970;41:1052.10.1063/1.1658810Search in Google Scholar

[111] Sabiryanov RF, Jaswal SS. Magnons and magnon-phonon interactions in iron. Phys Rev Lett. 1999;83:2062.10.1103/PhysRevLett.83.2062Search in Google Scholar

[112] Fennie CJ, Rabe KM. Magnetic and electric phase control in epitaxial EuTiO3 from first principles. Phys Rev Lett. 2006;97:267602.10.1103/PhysRevLett.97.267602Search in Google Scholar PubMed

[113] Lee JH, Fang L, Vlahos E, Ke X, Jung YW, Kourkoutis LF, et al. A strong ferroelectric ferromagnet created by means of spin-lattice coupling. Nature. 2010;466:954.10.1038/nature09331Search in Google Scholar PubMed

[114] Lee JH, Rabe KM. Epitaxial-strain-induced multiferroicity in SrMnO3 from first principles. Phys Rev Lett. 2010;104:207204.10.1103/PhysRevLett.104.207204Search in Google Scholar PubMed

[115] Srinu Bhadram V, Rajeswaran B, Sundaresan A, Narayana C. Spin-phonon coupling in multiferroic RCrO3 (R-Y, Lu, Gd, Eu, Sm): A Raman study. Eur Phys Lett. 2013;101:17008.10.1209/0295-5075/101/17008Search in Google Scholar

[116] Petit S, Moussa F, Hennion M, Pailhès S, Pinsard-Gaudart L, Ivanov A. Spin phonon coupling in hexagonal multiferroic YMnO3. Phys Rev Lett. 2007;99:266604.10.1103/PhysRevLett.99.266604Search in Google Scholar PubMed

[117] Gupta MK, Mittal R, Zbiri M, Sharma N, Rols S, Schober H, et al. Spin-phonon coupling and high-temperature phase transition in multiferroic material YMnO3. J Mater Chem C. 2015;3:11717.10.1039/C5TC02096DSearch in Google Scholar

[118] Schleck R, Nahas Y, Lobo RP, Varignon J, Lepetit MB, Nelson CS, et al. Elastic and magnetic effects on the infrared phonon spectra of MnF2. Phys Rev B. 2010;82:054412.10.1103/PhysRevB.82.054412Search in Google Scholar

[119] Benedek NA, Fennie CJ. Why are there so few perovskite ferroelectrics? J Phys Chem C. 2013;117:13339.10.1021/jp402046tSearch in Google Scholar

[120] Kim TH, Puggioni D, Yuan Y, Xie L, Zhou H, Campbell N, et al. Polar metals by geometric design. Nature. 2016;533:68.10.1038/nature17628Search in Google Scholar PubMed

[121] Levanyuk AP, Sannikov DG. Improper ferroelectrics. Sov Phys Uspekhi. 1974;17:199.10.1070/PU1974v017n02ABEH004336Search in Google Scholar

[122] Sai N, Fennie CJ, Demkov AA. Absence of critical thickness in an ultrathin improper ferroelectric film. Phys Rev Lett. 2009;102:107601.10.1103/PhysRevLett.102.107601Search in Google Scholar PubMed

[123] Stengel M, Fennie CJ, Ghosez P. Spin-lattice coupling and phonon dispersion of CdCr2O4from first principles. Phys Rev B. 2012;86:094112.R.10.1103/PhysRevB.86.094112Search in Google Scholar

[124] Kamba S, Nuzhnyy D, Savinov M, Tolédano P, Laguta V, Brázda P, et al. Unusual ferroelectric and magnetic phases in multiferroic 2H-BaMnO3 ceramics. Phys Rev B. 2017;95:174103.10.1103/PhysRevB.95.174103Search in Google Scholar

[125] Xu K, Lu XZ, Xiang H. Designing new ferroelectrics with a general strategy. Npj Quantum Mater. 2017;2:1.10.1038/s41535-016-0001-8Search in Google Scholar

[126] Young J, Rondinelli JM. Improper ferroelectricity and piezoelectric responses in rhombohedral (A,A′)B2O6 perovskite oxides. Phys Rev B. 2014;89:174110.10.1103/PhysRevB.89.174110Search in Google Scholar

[127] Rondinelli JM, Fennie CJ. Octahedral rotation-induced ferroelectricity in cation ordered perovskites. Adv Mater. 2012;24:1961.10.1002/adma.201104674Search in Google Scholar PubMed

[128] Bousquet E, Dawber M, Stucki N, Lichtensteiger C, Hermet P, Gariglio S, et al. Improper ferroelectricity in perovskite oxide artificial superlattices. Nature. 2008;452:732.10.1038/nature06817Search in Google Scholar PubMed

[129] Benedek NA, Fennie CJ. Hybrid improper ferroelectricity: A mechanism for controllable polarization-magnetization coupling. Phys Rev Lett. 2011;106:107204.10.1103/PhysRevLett.106.107204Search in Google Scholar PubMed

[130] Zhang H, Weng Y, Yao X, Dong S. Charge transfer and hybrid ferroelectricity in (YFeO3)n/(YTiO3)n magnetic superlattices. Phys Rev B. 2015;91:19514510.1103/PhysRevB.91.195145Search in Google Scholar

[131] Zhou Q, Rabe KM. Strain-Induced hybrid improper ferroelectricity in simple perovskites from first principles. ArXiv Prepr. ArXiv1306.1839 2013.Search in Google Scholar

[132] Stroppa A, Barone P, Jain P, Perez-Mato JM, Picozzi S. Hybrid improper ferroelectricity in a multiferroic and magnetoelectric metal-organic framework. Adv Mater. 2013;25:2284.10.1002/adma.201204738Search in Google Scholar PubMed

[133] Stroppa A, Jain P, Barone P, Marsman M, Perez-Mato JM, Cheetham AK, et al. Electric control of magnetization and interplay between orbital ordering and ferroelectricity in a multiferroic metal-organic framework. Angew Chemie - Int Ed. 2011;50:5847.10.1002/anie.201101405Search in Google Scholar PubMed

[134] Young J, Stroppa A, Picozzi S, Rondinelli JM. Tuning the ferroelectric polarization in AA′MnWO6 double perovskites through A cation substitution. Dalt Trans. 2015;44:10644.10.1039/C4DT03521FSearch in Google Scholar

[135] Zhao HJ, Ren W, Yang Y, Íñiguez J, Chen XM, Bellaiche L. Near room-temperature multiferroic materials with tunable ferromagnetic and electrical properties. Nat Commun. 2014;5:4021.10.1038/ncomms5021Search in Google Scholar PubMed

[136] Varignon J, Bristowe NC, Bousquet E, Ghosez P. Coupling and electrical control of structural, orbital and magnetic orders in perovskites. Sci Rep. 2015;5:15364.10.1038/srep15364Search in Google Scholar PubMed PubMed Central

[137] Cammarata A, Rondinelli JM. Ferroelectricity from coupled cooperative Jahn-Teller distortions and octahedral rotations in ordered Ruddlesden-Popper manganates. Phys Rev B. 2015;92:014102.10.1103/PhysRevB.92.014102Search in Google Scholar

[138] Xu C, Li Y, Xu B, Íñiguez J, Duan W, Bellaiche L. Pressure‐Induced multiferroics via pseudo Jahn–Teller effects and novel couplings. Adv Funct Mater. 2017;27:1604513.10.1002/adfm.201604513Search in Google Scholar

[139] Tian Y, Stroppa A, Chai YS, Barone P, Perez-Mato M, Picozzi S, et al. High‐temperature ferroelectricity and strong magnetoelectric effects in a hybrid organic–inorganic perovskite framework. Phys Status Solidi - Rapid Res Lett. 2015;9:62.10.1002/pssr.201409470Search in Google Scholar

[140] Liu XQ, Wu JW, Shi XX, Zhao HJ, Zhou HY, Qiu RH, et al. Hybrid improper ferroelectricity in Ruddlesden-Popper Ca3(Ti,Mn)2O7 ceramics. Appl Phys Lett. 2015;106:202903.10.1063/1.4921624Search in Google Scholar

[141] Senn MS, Bombardi A, Murray CA, Vecchini C, Scherillo A, Luo X, et al. Negative thermal expansion in hybrid improper ferroelectric Ruddlesden-Popper perovskites by symmetry trapping. Phys Rev Lett. 2015;114:035701.10.1103/PhysRevLett.114.035701Search in Google Scholar PubMed

[142] Sim H, Kim BG. Octahedral tilting and ferroelectricity in RbANb2O7 (A = Bi, Nd) from first principles. Phys Rev B. 2014;89:144114.10.1103/PhysRevB.89.144114Search in Google Scholar

[143] Benedek NA. Origin of ferroelectricity in a family of polar oxides: the Dion-Jacobson phases. Inorg Chem. 2014;53:3769.10.1021/ic500106aSearch in Google Scholar PubMed

[144] Dixon C, McNulty J, Knight K, Gibbs A, Lightfoot P. Phase transition behavior of the layered perovskite CsBi0.6La0.4Nb2O7: a hybrid improper ferroelectric. Crystals. 2017;7:135.10.3390/cryst7050135Search in Google Scholar

[145] Benedek NA, Rondinelli JM, Djani H, Ghosez P, Lightfoot P. Understanding ferroelectricity in layered perovskites: new ideas and insights from theory and experiments. Dalt Trans. 2015;44:10543.10.1039/C5DT00010FSearch in Google Scholar PubMed

[146] Oh YS, Luo X, Huang FT, Wang Y, Cheong SW. Experimental demonstration of hybrid improper ferroelectricity and the presence of abundant charged walls in (Ca,Sr)3Ti2O7 crystals. Nat Mater. 2015;14:407.10.1038/nmat4168Search in Google Scholar PubMed

[147] Pitcher MJ, Mandal P, Dyer MS, Alaria J, Borisov P, Niu H, et al. Tilt engineering of spontaneous polarization and magnetization above 300 K in a bulk layered perovskite. Science. 2015;347:420.10.1126/science.1262118Search in Google Scholar PubMed

[148] Etxebarria I, Perez-Mato JM, Boullay P. The role of trilinear couplings in the phase transitions of aurivillius compounds. Ferroelectrics. 2010;401:17.10.1080/00150191003670325Search in Google Scholar

[149] Ye F, Wang J, Sheng J, Hoffmann C, Gu T, Xiang HJ, et al. Soft antiphase tilt of oxygen octahedra in the hybrid improper multiferroic Ca3Mn1.9Ti0.1O7. Phys Rev B. 2018;97:041112.10.1103/PhysRevB.97.041112Search in Google Scholar

[150] Zhang J, Lin L, Zhang Y, Wu M, Yakobson BI, Dong S. Type-II multiferroic Hf2VC2F2 MXene monolayer with high transition temperature. J Am Chem Soc. 2018;140:9768.10.1021/jacs.8b06475Search in Google Scholar PubMed

[151] Peng J, Zhang Y, Lin L, Lin L, Liu M. New iron-based multiferroics with improper ferroelectricity. J Phys D Appl Phys. 2018;51:243002.10.1088/1361-6463/aac345Search in Google Scholar

[152] Dong S, Xiang H, Dagotto E. Magnetoelectricity in multiferroics: a theoretical perspective. Natl Sci Rev. 2019:6:1.10.1093/nsr/nwz023Search in Google Scholar PubMed PubMed Central

[153] Boström HL, Senn MS, Goodwin AL. Recipes for improper ferroelectricity in molecular perovskites. Nat Commun. 2018;9:2380.10.1038/s41467-018-04764-xSearch in Google Scholar PubMed PubMed Central

[154] Mulder AT, Benedek NA, Rondinelli JM, Fennie CJ. Turning ABO3 antiferroelectrics into ferroelectrics Design rules for practical rotation-driven ferroelectricity in double perovskites and A3B2O7 Ruddlesden-popper compounds. Adv Funct Mater. 2013;23:4810.Search in Google Scholar

[155] Zhao HJ, Íñiguez J, Ren W, Chen XM, Bellaiche L. Atomistic theory of hybrid improper ferroelectricity in perovskites. Phys Rev B. 2014;89:174101.10.1103/PhysRevB.89.174101Search in Google Scholar

[156] Xu B, Wang D, Zhao HJ, Íñiguez J, Chen XM, Bellaiche L. Hybrid improper ferroelectricity in multiferroic superlattices: finite-temperature properties and electric-field-driven switching of polarization and magnetization. Adv Funct Mater. 2015;25:3626.10.1002/adfm.201501113Search in Google Scholar

[157] Nowadnick EA, Fennie CJ. Domains and ferroelectric switching pathways in Ca3Ti2O7 from first principles. Phys Rev B. 2016;94:104105.10.1103/PhysRevB.94.104105Search in Google Scholar

[158] Zanolli Z, Wojdeł JC, Íñiguez J, Ghosez P. Electric control of the magnetization in BiFeO3/LaFeO3 superlattices. Phys Rev B. 2013;88:060102.R.10.1103/PhysRevB.88.060102Search in Google Scholar

[159] Kugel KI, Khomskii DI. Crystal structure and magnetic properties of substances with orbital degeneracy. Sov Phys JETP. 1973;64:1429.Search in Google Scholar

[160] Garcia-Castro AC, Ibarra-Hernandez W, Bousquet E, Romero AH. Direct magnetization-polarization coupling in BaCuF4. Phys Rev Lett. 2018;121:117601.10.1103/PhysRevLett.121.117601Search in Google Scholar PubMed

[161] Gu T, Scarbrough T, Yang Y, Íñiguez J, Bellaiche L, Xiang HJ. Cooperative couplings between octahedral rotations and ferroelectricity in perovskites and related materials. Phys Rev Lett. 2018;120:197602.10.1103/PhysRevLett.120.197602Search in Google Scholar PubMed

[162] Holakovsky J. A new type of the ferroelectric phase transition. Phys Status Solidi. 1973;56:615.10.1002/pssb.2220560224Search in Google Scholar

[163] Mercy A, Bieder J, Íñiguez J, Ghosez P. Structurally triggered metal-insulator transition in rare-earth nickelates. Nat Commun. 2017;8:1677.10.1038/s41467-017-01811-xSearch in Google Scholar PubMed PubMed Central

[164] Liao Z, et al. Metal-insulator-transition engineering by modulation tilt-control in perovskite nickelates for room temperature optical switching. PNAS. 2018;115:9515.10.1073/pnas.1807457115Search in Google Scholar PubMed PubMed Central

[165] Yamauchi K, Barone P. Electronic ferroelectricity induced by charge and orbital orderings. J Phys Condens Matter. 2014;26:103201.10.1088/0953-8984/26/10/103201Search in Google Scholar PubMed

[166] Muñoz A, Casais MT, Alonso JA, Martínez-Lope MJ, Martinez JL, Fernandez-Diaz MT. Complex magnetism and magnetic structures of the metastable HoMnO3 perovskite. Inorg Chem. 2001;40:1020.10.1021/ic0011009Search in Google Scholar

[167] Zhou JS, Goodenough JB. Unusual evolution of the magnetic interactions versus structural distortions in RMnO3 perovskites. Phys Rev Lett. 2006;96:247202.10.1103/PhysRevLett.96.247202Search in Google Scholar PubMed

[168] Picozzi S, Yamauchi K, Sanyal B, Sergienko IA, Dagotto E. Dual nature of improper ferroelectricity in a magnetoelectric multiferroic. Phys Rev Lett. 2007;99:227201.10.1103/PhysRevLett.99.227201Search in Google Scholar PubMed

[169] Barone P, Yamauchi K, Picozzi S. Ferroelectricity due to orbital ordering in E-Type undoped rare-earth manganites. Phys Rev Lett. 2011;106:077201.10.1103/PhysRevLett.106.077201Search in Google Scholar PubMed

[170] Okuyama D, Ishiwata S, Takahashi Y, Yamauchi K, Picozzi S, Sugimoto K, et al. Magnetically driven ferroelectric atomic displacements in orthorhombic YMnO3. Phys Rev B. 2011;84:054440.10.1103/PhysRevB.84.054440Search in Google Scholar

[171] Iuşan D, Yamauchi K, Barone P, Sanyal B, Eriksson O, Profeta G, et al. Effects of strain on ferroelectric polarization and magnetism in orthorhombic HoMnO3. Phys Rev B. 2013;87:014403.10.1103/PhysRevB.87.014403Search in Google Scholar

[172] Yamauchi K, Freimuth F, Blügel S, Picozzi S. Magnetically induced ferroelectricity in orthorhombic manganites: microscopic origin and chemical trends. Phys Rev B. 2008;78:014403.10.1103/PhysRevB.78.014403Search in Google Scholar

[173] Aoyama T, Yamauchi K, Iyama A, Picozzi S, Shimizu K, Kimura T. Giant spin-driven ferroelectric polarization in TbMnO3 under high pressure. Nat Commun. 2014;5:4927.10.1038/ncomms5927Search in Google Scholar PubMed

[174] Giovannetti G, Kumar S, Khomskii D, Picozzi S, Van Den Brink J. Multiferroicity in rare-earth nickelates RNiO3. Phys Rev Lett. 2009;103:156401.10.1103/PhysRevLett.103.156401Search in Google Scholar PubMed

[175] Park H, Millis AJ, Marianetti CA. Site-selective mott transition in rare-earth-element nickelates. Phys Rev Lett. 2012;109:156402.10.1103/PhysRevLett.109.156402Search in Google Scholar PubMed

[176] Varignon J, Grisolia MN, Íñiguez J, Barthélémy A, Bibes M. Complete phase diagram of rare-earth nickelates from first-principles. Npj Quantum Mater. 2017;2:21.10.1038/s41535-017-0024-9Search in Google Scholar

[177] Malashevich A, Vanderbilt D. First principles study of improper ferroelectricity in TbMnO3. Phys Rev Lett. 2008;101:037210.10.1103/PhysRevLett.101.037210Search in Google Scholar PubMed

[178] Xiang HJ, Wei SH, Whangbo MH, Da Silva JLF. Spin-Orbit coupling and ion displacements in multiferroic TbMnO3. Phys Rev Lett. 2008;101:037209.10.1103/PhysRevLett.101.037209Search in Google Scholar PubMed

[179] Xiang HJ, Whangbo MH. Density-functional characterization of the multiferroicity in spin spiral chain cuprates. Phys Rev Lett. 2007;99:257203.10.1103/PhysRevLett.99.257203Search in Google Scholar PubMed

[180] Chang TR, Jeng HT, Ren CY, Hsue CS. Charge-orbital ordering and ferroelectric polarization in multiferroic TbMn2O5 from first principles. Phys Rev B. 2011;84:024421.10.1103/PhysRevB.84.024421Search in Google Scholar

[181] Giovannetti G, Van Den Brink J. Electronic correlations decimate the ferroelectric polarization of Multiferroic HoMn2O5. Phys Rev Lett. 2008;100:227603.10.1103/PhysRevLett.100.227603Search in Google Scholar PubMed

[182] Partzsch S, Wilkins SB, Hill JP, Schierle E, Weschke E, Souptel D, et al. Observation of electronic ferroelectric polarization in multiferroic YMn2O5. Phys Rev Lett. 2011;107:057201.10.1103/PhysRevLett.107.057201Search in Google Scholar PubMed

[183] Prokhnenko O, Feyerherm R, Dudzik E, Landsgesell S, Aliouane N, Chapon LC, et al. Enhanced ferroelectric polarization by induced dy spin order in multiferroic DyMnO3. Phys Rev Lett. 2007;98:057206.10.1103/PhysRevLett.98.057206Search in Google Scholar PubMed

[184] Zhao HJ, Bellaiche L, Chen XM, Íñiguez J. Improper electric polarization in simple perovskite oxides with two magnetic sublattices. Nat Commun. 2017;8:14025.10.1038/ncomms14025Search in Google Scholar PubMed PubMed Central

[185] Efremov DV, Van Den Brink J, Khomskii DI. Bond- versus site-centred ordering and possible ferroelectricity in manganites. Nat Mater. 2004;3:853.10.1038/nmat1236Search in Google Scholar PubMed

[186] Ederer C, Spaldin NA. A new route to magnetic ferroelectrics. Nat Mater. 2004;3:849.10.1038/nmat1265Search in Google Scholar PubMed

[187] Kadomtseva AM, Popov YF, Vorob’ev GP, Kamilov KI, Ivanov VY, Mukhin AA, et al. Magnetoelectric phenomena in manganites R0.6Ca0.4MnO3 (R = Pr, Nd) with charge ordering suppressed by a magnetic field. J Exp Theor Phys. 2008;106:130.10.1134/S106377610801010XSearch in Google Scholar

[188] Giovannetti G, Kumar S, Van Den Brink J, Picozzi S. Magnetically induced electronic ferroelectricity in half-doped manganites. Phys Rev Lett. 2009;103:037601.10.1103/PhysRevLett.103.037601Search in Google Scholar

[189] Kato K, Iida S, Yanai K, Mizushima K. Ferrimagnetic ferroelectricity of Fe3O4. J Magn Magn Mater. 1983;31–34:783.10.1016/0304-8853(83)90683-2Search in Google Scholar

[190] Senn MS, Wright JP, Attfield JP. Charge order and three-site distortions in the Verwey structure of magnetite. Nature. 2012;481:173.10.1038/nature10704Search in Google Scholar PubMed

[191] Yamauchi K, Fukushima T, Picozzi S. Ferroelectricity in multiferroic magnetite Fe3O4 driven by noncentrosymmetric Fe2+/Fe3+ charge-ordering: First-principles study. Phys Rev B. 2009;79:212404.10.1103/PhysRevB.79.212404Search in Google Scholar

[192] Alexe M, Ziese M, Hesse D, Esquinazi P, Yamauchi K, Fukushima T, et al. Ferroelectric switching in multiferroic magnetite (Fe3O4) thin films. Adv Mater. 2009;21:4452.10.1002/adma.200901381Search in Google Scholar

[193] Ikeda N, Ohsumi H, Ohwada K, Ishii K, Inami T, Kakurai K, et al. Ferroelectricity from iron valence ordering in the charge-frustrated system LuFe2O4. Nature. 2005;436:1136.10.1038/nature04039Search in Google Scholar PubMed

[194] Angst M, Hermann RP, Christianson AD, Lumsden MD, Lee C, Whangbo MH, et al. Charge order in LuFe2O4: antiferroelectric ground state and coupling to magnetism. Phys Rev Lett. 2008;101:227601.10.1103/PhysRevLett.101.227601Search in Google Scholar PubMed

[195] Giovannetti G, Stroppa A, Picozzi S, Baldomir D, Pardo V, Blanco-Canosa S, et al. Dielectric properties and magnetostriction of the collinear multiferroic spinel CdV2O4. Phys Rev B. 2011;83:060402.R.10.1103/PhysRevB.83.060402Search in Google Scholar

[196] Yamauchi K, Oguchi T, Picozzi S. Ab-initio prediction of magnetoelectricity in infinite-layer CaFeO2 and MgFeO2. J Phys Soc Japan. 2014;83:094712.10.7566/JPSJ.83.094712Search in Google Scholar

[197] Lin L-F, Xu Q-R, Zhang Y, Zhang J-J, Liang Y-P, Dong S. Ferroelectric ferrimagnetic LiFe2F6: Charge-ordering-mediated magnetoelectricity. Phys Rev Mater. 2017;1:071401.10.1103/PhysRevMaterials.1.071401Search in Google Scholar

[198] Yamauchi K, Picozzi S. Interplay between charge order, ferroelectricity, and ferroelasticity: tungsten bronze structures as a playground for multiferroicity. Phys Rev Lett. 2010;105:107202.10.1103/PhysRevLett.105.107202Search in Google Scholar PubMed

[199] Park SY, Kumar A, Rabe KM. Charge-order-induced ferroelectricity in LaVO3/SrVO3 superlattices. Phys Rev Lett. 2017;118:087602.10.1103/PhysRevLett.118.087602Search in Google Scholar PubMed

[200] Gupta K, Mahadevan P, Mavropoulos P, Ležaić M. Orbital-ordering-induced ferroelectricity in SrCrO3. Phys Rev Lett. 2013;111:077601.10.1103/PhysRevLett.111.077601Search in Google Scholar PubMed

[201] Ogawa N, Ogimoto Y, Ida Y, Nomura Y, Arita R, Miyano K. Polar antiferromagnets produced with orbital order. Phys Rev Lett. 2012;108:157603.10.1103/PhysRevLett.108.157603Search in Google Scholar PubMed

[202] Zheng H, Wang J, Lofland SE, Ma Z, Mohaddes-Ardabili L, Zhao T, et al. Multiferroic BaTiO3-CoFe2O4 nanostructures. Science. 2004;303:661.10.1126/science.1094207Search in Google Scholar PubMed

[203] Yamada H, Ogawa Y, Ishii Y, Sato H, Kawasaki M, Akoh H, et al. Engineered interface of magnetic oxides. Science. 2004;305:646.10.1126/science.1098867Search in Google Scholar PubMed

[204] Stengel M, Aguado-Puente P, Spaldin NA, Junquera J. Band alignment at metal/ferroelectric interfaces: Insights and artifacts from first principles. Phys Rev B. 2011;83:235112.10.1103/PhysRevB.83.235112Search in Google Scholar

[205] Stengel M, Spaldin NA. Ab initio theory of metal-insulator interfaces in a finite electric field. Phys Rev B - Condens Matter Mater Phys. 2007;75:205121.10.1103/PhysRevB.75.205121Search in Google Scholar

[206] Stengel M, Spaldin NA. Origin of the dielectric dead layer in nanoscale capacitors. Nature. 2006;443:679.10.1038/nature05148Search in Google Scholar PubMed

[207] Di Sante D, Yamauchi K, Picozzi S. Beyond standard local density approximation in the study of magnetoelectric effects in Fe/BaTiO3 and Co/BaTiO3 interfaces. J Phys Condens Matter. 2013;25:066001.10.1088/0953-8984/25/6/066001Search in Google Scholar PubMed

[208] Chen H, Ismail-Beigi S. Ferroelectric control of magnetization in La1−xSrxMnO3 manganites: A first-principles study. Phys Rev B. 2012;86:024433.10.1103/PhysRevB.86.024433Search in Google Scholar

[209] Koçak AB, Varignon J, Lemal S, Ghosez P, Lepetit MB. Control of the orbital ordering in manganite superlattices and impact on properties. Phys Rev B. 2017;96:125155.10.1103/PhysRevB.96.125155Search in Google Scholar

[210] Sadoc A, Mercey B, Simon C, Grebille D, Prellier W, Lepetit MB. Large increase of the curie temperature by orbital ordering control. Phys Rev Lett. 2010;104:046804.10.1103/PhysRevLett.104.046804Search in Google Scholar PubMed

[211] Ramesh R. Thin films: Theory leads the way to new devices. Nat Nanotechnol. 2008;3:7.10.1038/nnano.2007.430Search in Google Scholar PubMed

[212] Rondinelli JM, Stengel M, Spaldin NA. Carrier-mediated magnetoelectricity in complex oxide heterostructures. Nat Nanotechnol. 2008;3:46.10.1038/nnano.2007.412Search in Google Scholar PubMed

[213] Niranjan MK, Burton JD, Velev JP, Jaswal SS, Tsymbal EY. Magnetoelectric effect at the SrRuO3/BaTiO3 (001) interface: An ab initio study. Appl Phys Lett. 2009;95:05250.10.1063/1.3193679Search in Google Scholar

[214] Bonfoh N, Tiem S, Lipinski P. Surface magnetoelectric effect in ferromagnetic metal films. Phys Rev Lett. 2007;101:137201.Search in Google Scholar

[215] Duan CG, Nan CW, Jaswal SS, Tsymbal EY. Universality of the surface magnetoelectric effect in half-metals. Phys Rev B. 2009;79:140403.R.10.1103/PhysRevB.79.140403Search in Google Scholar

[216] Duan CG, Jaswal SS, Tsymbal EY. Predicted magnetoelectric effect in Fe/BaTiO3 multilayers: ferroelectric control of magnetism. Phys Rev Lett. 2006;97:047201.10.1103/PhysRevLett.97.047201Search in Google Scholar PubMed

[217] Fechner M, Maznichenko IV, Ostanin S, Ernst A, Henk J, Bruno P, et al. Magnetic phase transition in two-phase multiferroics predicted from first principles. Phys Rev B. 2008;78:212406.10.1103/PhysRevB.78.212406Search in Google Scholar

[218] Radaelli G, Petti D, Plekhanov E, Fina I, Torelli P, Salles BR, et al. Electric control of magnetism at the Fe/BaTiO3 interface. Nat Commun. 2014;5:3404.10.1038/ncomms4404Search in Google Scholar PubMed PubMed Central

[219] Lee J, Sai N, Cai T, Niu Q, Demkov AA. Interfacial magnetoelectric coupling in tricomponent superlattices. Phys Rev B. 2010;81:144425.10.1103/PhysRevB.81.144425Search in Google Scholar

[220] Niranjan MK, Velev JP, Duan C-G, Jaswal SS, Tsymbal EY. Magnetoelectric effect at the Fe3O4/BaTiO3 (001) interface: A first-principles study. Phys Rev B. 2008;78:104405.10.1103/PhysRevB.78.104405Search in Google Scholar

[221] Yamauchi K, Sanyal B, Picozzi S. Interface effects at a half-metal/ferroelectric junction. Appl Phys Lett. 2007;91:062506.10.1063/1.2767776Search in Google Scholar

[222] Hölzer M, Fechner M, Ostanin S, Mertig I. Ab initio study of magnetoelectricity in Fe/BaTiO3: the effects of n-doped perovskite interfaces. J Phys Condens Matter. 2011;23:455902.10.1088/0953-8984/23/45/455902Search in Google Scholar PubMed

[223] Plekhanov E, Stroppa A, Picozzi S. Magneto-electric coupling in antiferromagnet/ferroelectric Mn2Au/BaTiO3 interface. J Appl Phys. 2016;120:074104.10.1063/1.4961213Search in Google Scholar

[224] Burton JD, Tsymbal EY. Prediction of electrically induced magnetic reconstruction at the manganite/ferroelectric interface. Phys Rev B. 2009;80:174406.10.1103/PhysRevB.80.174406Search in Google Scholar

[225] Bristowe NC, Stengel M, Littlewood PB, Pruneda JM, Artacho E. Electrochemical ferroelectric switching: Origin of polarization reversal in ultrathin films. Phys Rev B. 2012;85:024106.10.1103/PhysRevB.85.024106Search in Google Scholar

[226] Duan CG, Velev JP, Sabirianov RF, Mei WN, Jaswal SS, Tsymbal EY. Tailoring magnetic anisotropy at the ferromagnetic/ferroelectric interface. Appl Phys Lett. 2008;92:122905.10.1063/1.2901879Search in Google Scholar

[227] Nakamura K, Shimabukuro R, Fujiwara Y, Akiyama T, Ito T, Freeman AJ. Giant modification of the magnetocrystalline anisotropy in transition-metal monolayers by an external electric field. Phys Rev Lett. 2009;102:187201.10.1103/PhysRevLett.102.187201Search in Google Scholar PubMed

[228] Tsujikawa M, Oda T. Finite electric field effects in the large perpendicular magnetic anisotropy surface Pt/Fe/Pt(001): A First-principles study. Phys Rev Lett. 2009;102:247203.10.1103/PhysRevLett.102.247203Search in Google Scholar PubMed

[229] Lukashev PV, Burton JD, Jaswal SS, Tsymbal EY. Ferroelectric control of the magnetocrystalline anisotropy of the Fe/BaTiO3 (001) interface. J Phys Condens Matter. 2012;24:226003.10.1088/0953-8984/24/22/226003Search in Google Scholar PubMed

[230] Niranjan MK, Duan CG, Jaswal SS, Tsymbal EY. Electric field effect on magnetization at the Fe/MgO(001) interface. Appl Phys Lett. 2010;96:222504.10.1063/1.3443658Search in Google Scholar

[231] Zhang H, Richter M, Koepernik K, Opahle I, Tasnádi F, Eschrig H. Electric-field control of surface magnetic anisotropy: a density functional approach. New J Phys. 2009;11:043007.10.1088/1367-2630/11/4/043007Search in Google Scholar

[232] Lee M, Choi H, Chung YC. Ferroelectric control of magnetic anisotropy of FePt/BaTiO3 magnetoelectric heterojunction: A density functional theory study. J Appl Phys. 2013;113:17C729.10.1063/1.4800499Search in Google Scholar

[233] Fechner M, Zahn P, Ostanin S, Bibes M, Mertig I. Switching magnetization by 180° with an electric field. Phys Rev Lett. 2112;108:197206.10.1103/PhysRevLett.108.197206Search in Google Scholar PubMed

[234] Chen H, Qiao Q, Marshall MS, Georgescu AB, Gulec A, Phillips PJ, et al. Reversible modulation of orbital occupations via an Interface-induced polar state in metallic manganites. Nano Lett. 2014;14:4965.10.1021/nl501209pSearch in Google Scholar PubMed

[235] Setyawan W, Curtarolo S. High-throughput electronic band structure calculations: Challenges and tools. Comput Mater Sci. 2010;49:299.10.1016/j.commatsci.2010.05.010Search in Google Scholar

[236] Hautier G, Jain A, Ong SP. From the computer to the laboratory: materials discovery and design using first-principles calculations. J Mater Sci. 2012;47:7317.10.1007/s10853-012-6424-0Search in Google Scholar

[237] Jain A, Ong SP, Hautier G, Chen W, Richards WD, Dacek S, et al. The Materials Project: A materials genome approach to accelerating materials innovation. APL Mater. 2013;1:011002.10.1063/1.4812323Search in Google Scholar

[238] Bennett JW, Garrity KF, Rabe KM, Vanderbilt D. Hexagonal ABC semiconductors as ferroelectrics. Phys Rev Lett. 2012;109:167602.10.1103/PhysRevLett.109.167602Search in Google Scholar PubMed

[239] Zunger A. Inverse design in search of materials with target functionalities. Nat Rev Chem. 2018;2:121.10.1038/s41570-018-0121Search in Google Scholar

Published Online: 2019-10-31

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 1.2.2023 from https://www.degruyter.com/document/doi/10.1515/psr-2019-0069/html
Scroll Up Arrow