Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter December 18, 2020

Multiferroic heterostructures for spintronics

Elzbieta Gradauskaite, Peter Meisenheimer, Marvin Müller, John Heron and Morgan Trassin
From the journal Physical Sciences Reviews

Abstract

For next-generation technology, magnetic systems are of interest due to the natural ability to store information and, through spin transport, propagate this information for logic functions. Controlling the magnetization state through currents has proven energy inefficient. Multiferroic thin-film heterostructures, combining ferroelectric and ferromagnetic orders, hold promise for energy efficient electronics. The electric field control of magnetic order is expected to reduce energy dissipation by 2–3 orders of magnitude relative to the current state-of-the-art. The coupling between electrical and magnetic orders in multiferroic and magnetoelectric thin-film heterostructures relies on interfacial coupling though magnetic exchange or mechanical strain and the correlation between domains in adjacent functional ferroic layers. We review the recent developments in electrical control of magnetism through artificial magnetoelectric heterostructures, domain imprint, emergent physics and device paradigms for magnetoelectric logic, neuromorphic devices, and hybrid magnetoelectric/spin-current-based applications. Finally, we conclude with a discussion of experiments that probe the crucial dynamics of the magnetoelectric switching and optical tuning of ferroelectric states towards all-optical control of magnetoelectric switching events.

Acknowledgements

E.G. and M.T. acknowledge the financial support by the Swiss National Science Foundation under project No. 200021_188414. P.B.M. and J.T.H. acknowledge that this work was supported in part by the Semiconductor Research Corporation (SRC) as the NEWLIMITS Center and NIST through award number 70NANB17H041.

References

1. Fiebig M, Lottermoser T, Meier D, Trassin M. The evolution of multiferroics. Nat Rev Mater. 2016;1:16046.10.1038/natrevmats.2016.46Search in Google Scholar

2. DOI: 10.1515/PSR.2020.0032.Search in Google Scholar

3. Spaldin NA, Ramesh R. Advances in magnetoelectric multiferroics. Nat Mater. 2019;18:203–12.10.1038/s41563-018-0275-2Search in Google Scholar PubMed

4. Ramesh R, Spaldin NA. Multiferroics: progress and prospects in thin films. Nat Mater. 2007;6:21–9.10.1142/9789814287005_0003Search in Google Scholar

5. DOI: 10.1515/PSR.2019.0067.Search in Google Scholar

6. Trassin M. Low energy consumption spintronics using multiferroic heterostructures. J Phys Condens Matter. 2016;28:033001.10.1088/0953-8984/28/3/033001Search in Google Scholar PubMed

7. Fernandes Vaz CA, Staub U. Artificial multiferroic heterostructures. J Mater Chem C. 2013;1:6731–42.10.1039/c3tc31428fSearch in Google Scholar

8. Scott JF. Multiferroic memories. Nat Mater. 2007;6:256–7.10.1038/nmat1868Search in Google Scholar PubMed

9. Bibes M. Towards a magnetoelectric memory. Nat Mater. 2008;7:7–8.10.1038/nmat2189Search in Google Scholar PubMed

10. Hill NA. Why are there so few magnetic ferroelectrics? J Phys Chem B. 2000;104:6694.10.1021/jp000114xSearch in Google Scholar

11. DOI: 10.1515/PSR.2019.0016.Search in Google Scholar

12. Wiegelmann H, Jansen AG, Wyder P, Rivera JP, Schmid H. Magnetoelectric effect of Cr2O32O3"?> in strong static magnetic fields. Ferroelectrics. 1994;162:141–6.10.1080/00150199408245099Search in Google Scholar

13. Fiebig M, Fröhlich D, Krichevtsov BB, Pisarev RV. Second harmonic generation and magnetic-dipole-electric-dipole interference in antiferromagnetic Cr2O32O3"?>. Phys Rev Lett. 1994;73:2127–30.10.1103/PhysRevLett.73.2127Search in Google Scholar

14. Van Aken BB, Palstra TT, Filippetti A, Spaldin NA. The origin of ferroelectricity in magnetoelectric YMnO33"?>. Nat Mater. 2004;3:164–70.10.1038/nmat1080Search in Google Scholar

15. Fiebig M, Lottermoser T, Fröhlich D, Goltsev AV, Pisarev RV. Observation of coupled magnetic and electric domains. Nature. 2002;419:818–20.10.1038/nature01077Search in Google Scholar

16. Bertaut EF, Mercier M. Structure magnetique de MnYO3. Phys Lett. 1963;5:27–9.10.1016/S0375-9601(63)80014-6Search in Google Scholar

17. DOI: 10.1515/PSR.2019.0014.Search in Google Scholar

18. Nordlander J, Campanini M, Rossell MD, Erni R, Meier QN, Cano A, et al. The ultrathin limit of improper ferroelectricity. Nat Commun. 2019;10:5591.10.1038/s41467-019-13474-xSearch in Google Scholar PubMed PubMed Central

19. Meier D, Seidel J, Cano A, Delaney K, Kumagai Y, Mostovoy M, et al. Anisotropic conductance at improper ferroelectric domain walls. Nat Mater. 2012;11:284–8.10.1038/nmat3249Search in Google Scholar PubMed

20. Schaab J, Skjærvø SH, Krohns S, Dai X, Holtz ME, Cano A, et al. Electrical half-wave rectification at ferroelectric domain walls. Nat Nanotechnol. 2018;13:1028–34.10.1038/s41565-018-0253-5Search in Google Scholar PubMed

21. Evans DM, Holstad TS, Mosberg AB, Småbråten DR, Vullum PE, Dadlani AL, et al. Conductivity control via minimally invasive anti-Frenkel defects in a functional oxide. Nat Mater. 2020;19:1195–1200.10.1038/s41563-020-0765-xSearch in Google Scholar PubMed

22. Wang J, Neaton JB, Zheng H, Nagarajan V, Ogale SB, Liu B, et al. Epitaxial BiFeO33"?> multiferroic thin film heterostructures. Science. 2003;299:1719–22.10.1126/science.1080615Search in Google Scholar PubMed

23. Zhang JX, He Q, Trassin M, Luo W, Yi D, Rossell MD, et al. Microscopic origin of the giant ferroelectric polarization in tetragonal-like BiFeO33"?>. Phys Rev Lett. 2011;107:1–5.10.1103/PhysRevLett.107.147602Search in Google Scholar PubMed

24. Lebeugle D, Colson D, Forget A, Viret M, Bataille AM, Gukasov A. Electric-field-induced spin flop in BiFeO33"?> single crystals at room temperature. Phys Rev Lett. 2008;100:1–4.10.1103/PhysRevLett.100.227602Search in Google Scholar PubMed

25. Lebeugle D, Mougin A, Viret M, Colson D, Ranno L. Electric field switching of the magnetic anisotropy of a ferromagnetic layer exchange coupled to the multiferroic compound BiFeO33"?>. Phys Rev Lett. 2009;103:257601.10.1103/PhysRevLett.103.257601Search in Google Scholar PubMed

26. Sando D, Barthélémy A, Bibes M. BiFeO33"?> epitaxial thin films and devices: Past, present and future. J Phys Condens Matter. 2014;26:473201.10.1088/0953-8984/26/47/473201Search in Google Scholar PubMed

27. Heron JT, Schlom DG, Ramesh R. Electric field control of magnetism using BiFeO33"?>-based heterostructures. Appl Phys Rev. 2014;1:21303.10.1063/1.4870957Search in Google Scholar

28. DOI: 10.1515/PSR.2019.0070.Search in Google Scholar

29. Burns SR, Paull O, Juraszek J, Nagarajan V, Sando D. The experimentalist’s guide to the cycloid, or noncollinear antiferromagnetism in Epitaxial BiFeO33"?>. Adv Mater. 2020;2003711:1–51.Search in Google Scholar

30. Trassin M, Viart N, Versini G, Barre S, Pourroy G, Lee J, et al. Room temperature ferrimagnetic thin films of the magnetoelectric Ga2-xFexO3J. Mater Chem. 2009;19:8876–80.10.1039/b913359cSearch in Google Scholar

31. Trassin M, Viart N, Versini G, Loison JL, Vola JP, Schmerber G, et al. Epitaxial thin films of multiferroic GaFeO3 on conducting indium tin oxide (001) buffered yttrium-stabilized zirconia (001) by pulsed laser deposition. Appl Phys Lett. 2007;91:2–5.10.1063/1.2813020Search in Google Scholar

32. Thomasson A, Cherifi S, Lefevre C, Roulland F, Gautier B, Albertini D, et al. Room temperature multiferroicity in Ga0.6Fe1.4O3:Mg thin films. J Appl Phys. 2013;113:3–7.10.1063/1.4808349Search in Google Scholar

33. Homkar S, Preziosi D, Devaux X, Bouillet C, Nordlander J, Trassin M, et al. Ultrathin regime growth of atomically flat multiferroic gallium ferrite films with perpendicular magnetic anisotropy. Phys Rev Mater. 2019;3:1–10.10.1103/PhysRevMaterials.3.124416Search in Google Scholar

34. Aurivillius B. Mixed bismuth oxides with layer lattices. 1. the structure type of CaNb2Bi2O9. Ark Kemi. 1949;1:463–80.Search in Google Scholar

35. Benedek NA, Rondinelli JM, Djani H, Ghosez P, Lightfoot P. Understanding ferroelectricity in layered perovskites: new ideas and insights from theory and experiments. Dalt Trans. 2015;44:10543–58.10.1039/C5DT00010FSearch in Google Scholar PubMed

36. Gradauskaite E, Campanini M, Biswas B, Schneider CW, Fiebig M, Rossell MD, et al. Robust in-plane ferroelectricity in ultrathin epitaxial Aurivillius films. Adv Mater Interfaces. 2020;2000202:1–8.10.1002/admi.202000202Search in Google Scholar

37. Keeney L, Smith RJ, Palizdar M, Schmidt M, Bell AJ, Coleman JN, et al. Ferroelectric behavior in exfoliated 2D Aurivillius oxide flakes of sub-unit cell thickness. Adv Electron Mater. 2020;6:1901264.10.1002/aelm.201901264Search in Google Scholar

38. Wang C, Ke X, Wang J, Liang R, Luo Z, Tian Y, et al. Ferroelastic switching in a layered-perovskite thin film. Nat Commun. 2016;7:10636.10.1038/ncomms10636Search in Google Scholar PubMed PubMed Central

39. Lee HN, Hesse D, Zakharov N, Gösele U. Ferroelectric Bi3.25La0.75Ti3o12 films of uniform a-axis orientation on silicon substrates. Science. 2002;296:2006–9.10.1002/chin.200237012Search in Google Scholar

40. Faraz A, Maity T, Schmidt M, Deepak N, Roy S, Pemble ME, et al. Direct visualization of magnetic-field-induced magnetoelectric switching in multiferroic aurivillius phase thin films. J Am Ceram Soc. 2017;100:975–87.10.1111/jace.14597Search in Google Scholar

41. Keeney L, Downing C, Schmidt M, Pemble ME, Nicolosi V, Whatmore RW. Direct atomic scale determination of magnetic ion partition in a room temperature multiferroic material. Sci Rep. 2017;7:1–11.10.1038/s41598-017-01902-1Search in Google Scholar PubMed PubMed Central

42. Baibich MN, Broto JM, Fert A, Van Dau FN, Petroff F, Eitenne P, et al. Giant magnetoresistance of (001)Fe/(001)Cr magnetic superlattices. Phys Rev Lett. 1988;61:2472–5.10.1103/PhysRevLett.61.2472Search in Google Scholar PubMed

43. Binasch G, Grünberg P, Saurenbach F, Zinn W. Enhanced magnetoresistance in layered magnetic structures with antiferromagnetic interlayer exchange. Phys Rev B. 1989;39:4828–30.10.1103/PhysRevB.39.4828Search in Google Scholar

44. Myers EB, Ralph DC, Katine JA, Louie RN, Buhrman RA. Current-induced switching of domains in magnetic multilayer devices. Science. 1999;285:867–70.10.1126/science.285.5429.867Search in Google Scholar PubMed

45. Jian-Gang ZH. Magnetoresistive random access memory: the path to competitiveness and scalability. Proc IEEE. 2008;96:1786–98.10.1109/JPROC.2008.2004313Search in Google Scholar

46. Miron IM, Gaudin G, Auffret S, Rodmacq B, Schuhl A, Pizzini S, et al. Current-driven spin torque induced by the Rashba effect in a ferromagnetic metal layer. Nat Mater. 2010;9:230–4.10.1038/nmat2613Search in Google Scholar PubMed

47. Miron IM, Garello K, Gaudin G, Zermatten PJ, Costache MV, Auffret S, et al. Perpendicular switching of a single ferromagnetic layer induced by in-plane current injection. Nature. 2011;476:189–93.10.1038/nature10309Search in Google Scholar PubMed

48. Vélez S, Schaab J, Wörnle MS, Müller M, Gradauskaite E, Welter P, et al. High-speed domain wall racetracks in a magnetic insulator. Nat Commun. 2019;10:4750.10.1038/s41467-019-12676-7Search in Google Scholar PubMed PubMed Central

49. Zhuravlev MY, Sabirianov RF, Jaswal SS, Tsymbal EY. Giant electroresistance in ferroelectric tunnel junctions. Phys Rev Lett. 2005;94:1–4.10.1103/PhysRevLett.94.246802Search in Google Scholar

50. Garcia V, Fusil S, Bouzehouane K, Enouz-Vedrenne S, Mathur ND, Barthélémy A, et al. Giant tunnel electroresistance for non-destructive readout of ferroelectric states. Nature. 2009;460:81–4.10.1038/nature08128Search in Google Scholar PubMed

51. Strkalj N, Gradauskaite E, Nordlander J, Trassin M. Design and manipulation of ferroic domains in complex oxide heterostructures. Materials. 2019;12:3108.10.3390/ma12193108Search in Google Scholar PubMed PubMed Central

52. Strkalj N, De Luca G, Campanini M, Pal S, Schaab J, Gattinoni C, et al. Depolarizing-field effects in epitaxial capacitor heterostructures. Phys Rev Lett. 2019;123:147601.10.1103/PhysRevLett.123.147601Search in Google Scholar PubMed

53. Junquera J, Ghosez P. Critical thickness for ferroelectricity in perovskite ultrathin films. Nature. 2003;422:506–9.10.1038/nature01501Search in Google Scholar PubMed

54. Hu J-M, Duan C-G, Nan C-W, Chen L-Q. Understanding and designing magnetoelectric heterostructures guided by computation: progresses, remaining questions, and perspectives. npj Comput Mater. 2017;3:18.10.1038/s41524-017-0020-4Search in Google Scholar

55. Meisenheimer PB, Novakov S, Vu NM, Heron JT. Perspective: magnetoelectric switching in thin film multiferroic heterostructures. J Appl Phys. 2018;123:240901.10.1063/1.5031446Search in Google Scholar

56. Bibes M, Villegas JE, Barthélémy A. Ultrathin oxide films and interfaces for electronics and spintronics. Adv Phys. 2011;60:5–84.10.1080/00018732.2010.534865Search in Google Scholar

57. Zhou J, Trassin M, He Q, Tamura N, Kunz M, Cheng C, et al. Directed assembly of nano-scale phase variants in highly strained BiFeO33"?> thin films. J Appl Phys. 2012;112:64102.10.1063/1.4752395Search in Google Scholar

58. Liu M, Li S, Zhou Z, Beguhn S, Lou J, Xu F, et al. Electrically induced enormous magnetic anisotropy in Terfenol-D/lead zinc niobate-lead titanate multiferroic heterostructures. J Appl Phys. 2012;112:63917.10.1063/1.4754424Search in Google Scholar

59. Liu M, Sun NX. Voltage control of magnetism in multiferroic heterostructures. Phil Trans R Soc A. 2014;372:20120439.10.1098/rsta.2012.0439Search in Google Scholar PubMed PubMed Central

60. Lahtinen TH, Franke KJ, Van Dijken S. Electric-field control of magnetic domain wall motion and local magnetization reversal. Sci Rep. 2012;2:258.10.1038/srep00258Search in Google Scholar PubMed PubMed Central

61. Franke KJ, López González D, Hämäläinen SJ, van Dijken S. Size dependence of domain pattern transfer in multiferroic heterostructures. Phys Rev Lett. 2014;112:17201.10.1103/PhysRevLett.112.017201Search in Google Scholar PubMed

62. Buzzi M, Chopdekar RV, Hockel JL, Bur A, Wu T, Pilet N, et al. Single domain spin manipulation by electric fields in strain coupled artificial multiferroic nanostructures. Phys Rev Lett. 2013;111:27204.10.1103/PhysRevLett.111.027204Search in Google Scholar PubMed

63. Lou J, Reed D, Pettiford C, Liu M, Han P, Dong S, et al. Giant microwave tunability in FeGaB/lead magnesium niobate-lead titanate multiferroic composites. Appl Phys Lett. 2008;92:262502.10.1063/1.2952828Search in Google Scholar

64. Jahjah W, Jay J-P, Le Grand Y, Fessant A, Prinsloo AR, Sheppard CJ, et al. Electrical manipulation of magnetic anisotropy in a Fe81Ga19/Pb(Mg1/3Nb2/3)O3-Pb(ZrxTi1−x)O3 magnetoelectric multiferroic composite. Phys Rev Appl. 2020;13:34015.10.1103/PhysRevApplied.13.034015Search in Google Scholar

65. Lou J, Liu M, Reed D, Ren Y, Sun NX. Giant electric field tuning of magnetism in novel multiferroic FeGaB/Lead Zinc Niobate–Lead Titanate (PZN‐PT) heterostructures. Adv Mater. 2009;21:4711–5.10.1002/adma.200901131Search in Google Scholar

66. Wang J-L, Echtenkamp W, Mahmood A, Binek C. Voltage controlled magnetism in Cr2O3 based all-thin-film systems. J Magn Magn Mater. 2019;486:165262.10.1016/j.jmmm.2019.165262Search in Google Scholar

67. Callen ER, Callen HB. Static magnetoelastic coupling in cubic crystals. Phys Rev. 1963;129:578–93.10.1103/PhysRev.129.578Search in Google Scholar

68. Newnham RE. Properties of materials: anisotropy, symmetry, structure. Oxford: OUP, 2004.10.1093/oso/9780198520757.001.0001Search in Google Scholar

69. Wu R. Origin of large magnetostriction in FeGa alloys. J Appl Phys. 2002;91:7358–60.10.1063/1.1450791Search in Google Scholar

70. Du Y, Huang M, Chang S, Schlagel DL, Lograsso TA, McQueeney RJ. Relation between Ga ordering and magnetostriction of Fe-Ga alloys studied by X-ray diffuse scattering. Phys Rev B. 2010;81:54432.10.1103/PhysRevB.81.054432Search in Google Scholar

71. Wang H, Zhang YN, Wu RQ, Sun LZ, Xu DS, Zhang ZD. Understanding strong magnetostriction in Fe100−xGax alloys. Sci Rep. 2013;3:1–5.10.1038/srep03521Search in Google Scholar PubMed PubMed Central

72. Furthmuller J, Fahnle M, Herzer G. Theory of magnetostriction in amorphous and polycrystalline ferromagnets. J Phys F Met Phys. 1986;16:L255–L258.10.1088/0305-4608/16/10/005Search in Google Scholar

73. Wang Q, Li X, Liang C-Y, Barra A, Domann J, Lynch C, et al. Strain-mediated 180° switching in CoFeB and Terfenol-D nanodots with perpendicular magnetic anisotropy. Appl Phys Lett. 2017;110:102903.10.1063/1.4978270Search in Google Scholar

74. Parkes DE, Cavill SA, Hindmarch AT, Wadley P, McGee F, Staddon CR, et al. Non-volatile voltage control of magnetization and magnetic domain walls in magnetostrictive epitaxial thin films. Appl Phys Lett. 2012;101:72402.10.1063/1.4745789Search in Google Scholar

75. Ahmad H, Atulasimha J, Bandyopadhyay S. Reversible strain-induced magnetization switching in FeGa nanomagnets: pathway to a rewritable, non-volatile, non-toggle, extremely low energy straintronic memory. Sci Rep. 2015;5:srep18264.10.1038/srep18264Search in Google Scholar PubMed PubMed Central

76. Lee Y, Liu ZQ, Heron JT, Clarkson JD, Hong J, Ko C, et al. Large resistivity modulation in mixed-phase metallic systems. Nat Commun. 2015;6:ncomms6959.10.1038/ncomms6959Search in Google Scholar PubMed

77. Zhang S, Zhao Y, Xiao X, Wu Y, Rizwan S, Yang L, et al. Giant electrical modulation of magnetization in Co40Fe40B20/Pb(Mg1/3Nb2/3)0.7Ti0.3O3(011) heterostructure. Sci Rep. 2014;4:3727.10.1038/srep03727Search in Google Scholar PubMed PubMed Central

78. Feng M, Wang J, Hu J-M, Wang J, Ma J, Li H-B, et al. Optimizing direct magnetoelectric coupling in Pb(Zr,Ti)O3/Ni multiferroic film heterostructures. Appl Phys Lett. 2015;106:72901.10.1063/1.4913471Search in Google Scholar

79. Lahtinen TH, Tuomi JO, Van Dijken S. Pattern transfer and electric-field-induced magnetic domain formation in multiferroic heterostructures. Adv Mater. 2011;23:3187–91.10.1002/adma.201100426Search in Google Scholar PubMed

80. Lahtinen TH, van Dijken S. Temperature control of local magnetic anisotropy in multiferroic CoFe/BaTiO3. Appl Phys Lett. 2013;102:112406.10.1063/1.4795529Search in Google Scholar

81. Kim JY, Yao L, Van Dijken S. Coherent piezoelectric strain transfer to thick epitaxial ferromagnetic films with large lattice mismatch. J Phys Condens Matter. 2013;25:082205.10.1088/0953-8984/25/8/082205Search in Google Scholar PubMed

82. Nikonov DE, Young IA. Benchmarking of beyond-CMOS exploratory devices for logic integrated circuits. IEEE J Explor Solid-State Comput Devices Circuits. 2015;1:3–11.10.1109/JXCDC.2015.2418033Search in Google Scholar

83. Jaiswal A, Roy K. MESL: proposal for a non-volatile cascadable magneto-electric spin logic. Sci Rep. 2017;7:39793.10.1038/srep39793Search in Google Scholar PubMed PubMed Central

84. Manipatruni S, Nikonov DE, Lin -C-C, Gosavi TA, Liu H, Prasad B, et al. Scalable energy-efficient magnetoelectric spin–orbit logic. Nature. 2019;565:35–42.10.1038/s41586-018-0770-2Search in Google Scholar PubMed

85. Ma J, Shi Z, Nan C-W. Magnetoelectric properties of composites of single Pb(Zr,Ti)O3 rods and Terfenol‐D/Epoxy with a single‐period of 1‐3‐type structure. Adv Mater. 2007;19:2571–3.10.1002/adma.200700330Search in Google Scholar

86. Nan C-W, Liu G, Lin Y. Influence of interfacial bonding on giant magnetoelectric response of multiferroic laminated composites of Tb1−xDyxFe2 and PbZrxTi1−xO3. Appl Phys Lett. 2003;83:4366–8.10.1063/1.1630157Search in Google Scholar

87. Vaz CA, Hoffman J, Segal Y, Reiner JW, Grober RD, Zhang Z, et al. Origin of the magnetoelectric coupling effect in Pb(Zr0.2Ti0.8)O3 / La0.8Sr0. 2MnO3 multiferroic heterostructures. Phys Rev Lett. 2010;104:127202.10.1103/PhysRevLett.104.127202Search in Google Scholar PubMed

88. Evans DM, Schilling A, Kumar A, Sanchez D, Ortega N, Arredondo M, et al. Magnetic switching of ferroelectric domains at room temperature in multiferroic PZTFT. Nat Commun. 2013;4:1534.10.1038/ncomms2548Search in Google Scholar PubMed PubMed Central

89. Zhang S, Zhao YG, Li PS, Yang JJ, Rizwan S, Zhang JX, et al. Electric-field control of nonvolatile magnetization in Co40Fe40B20/Pb(Mg1/3Nb2/3)0.7Ti0.3O3 structure at room temperature. Phys Rev Lett. 2012;108:137203.10.1103/PhysRevLett.108.137203Search in Google Scholar PubMed

90. Wu T, Bur A, Wong K, Leon Hockel J, Hsu C-J, Kim HK, et al. Electric-poling-induced magnetic anisotropy and electric-field-inducedmagnetization reorientation in magnetoelectric Ni/(011)[Pb(Mg1/3Nb2/3)O3](1-x)-[PbTiO3]x heterostructure. J Appl Phys. 2011;109:07D732.10.1063/1.3563040Search in Google Scholar

91. Mardana A, Ducharme S, Adenwalla S. Ferroelectric Control of Magnetic Anisotropy. Nano Lett. 2011;11:3862–7.10.1021/nl201965rSearch in Google Scholar PubMed

92. Ghidini M, Pellicelli R, Prieto JL, Moya X, Soussi J, Briscoe J, et al. Non-volatile electrically-driven repeatable magnetization reversal with no applied magnetic field. Nat Commun. 2013;4:1453.10.1038/ncomms2398Search in Google Scholar PubMed

93. Kittmann A, Durdaut P, Zabel S, Reermann J, Schmalz J, Spetzler B, et al. Wide band low noise love wave magnetic field sensor system. Sci Rep. 2018;8:278.10.1038/s41598-017-18441-4Search in Google Scholar PubMed PubMed Central

94. Lin H, Page MR, McConney M, Jones J, Howe B, Sun NX. Integrated magnetoelectric devices: filters, pico-Tesla magnetometers, and ultracompact acoustic antennas. MRS Bull. 2018;43:841–7.10.1557/mrs.2018.257Search in Google Scholar

95. Nan T, Lin H, Gao Y, Matyushov A, Yu G, Chen H, et al. Acoustically actuated ultra-compact NEMS magnetoelectric antennas. Nat Commun. 2017;8:296.10.1038/s41467-017-00343-8Search in Google Scholar PubMed PubMed Central

96. Liu M, Obi O, Lou J, Chen Y, Cai Z, Stoute S, et al. Giant electric field tuning of magnetism in novel multiferroic FeGaB/Lead Zinc Niobate–Lead Titanate (PZN‐PT) heterostructures. Adv Funct Mater. 2009;19:1826–31.10.1002/adma.200901131Search in Google Scholar

97. Zaeimbashi M, Lin H, Dong C, Liang X, Nasrollahpour M, Chen H, et al. NanoNeuroRFID: a wireless implantable device based on magnetoelectric antennas. IEEE J Electromagn RF Microwaves Med Biol. 2019;3:206–15.10.1109/JERM.2019.2903930Search in Google Scholar

98. Emam S, Sun N-X, Nasrollahpour M. P3-226: electrochemical gas sensor arrays for detecting volatile organic compound biomarkers in the exhaled breath. Alzheimer’s Dement. 2019;15:P1018–P1018.10.1016/j.jalz.2019.06.3256Search in Google Scholar

99. Béa H, Bibes M, Ott F, Dupé B, Zhu X-H, Petit S, et al. Mechanisms of exchange bias with multiferroic BiFeO3 epitaxial thin films. Phys Rev Lett. 2008;100:17204.10.1103/PhysRevLett.100.017204Search in Google Scholar PubMed

100. Trassin M, Luca GD, Manz S, Fiebig M. Probing Ferroelectric Domain Engineering in BiFeO3 Thin Films by Second Harmonic Generation. 2015:4871–6.10.1002/adma.201501636Search in Google Scholar PubMed

101. Gao T, Zhang X, Ratcliff W, Maruyama S, Murakami M, Varatharajan A, et al. Electric-field induced reversible switching of the magnetic easy axis in Co/BiFeO3 on SrTiO3. Nano Lett. 2017;17:2825–32.10.1021/acs.nanolett.6b05152Search in Google Scholar PubMed

102. Heron JT, Bosse JL, He Q, Gao Y, Trassin M, Ye L, et al. Deterministic switching of ferromagnetism at room temperature using an electric field. Nature. 2014;516:370–3.10.1038/nature14004Search in Google Scholar PubMed

103. Trassin M, Clarkson JD, Bowden SR, Liu J, Heron JT, Paull RJ, et al. Interfacial coupling in multiferroic/ferromagnet heterostructures. Phys Rev B Condens Matter Mater Phys. 2013;87:134426.10.1103/PhysRevB.87.134426Search in Google Scholar

104. Radu F, Zabel H. Exchange bias effect of ferro-/antiferromagnetic heterostructures. Springer Tracts Mod Phys. 2007;227:97–184.10.1007/978-3-540-73462-8_3Search in Google Scholar

105. Toyoki K, Shiratsuchi Y, Kobane A, Mitsumata C, Kotani Y, Nakamura T, et al. Magnetoelectric switching of perpendicular exchange bias in Pt/Co/α-Cr2O3/Pt stacked films. Appl Phys Lett. 2015;106:162404.10.1063/1.4918940Search in Google Scholar

106. Borisov P, Hochstrat A, Chen X, Kleemann W, Binek C. Magnetoelectric switching of exchange bias. Phys Rev Lett. 2005;94:117203.10.1103/PhysRevLett.94.117203Search in Google Scholar PubMed

107. Heron JT, Trassin M, Ashraf K, Gajek M, He Q, Yang SY, et al. Electric-field-induced magnetization reversal in a ferromagnet-multiferroic heterostructure. Phys Rev Lett. 2011;107:1–5.10.1103/PhysRevLett.107.217202Search in Google Scholar PubMed

108. Wu SM, Cybart SA, Yu P, Rossell MD, Zhang JX, Ramesh R, et al. Reversible electric control of exchange bias in a multiferroic field-effect device. Nat Mater. 2010;9:756–61.10.1038/nmat2803Search in Google Scholar PubMed

109. Wu SM, Cybart SA, Yi D, Parker JM, Ramesh R, Dynes RC. Full electric control of exchange bias. Phys Rev Lett. 2013;110:67202.10.1103/PhysRevLett.110.067202Search in Google Scholar PubMed

110. He X, Wang Y, Wu N, Caruso AN, Vescovo E, Belashchenko KD, et al. Robust isothermal electric control of exchange bias at room temperature. Nat Mater. 2010;9:579–85.10.1038/nmat2785Search in Google Scholar PubMed

111. Nozaki T, Al-Mahdawi M, Pati SP, Ye S, Shiokawa Y, Sahashi M. Magnetoelectric switching energy in Cr2O3/Pt/Co perpendicular exchange coupled thin film system with small Cr2O3 magnetization. Jpn J Appl Phys. 2017;56:70302.10.7567/JJAP.56.070302Search in Google Scholar

112. Kosub T, Kopte M, Hühne R, Appel P, Shields B, Maletinsky P, et al. Purely antiferromagnetic magnetoelectric random access memory. Nat Commun. 2017;8:13985.10.1038/ncomms13985Search in Google Scholar PubMed PubMed Central

113. Borisov P, Ashida T, Nozaki T, Sahashi M, Lederman D. Magnetoelectric properties of 500-nm Cr2O3 films. Phys Rev B. 2016;93:174415.10.1103/PhysRevB.93.174415Search in Google Scholar

114. Vu NM, Luo X, Novakov S, Jin W, Nordlander J, Meisenheimer PB, et al. Bulk-like dielectric and magnetic properties of sub 100 nm thick single crystal Cr2O3 films on an epitaxial oxide electrode. Sci Rep. 2020;10:14721.10.1038/s41598-020-71619-1Search in Google Scholar PubMed PubMed Central

115. Gross I, Akhtar W, Garcia V, Martínez LJ, Chouaieb S, Garcia K, et al. Real-space imaging of non-collinear antiferromagnetic order with a single-spin magnetometer. Nature. 2017;549:252–6.10.1038/nature23656Search in Google Scholar PubMed

116. Sando D, Agbelele A, Rahmedov D, Liu J, Rovillain P, Toulouse C, et al. Crafting the magnonic and spintronic response of BiFeO3 films by epitaxial strain. Nat Mater. 2013;12:641–6.10.1038/nmat3629Search in Google Scholar PubMed

117. Martin LW, Chu YH, Holcomb MB, Huijben M, Yu P, Han SJ, et al. Nanoscale control of exchange bias with BiFeO3 thin films. Nano Lett. 2008;8:2050–5.10.1021/nl801391mSearch in Google Scholar PubMed

118. Huang Y-L, Nikonov D, Addiego C, Chopdekar RV, Prasad B, Zhang L, et al. Manipulating magnetoelectric energy landscape in multiferroics. Nat Commun. 2020;11:2836.10.1038/s41467-020-16727-2Search in Google Scholar PubMed PubMed Central

119. Wang JJ, Hu JM, Ma J, Zhang JX, Chen LQ, Nan CW. Full 180° magnetization reversal with electric fields. Sci Rep. 2014;4:7507.10.1038/srep07507Search in Google Scholar PubMed PubMed Central

120. Hu J-M, Yang T, Wang J, Huang H, Zhang J, Chen L-Q, et al. Purely electric-field-driven perpendicular magnetization reversal. Nano Lett. 2015;15:616–22.10.1021/nl504108mSearch in Google Scholar PubMed

121. Imamura H, Nozaki T, Yuasa S, Suzuki Y. Deterministic magnetization switching by voltage control of magnetic anisotropy and dzyaloshinskii-moriya interaction under an in-plane magnetic field. Phys Rev Appl. 2018;10:54039.10.1103/PhysRevApplied.10.054039Search in Google Scholar

122. Zavaliche F, Zhao T, Zheng H, Straub F, Cruz MP, Yang P-L, et al. Electrically assisted magnetic recording in multiferroic nanostructures. Nano Lett. 2007;7:1586–90.10.1021/nl070465oSearch in Google Scholar PubMed

123. Skumryev V, Laukhin V, Fina I, Martí X, Sánchez F, Gospodinov M, et al. Magnetization reversal by electric-field decoupling of magnetic and ferroelectric domain walls in multiferroic-based heterostructures. Phys Rev Lett. 2011;106:057206.10.1103/PhysRevLett.106.057206Search in Google Scholar PubMed

124. Kani N, Heron JT, Naeemi A. Strain-mediated magnetization reversal through spin-transfer torque. IEEE Trans Magn. 2017;53:4300808.10.1109/TMAG.2017.2703898Search in Google Scholar

125. Roy K, Bandyopadhyay S, Atulasimha J. Hybrid spintronics and straintronics: A magnetic technology for ultra low energy computing and signal processing. Appl Phys Lett. 2011;99:63108.10.1063/1.3624900Search in Google Scholar

126. Morelli A, Johann F, Burns SR, Douglas A, Gregg JM. Deterministic switching in bismuth ferrite nanoislands. Nano Lett. 2016;16:5228–34.10.1021/acs.nanolett.6b02311Search in Google Scholar PubMed

127. Prasad B, Huang Y-L, Chopdekar RV, Chen Z, Steffes J, Das S, et al. Ultralow voltage manipulation of ferromagnetism. Adv Mater. 2020;32:2001943.10.1002/adma.202001943Search in Google Scholar PubMed

128. Parsonnet E, Huang Y-L, Gosavi T, Qualls A, Nikonov D, Lin -C-C, et al. Toward intrinsic ferroelectric switching in multiferroic BiFeO3. Phys Rev Lett. 2020;125:67601.10.1103/PhysRevLett.125.067601Search in Google Scholar PubMed

129. Nagarajan V, Ganpule CS, Li H, Salamanca-Riba L, Roytburd AL, Williams ED, et al. Control of domain structure of epitaxial PbZr0.2Ti0.8O3 thin films grown on vicinal (001) SrTiO3 substrates. Appl Phys Lett. 2001;79:2805–7.10.1063/1.1402645Search in Google Scholar

130. Chu YH, Cruz MP, Yang CH, Martin LW, Yang PL, Zhang JX, et al. Domain control in multiferroic BiFeO3 through substrate vicinality. Adv Mater. 2007;19:2662–6.10.1002/adma.200602972Search in Google Scholar

131. Xu R, Liu S, Grinberg I, Karthik J, Damodaran AR, Rappe AM, et al. Ferroelectric polarization reversal via successive ferroelastic transitions. Nat Mater. 2015;14:79–86.10.1038/nmat4119Search in Google Scholar PubMed

132. Chu YH, He Q, Yang CH, Yu P, Martin LW, Shafer P, et al. Nanoscale control of domain architectures in BiFeO3 thin films. Nano Lett. 2009;9:1726–30.10.1021/nl900723jSearch in Google Scholar PubMed

133. Feigl L, Yudin P, Stolichnov I, Sluka T, Shapovalov K, Mtebwa M, et al. Controlled stripes of ultrafine ferroelectric domains. Nat Commun. 2014;5:4677.10.1038/ncomms5677Search in Google Scholar PubMed

134. Haeni JH, Irvin P, Chang W, Uecker R, Reiche P, Li YL, et al. Room-temperature ferroelectricity in strained SrTiO3. Nature. 2004;430:758–61.10.1038/nature02773Search in Google Scholar PubMed

135. J H L, Fang L, Vlahos E, Ke X, Jung YW, Kourkoutis LF, et al. A strong ferroelectric ferromagnet created by means of spin-lattice coupling. Nature. 2010;466:954–8.10.1038/nature09331Search in Google Scholar PubMed

136. Becher C, Maurel L, Aschauer U, Lilienblum M, Magén C, Meier D, et al. Strain-induced coupling of electrical polarization and structural defects in SrMnO3 films. Nat Nanotechnol. 2015;10:661–5.10.1038/nnano.2015.108Search in Google Scholar PubMed

137. Guo JW, Wang PS, Yuan Y, He Q, Lu JL, Chen TZ, et al. Strain-induced ferroelectricity and spin-lattice coupling in SrMnO3 thin films. Phys Rev B. 2018;97:235135.10.1103/PhysRevB.97.235135Search in Google Scholar

138. Zhang Y, Wang J, Sahoo MPK, Shimada T, Kitamura T. Strain-induced ferroelectricity and lattice coupling in BaSnO3 and SrSnO3. Phys Chem Chem Phys. 2017;19:26047–55.10.1039/C7CP03952BSearch in Google Scholar

139. Sando D, Han MJ, Govinden V, Paull O, Appert F, Carrétéro C, et al. Interfacial strain gradients control nanoscale domain morphology in epitaxial BiFeO3 multiferroic films. Adv Func Mat. 2020;30:2000343.10.1002/adfm.202000343Search in Google Scholar

140. Agbelele A, Sando D, Toulouse C, Paillard C, Johnson RD, Rüffer R, et al. Strain and magnetic field induced spin-structure transitions in multiferroic BiFeO3. Adv Mater. 2017;29:1602327.10.1002/adma.201602327Search in Google Scholar PubMed

141. Sando D, Appert F, Xu B, Paull O, Burns SR, Carrétéro C, et al. A magnetic phase diagram for nanoscale epitaxial BiFeO3 films. Appl Phys Rev. 2019;6:041404.10.1063/1.5113530Search in Google Scholar

142. Chen Z, Chen Z, Kuo CY, Tang Y, Dedon LR, Li Q, et al. Complex strain evolution of polar and magnetic order in multiferroic BiFeO3 thin films. Nat Commun. 2018;9:3764.10.1038/s41467-018-06190-5Search in Google Scholar PubMed PubMed Central

143. Waterfield Price N, Vibhakar AM, Johnson RD, Schad J, Saenrang W, Bombardi A, et al. Strain Engineering a Multiferroic Monodomain in Thin-Film BiFeO3. Phys Rev Appl. 2019;11:024035.10.1103/PhysRevApplied.11.024035Search in Google Scholar

144. Saenrang W, Davidson BA, Maccherozzi F, Podkaminer JP, Irwin J, Johnson RD, et al. Deterministic and robust room-temperature exchange coupling in monodomain multiferroic BiFeO3 heterostructures. Nat Commun. 2017;8:1583.10.1038/s41467-017-01581-6Search in Google Scholar PubMed PubMed Central

145. Fong DD, Stephenson GB, Streiffer SK, Eastman JA, Aucielo O, Fuoss PH, et al. Ferroelectricity in ultrathin perovskite films. Science. 2004;304:1650–3.10.1126/science.1098252Search in Google Scholar PubMed

146. De Luca G, Strkalj N, Manz S, Bouillet C, Fiebig M, Trassin M. Nanoscale design of polarization in ultrathin ferroelectric heterostructures. Nat Commun. 2017;8:1419.10.1038/s41467-017-01620-2Search in Google Scholar PubMed PubMed Central

147. Choi KJ, Biegalski M, Li YL, Sharan A, Schubert J, Uecker R, et al. Enhancement of ferroelectricity in strained BaTiO3 thin films. Science. 2004;306:1005–9.10.1126/science.1103218Search in Google Scholar PubMed

148. Sarott MF, Fiebig M, Trassin M. Tracking ferroelectric domain formation during epitaxial growth of PbTiO3 films. Appl Phys Lett. 2020;117:132901.10.1063/5.0021434Search in Google Scholar

149. Liu G, Chen J, Lichtensteiger C, Triscone JM, Aguado-Puente P, Junquera J, et al. Positive effect of an internal depolarization field in Ultrathin Epitaxial ferroelectric films. Adv Electron Mater. 2016;2:1500288.10.1002/aelm.201500288Search in Google Scholar

150. Lichtensteiger C, Fernandez-Pena S, Weymann C, Zubko P, Triscone JM. Tuning of the depolarization field and nanodomain structure in ferroelectric thin films. Nano Lett. 2014;14:4205–11.10.1021/nl404734zSearch in Google Scholar PubMed

151. Liu Y, Lou X, Bibes M, Dkhil B. Effect of a built-in electric field in asymmetric ferroelectric tunnel junctions. Phys Rev B Condens Matter Mater Phys. 2013;88:1–8.10.1103/PhysRevB.88.024106Search in Google Scholar

152. Simmons JG. Intrinsic fields in thin insulating films between dissimilar electrodes. Phys Rev Lett. 1963;10:10–12.10.1103/PhysRevLett.10.10Search in Google Scholar

153. Lichtensteiger C, Weymann C, Fernandez-Pena S, Paruch P, Triscone JM. Built-in voltage in thin ferroelectric PbTiO3 films: the effect of electrostatic boundary conditions. New J Phys. 2016;18:043030.10.1088/1367-2630/18/4/043030Search in Google Scholar

154. Balke N, Ramesh R, Yu P. Manipulating ferroelectrics through changes in surface and interface properties. ACS Appl Mater Interfaces. 2017;9:39736–46.10.1021/acsami.7b10747Search in Google Scholar PubMed

155. Chen D, Chen Z, He Q, Clarkson JD, Serrao CR, Yadav AK, et al. Interface engineering of domain structures in BiFeO3 thin films. Nano Lett. 2017;17:486–93.10.1021/acs.nanolett.6b04512Search in Google Scholar PubMed

156. Seidel J, Martin LW, He Q, Zhan Q, Chu YH, Rother A, et al. Conduction at domain walls in oxide multiferroics. Nat Mater. 2009;8:229–34.10.1038/nmat2373Search in Google Scholar PubMed

157. Campanini M, Gradauskaite E, Trassin M, Yi D, Yu P, Ramesh R, et al. Imaging and quantification of charged domain walls in BiFeO3. Nanoscale. 2020;12:9186–93.10.1039/D0NR01258KSearch in Google Scholar PubMed

158. Tian Y, Wei L, Zhang Q, Huang H, Zhang Y, Zhou H, et al. Water printing of ferroelectric polarization. Nat Commun. 2018;9:3809.10.1038/s41467-018-06369-wSearch in Google Scholar PubMed PubMed Central

159. Yu P, Luo W, Yi D, Zhang JX, Rossell MD, Yang C-H, et al. Interface control of bulk ferroelectric polarization. Proc Natl Acad Sci. 2012;109:9710–5.10.1073/pnas.1117990109Search in Google Scholar PubMed PubMed Central

160. Yi D, Yu P, Chen YC, Lee HH, He Q, Chu YH, et al. Tailoring Magnetoelectric Coupling in BiFeO3/La0.7Sr0.3MnO3 Heterostructure through the Interface Engineering. Adv Mater. 2019;30:1806335.10.1002/adma.201806335Search in Google Scholar PubMed

161. Li L, Jokisaari JR, Zhang Y, Cheng X, Yan X, Heikes C, et al. Control of Domain Structures in Multiferroic Thin Films through Defect Engineering. Adv Mater. 2018;30:1802737.10.1002/adma.201802737Search in Google Scholar PubMed

162. Puggioni D, Giovannetti G, Rondinelli JM. Polar metals as electrodes to suppress the critical-thickness limit in ferroelectric nanocapacitors. J Appl Phys. 2018;124:174102.10.1063/1.5049607Search in Google Scholar

163. Chopdekar RV, Malik VK, Fraile Rodríguez A, Le Guyader L, Takamura Y, Scholl A, et al. Spatially resolved strain-imprinted magnetic states in an artificial multiferroic. Phys Rev B Condens Matter Mater Phys. 2012;86:014408.10.1103/PhysRevB.86.014408Search in Google Scholar

164. Lahtinen TH, Franke KJ, Dijken SV. Electric-field control of magnetic domain wall motion and local magnetization reversal. Sci Rep. 2012;2:258.10.1038/srep00258Search in Google Scholar PubMed PubMed Central

165. You L, Wang B, Zou X, Lim ZS, Zhou Y, Ding H, et al. Origin of the uniaxial magnetic anisotropy in La0.7Sr0.3MnO3 on stripe-domain BiFeO3. Phys Rev B Condens Matter Mater Phys. 2013;88:1–9.Search in Google Scholar

166. Streubel R, Köhler D, Schäfer R, Eng LM. Strain-mediated elastic coupling in magnetoelectric nickel/barium-titanate heterostructures. Phys Rev B Condens Matter Mater Phys. 2013;87:054410.10.1103/PhysRevB.87.054410Search in Google Scholar

167. Brandl F, Franke KJ, Lahtinen TH, Van Dijken S, Grundler D. Spin waves in CoFeB on ferroelectric domains combining spin mechanics and magnonics. Solid State Commun. 2014;198:13–17.10.1016/j.ssc.2013.12.019Search in Google Scholar

168. Fackler SW, Donahue MJ, Gao T, Nero PN, Cheong SW, Cumings J, et al. Local control of magnetic anisotropy in transcritical permalloy thin films using ferroelectric BaTiO3 domains. Appl Phys Lett. 2014;105:212905.10.1063/1.4902809Search in Google Scholar

169. Wang J, Pesquera D, Mansell R, Van Dijken S, Cowburn RP, Ghidini M, et al. Giant non-volatile magnetoelectric effects via growth anisotropy in Co40Fe40B20 films on PMN-PT substrates. Appl Phys Lett. 2019;114:092401.10.1063/1.5078787Search in Google Scholar

170. Phillips LC, Cherifi RO, Ivanovskaya V, Zobelli A, Infante IC, Jacquet E, et al. Local electrical control of magnetic order and orientation by ferroelastic domain arrangements just above room temperature. Sci Rep. 2015;5:10026.10.1038/srep10026Search in Google Scholar PubMed PubMed Central

171. Franke KJ, Lahtinen TH, Van Dijken S. Field tuning of ferromagnetic domain walls on elastically coupled ferroelectric domain boundaries. Phys Rev B Condens Matter Mater Phys. 2012;85:094423.10.1103/PhysRevB.85.094423Search in Google Scholar

172. Kim SH, Choi H, No K, Shin SC. Electric-field induced ferromagnetic domain changes in exchange biased Co-BiFeO3 composites. J Phys D Appl Phys. 2010;43:165001.10.1088/0022-3727/43/16/165001Search in Google Scholar

173. Cybart SA, Rossell MD, Wu SM, Zhang JX, Yu P, Ramesh R, et al. Reversible electric control of exchange bias in a multiferroic field-effect device. Nat Mater. 2010;9:756–61.10.1038/nmat2803Search in Google Scholar PubMed

174. Laukhin V, Skumryev V, Martí X, Hrabovsky D, Sánchez F, García-Cuenca MV, et al. Electric-field control of exchange bias in multiferroic epitaxial heterostructures. Phys Rev Lett. 2006;97:227201.10.1103/PhysRevLett.97.227201Search in Google Scholar PubMed

175. Duan CG, Jaswal SS, Tsymbal EY. Predicted magnetoelectric effect in Fe/BaTiO3 multilayers: ferroelectric control of magnetism. Phys Rev Lett. 2006;97:047201.10.1103/PhysRevLett.97.047201Search in Google Scholar PubMed

176. Rondinelli JM, Stengel M, Spaldin NA. Carrier-mediated magnetoelectricity in complex oxide heterostructures. Nat Nanotechnol. 2008;3:46–50.10.1038/nnano.2007.412Search in Google Scholar PubMed

177. Molegraaf HJ, Hoffman J, Vaz CA, Gariglio S, van der Marel D, Ahn CH, et al. Magnetoelectric effects in complex oxides with competing ground states. Adv Mater. 2009;21:3470–4.10.1002/adma.200900278Search in Google Scholar

178. Cai T, Ju S, Lee J, Sai N, Demkov AA, Niu Q, et al. Magnetoelectric coupling and electric control of magnetization in ferromagnet/ferroelectric/normal-metal superlattices. Phys Rev B Condens Matter Mater Phys. 2009;80:140415(R).10.1103/PhysRevB.80.140415Search in Google Scholar

179. Brivio S, Cantoni M, Petti D, Bertacco R. Near-room-temperature control of magnetization in field effect devices based on La0.67Sr0.33MnO3 thin films. J Appl Phys. 2010;108:113906.10.1063/1.3516283Search in Google Scholar

180. Spurgeon SR, Balachandran PV, Kepaptsoglou DM, Damodaran AR, Karthik J, Nejati S, et al. Polarization screening-induced magnetic phase gradients at complex oxide interfaces. Nat Commun. 2015;6:6735.10.1038/ncomms7735Search in Google Scholar PubMed

181. Avula SR, Heidler J, Dreiser J, Vijayakumar J, Howald L, Nolting F, et al. Study of magneto-electric coupling between ultra-thin Fe films and PMN-PT using X-ray magnetic circular dichroism. J Appl Phys. 2018;123:064103.10.1063/1.5002530Search in Google Scholar

182. Hong X, Posadas A, Ahn CH. Examining the screening limit of field effect devices via the metal-insulator transition. Appl Phys Lett. 2005;86:142501.10.1063/1.1897076Search in Google Scholar

183. De Luca G, Schoenherr P, Mendil J, Meier D, Fiebig M, Trassin M. Domain-pattern transfer across an artificial magnetoelectric interface. Phys Rev Appl. 2018;10:054030.10.1103/PhysRevApplied.10.054030Search in Google Scholar

184. Ghidini M, Mansell R, Maccherozzi F, Moya X, Phillips LC, Yan W, et al. Shear-strain-mediated magnetoelectric effects revealed by imaging. Nat Mater. 2019;18:840–5.10.1038/s41563-019-0374-8Search in Google Scholar PubMed

185. Leo N, Carolus V, White JS, Kenzelmann M, Hudl M, Tolédano P, et al. Magnetoelectric inversion of domain patterns. Nature. 2018;560:466–70.10.1038/s41586-018-0432-4Search in Google Scholar PubMed

186. Franke KJ, Van de Wiele B, Shirahata Y, Hämälainen SJ, Taniyama T, van Dijken S. Reversible electric-field-driven magnetic domain-wall motion. Phys Rev X. 2015;5:011010.10.1103/PhysRevX.5.011010Search in Google Scholar

187. Gao Y, Hu JM, Wu L, Nan CW. Dynamic in situ visualization of voltage-driven magnetic domain evolution in multiferroic heterostructures. J Phys Condens Matter. 2015;27:504005.10.1088/0953-8984/27/50/504005Search in Google Scholar PubMed

188. López González D, Shirahata Y, Van de Wiele B, Franke KJ, Casiraghi A, Taniyama T, et al. Electric-field-driven domain wall dynamics in perpendicularly magnetized multilayers. AIP Adv. 2017;7:035119.10.1063/1.4979267Search in Google Scholar

189. Van De Wiele B, Leliaert J, Franke KJ, Van Dijken S. Electric-field-driven dynamics of magnetic domain walls in magnetic nanowires patterned on ferroelectric domains. New J Phys. 2016;18:033027.10.1088/1367-2630/18/3/033027Search in Google Scholar

190. Hassanpour E, Weber MC, Bortis A, Tokunaga Y, Taguchi Y, Tokura Y, et al. Interconversion of multiferroic domains and domain walls. 2019:arXiv: 1908.06876.Search in Google Scholar

191. Meier D. Functional domain walls in multiferroics. J Phys Condens Matter. 2015;27:463003.10.1088/0953-8984/27/46/463003Search in Google Scholar PubMed

192. Gruverman A, Alexe M, Meier D. Piezoresponse force microscopy and nanoferroic phenomena. Nat Commun. 2019;10:1661.10.1038/s41467-019-09650-8Search in Google Scholar PubMed PubMed Central

193. Evans DM, Garcia V, Meier D, Bibes M. Domains and domain walls in multiferroics. Phys Sci Rev. 2020;5:20190067.10.1515/psr-2019-0067Search in Google Scholar

194. Nataf GF, Guennou M, Gregg JM, Meier D, Hlinka J, Salje EK, et al. Domain-wall engineering and topological defects in ferroelectric and ferroelastic materials. Nat Rev Phys. 2020;2:634–648.10.1038/s42254-020-0235-zSearch in Google Scholar

195. Whyte JR, McQuaid RG, Sharma P, Canalias C, Scott JF, Gruverman A, et al. Ferroelectric domain wall injection. Adv Mater. 2014;26:293–8.10.1002/adma.201303567Search in Google Scholar PubMed

196. McQuaid RG, Campbell MP, Whatmore RW, Kumar A, Marty Gregg J. Injection and controlled motion of conducting domain walls in improper ferroelectric Cu-Cl boracite. Nat Commun. 2017;8:15105.10.1038/ncomms15105Search in Google Scholar PubMed PubMed Central

197. Sharma P, Sando D, Zhang Q, Cheng X, Prosandeev S, Bulanadi R, et al. Conformational domain wall switch. Adv Funct Mater. 2019;29:1807523.10.1002/adfm.201807523Search in Google Scholar

198. Whyte JR, Gregg JM. A diode for ferroelectric domain-wall motion. Nat Commun. 2015;6:7361.10.1038/ncomms8361Search in Google Scholar PubMed PubMed Central

199. McGilly LJ, Yudin P, Feigl L, Tagantsev AK, Setter N. Controlling domain wall motion in ferroelectric thin films. Nat Nanotechnol. 2015;10:145–50.10.1038/nnano.2014.320Search in Google Scholar PubMed

200. Guo EJ, Roth R, Herklotz A, Hesse D, Dörr K. Ferroelectric 180° domain wall motion controlled by biaxial strain. Adv Mater. 2015;27:1615–18.10.1002/adma.201405205Search in Google Scholar PubMed

201. De Luca G, Rossell MD, Schaab J, Viart N, Fiebig M, Trassin M. Domain wall architecture in tetragonal ferroelectric thin films. Adv Mater. 2017;29:1605145.10.1002/adma.201605145Search in Google Scholar PubMed

202. Cherifi-Hertel S, Bulou H, Hertel R, Taupier G, Dorkenoo KDH, Andreas C, et al. Non-Ising and chiral ferroelectric domain walls revealed by nonlinear optical microscopy. Nat Commun. 2017;8:15768.10.1038/ncomms15768Search in Google Scholar PubMed PubMed Central

203. Nataf GF, Barrett N, Kreisel J, Guennou M. Raman signatures of ferroic domain walls captured by principal component analysis. J Phys Condens Matter. 2018;30:035902.10.1088/1361-648X/aa9778Search in Google Scholar PubMed

204. Hadjimichael M, Zatterin E, Fernandez-Peña S, Leake SJ, Zubko P. Domain wall orientations in ferroelectric superlattices probed with synchrotron X-ray diffraction. Phys Rev Lett. 2018;120:037602.10.1103/PhysRevLett.120.037602Search in Google Scholar PubMed

205. Li D, Huang X, Xiao Z, Chen H, Zhang L, Hao Y, et al. Polar coupling enabled nonlinear optical filtering at MoS2/ferroelectric heterointerfaces. Nat Commun. 2020;11:1422.10.1038/s41467-020-15191-2Search in Google Scholar PubMed PubMed Central

206. Meier D, Maringer M, Lottermoser T, Becker P, Bohatý L, Fiebig M. Observation and coupling of domains in a spin-spiral multiferroic. Phys Rev Lett. 2009;102:107202.10.1103/PhysRevLett.102.107202Search in Google Scholar PubMed

207. Leo N, Bergman A, Cano A, Poudel N, Lorenz B, Fiebig M, et al. Polarization control at spin-driven ferroelectric domain walls. Nat Commun. 2015;6:6661.10.1038/ncomms7661Search in Google Scholar PubMed

208. Tokunaga Y, Furukawa N, Sakai H, Taguchi Y, Arima TH, Tokura Y. Composite domain walls in a multiferroic perovskite ferrite. Nat Mater. 2009;8:558–62.10.1038/nmat2469Search in Google Scholar PubMed

209. Tokunaga Y, Taguchi Y, Arima TH, Tokura Y. Electric-field-induced generation and reversal of ferromagnetic moment in ferrites. Nat Phys. 2012;8:838–44.10.1038/nphys2405Search in Google Scholar

210. Matsubara M, Manz S, Mochizuki M, Kubacka T, Iyama A, Aliouane N, et al. Magnetoelectric domain control in multiferroic TbMnO3. Science. 2015;348:1112–15.10.1126/science.1260561Search in Google Scholar PubMed

211. Geng Y, Lee N, Choi YJ, Cheong SW, Wu W. Collective magnetism at multiferroic vortex domain walls. Nano Lett. 2012;12:6055–9.10.1021/nl301432zSearch in Google Scholar PubMed

212. Xu T, Shimada T, Araki Y, Wang J, Kitamura T. Multiferroic domain walls in ferroelectric PbTiO3 with oxygen deficiency. Nano Lett. 2016;16:454–8.10.1021/acs.nanolett.5b04113Search in Google Scholar PubMed

213. Farokhipoor S, Magén C, Venkatesan S, Íñiguez J, Daumont CJ, Rubi D, et al. Artificial chemical and magnetic structure at the domain walls of an epitaxial oxide . Nature. 2014;515:379–83.10.1038/nature13918Search in Google Scholar PubMed

214. Logginov AS, Meshkov GA, Nikolaev AV, Nikolaeva EP, Pyatakov AP, Zvezdin AK. Room temperature magnetoelectric control of micromagnetic structure in iron garnet films. Appl Phys Lett. 2008;93:182510.10.1063/1.3013569Search in Google Scholar

215. Fontcuberta J, Skumryev V, Laukhin V, Granados X, Salje EK. Polar domain walls trigger magnetoelectric coupling. Sci Rep. 2015;5:13784.10.1038/srep13784Search in Google Scholar PubMed PubMed Central

216. Salje EK, Ding X. Ferroelastic domain boundary-based multiferroicity. Crystals. 2016;6:163.10.3390/cryst6120163Search in Google Scholar

217. Nataf GF, Guennou M, Kreisel J, Hicher P, Haumont R, Aktas O, et al. Control of surface potential at polar domain walls in a nonpolar oxide. Phys Rev Mater. 2017;1:074410.10.1103/PhysRevMaterials.1.074410Search in Google Scholar

218. Wei XK, Sluka T, Fraygola B, Feigl L, Du H, Jin L, et al. Controlled charging of Ferroelastic domain walls in oxide ferroelectrics. ACS Appl Mater Interfaces. 2017;9:6539–46.10.1021/acsami.6b13821Search in Google Scholar PubMed

219. Burton JD, Tsymbal EY. Prediction of electrically induced magnetic reconstruction at the manganite/ferroelectric interface. Phys Rev B Condens Matter Mater Phys. 2009;80:174406.10.1103/PhysRevB.80.174406Search in Google Scholar

220. McNulty JA, Tran TT, Halasyamani PS, McCartan SJ, MacLaren I, Gibbs AS, et al. An electronically driven improper Ferroelectric: tungsten bronzes as microstructural analogs for the hexagonal manganites. Adv Mater. 2019;31:1903620.10.1002/adma.201903620Search in Google Scholar PubMed

221. Moure A. Review and perspectives of Aurivillius structures as a lead-free piezoelectric system. Appl Sci. 2018;8:62.10.3390/app8010062Search in Google Scholar

222. Birenbaum AY, Ederer C. Potentially multiferroic Aurivillius phase Bi5FeTi3O15: Cation site preference, electric polarization, and magnetic coupling from first principles. Phys Rev B. 2014;90:214109.10.1103/PhysRevB.90.214109Search in Google Scholar

223. Zhai X, Grutter AJ, Yun Y, Cui Z, Lu Y. Weak magnetism of Aurivillius-type multiferroic thin films probed by polarized neutron reflectivity. Phys Rev Mater. 2018;2:044405.10.1103/PhysRevMaterials.2.044405Search in Google Scholar

224. Yang J, Zhu X, Wang F, Song D, Chen L, Yang B. Evolution of structure and ferroelectricity in Aurivillius Bi4Bin−3Fen−3Ti3O3n+3 thin films. J Mater Chem C. 2018;6:8618–27.10.1039/C8TC02270DSearch in Google Scholar

225. Djani H, Garcia-Castro AC, Tong WY, Barone P, Bousquet E, Picozzi S, et al. Rationalizing and engineering Rashba spin-splitting in ferroelectric oxides. Npj Quantum Mater. 2019;4:51.10.1038/s41535-019-0190-zSearch in Google Scholar

226. Campanini M, Trassin M, Ederer C, Erni R, Rossell MD. Buried in-plane ferroelectric domains in Fe-Doped single-crystalline aurivillius thin films. ACS Appl Electron Mater. 2019;1:1019–28.10.1021/acsaelm.9b00180Search in Google Scholar

227. Zhu L, Ralph DC, Buhrman RA. Highly efficient spin-current generation by the spin hall effect in Au1−xPtx. Phys Rev Appl. 2018;10:31001.10.1103/PhysRevApplied.10.031001Search in Google Scholar

228. Zhu L, Zhu L, Shi S, Ralph DC, Buhrman RA. Energy-efficient ultrafast SOT-MRAMs based on low-resistivity spin hall metal Au0.25Pt0.75. Adv Electron Mater. 2020;6:1–7.Search in Google Scholar

229. Heron JT 2013 Electric field control of ferromagnetism and magnetic devices using multiferroics PhD Thesis, Univ. California, BerkeleySearch in Google Scholar

230. Manipatruni S, Nikonov DE, Lin -C-C, Prasad B, Huang Y-L, Damodaran AR, et al. Voltage control of unidirectional anisotropy in ferromagnet-multiferroic system. Sci Adv. 2018;4:eaat4229.10.1126/sciadv.aat4229Search in Google Scholar PubMed PubMed Central

231. Binek C, Doudin B. Magnetoelectronics with magnetoelectrics. J Phys Condens Matter. 2005;17:L39–44.10.1088/0953-8984/17/2/L06Search in Google Scholar

232. Dowben PA, Binek C, Zhang K, Wang L, Mei WN, Bird JP, et al. Towards a strong spin-orbit coupling magnetoelectric transistor. IEEE J Explor Solid-State Comput Devices Circuits. 2018;4:1–9.10.1109/JXCDC.2018.2809640Search in Google Scholar

233. Chang S.-C. Inversion Charge Boost and Transient Steep-Slope Induced by Free-Charge-Polarization Mismatch in a Ferroelectric-Metal–Oxide–Semiconductor Capacitor. IEEE J Explor Solid-State Comput Devices Circuits. 2018;4:44–49.10.1109/JXCDC.2018.2846202Search in Google Scholar

234. Pan C, Lou Q, Niemier M, Hu S, Naeemi A. Energy-efficient convolutional neural network based on cellular neural network using beyond-CMOS technologies. IEEE J Explor Solid-State Comput Devices Circuits. 2019;5:85–93.10.1109/JXCDC.2019.2960307Search in Google Scholar

235. Stephan AW, Hu J, Koester SJ. Performance estimate of inverse Rashba-Edelstein magnetoelectric devices for neuromorphic computing. IEEE J Explor Solid-State Comput Devices Circuits. 2019;5:25–33.10.1109/JXCDC.2019.2903286Search in Google Scholar

236. Lesne E, Fu Y, Oyarzun S, Rojas-Sánchez JC, Vaz DC, Naganuma H, et al. Highly efficient and tunable spin-to-charge conversion through Rashba coupling at oxide interfaces. Nat Mater. 2016;15:1261–6.10.1038/nmat4726Search in Google Scholar PubMed

237. Yu G, Upadhyaya P, Fan Y, Alzate JG, Jiang W, Wong KL, et al. Switching of perpendicular magnetization by spin–orbit torques in the absence of external magnetic fields. Nat Nanotechnol. 2014;9:548–54.10.1038/nnano.2014.94Search in Google Scholar PubMed

238. Wang Z, Li Z, Wang M, Wu B, Zhu D, Zhao W. Field-free spin–orbit-torque switching of perpendicular magnetization aided by uniaxial shape anisotropy. Nanotechnology. 2019;30:375202.10.1088/1361-6528/ab2831Search in Google Scholar PubMed

239. Lau Y-C, Betto D, Rode K, Coey JMD, Stamenov P. Spin–orbit torque switching without an external field using interlayer exchange coupling. Nat Nanotechnol. 2016;11:758–62.10.1038/nnano.2016.84Search in Google Scholar PubMed

240. Van Den Brink A, Vermijs G, Solignac A, Koo J, Kohlhepp JT, Swagten HJ, et al. Field-free magnetization reversal by spin-hall effect and exchange bias. Nat Commun. 2016;7:1–6.10.1038/ncomms10854Search in Google Scholar PubMed PubMed Central

241. Cai K, Yang M, Ju H, Wang S, Ji Y, Li B, et al. Electric field control of deterministic current-induced magnetization switching in a hybrid ferromagnetic/ferroelectric structure. Nat Mater. 2017;16:712–6.10.1038/nmat4886Search in Google Scholar PubMed

242. Nan T, Hu J-M, Dai M, Emori S, Wang X, Hu Z, et al. A strain-mediated magnetoelectric-spin-torque hybrid structure. Adv Funct Mater. 2019;29:1806371.10.1002/adfm.201806371Search in Google Scholar

243. Laanait N, Saenrang W, Zhou H, Eom CB, Zhang Z. Dynamic X-ray diffraction imaging of the ferroelectric response in bismuth ferrite. Adv Struct Chem Imaging. 2017;3:11.10.1186/s40679-017-0044-3Search in Google Scholar PubMed PubMed Central

244. Liu L, Rojac T, Damjanovic D, Di Michiel M, Daniels J. Frequency-dependent decoupling of domain-wall motion and lattice strain in bismuth ferrite. Nat Commun. 2018;9:1–10.10.1038/s41467-018-07363-ySearch in Google Scholar PubMed PubMed Central

245. Matveyev Y, Negrov D, Chernikova A, Lebedinskii Y, Kirtaev R, Zarubin S, et al. Effect of polarization reversal in ferroelectric TiN/Hf0.5Zr0.5O2/TiN devices on electronic conditions at interfaces studied in operando by hard X-ray photoemission spectroscopy. ACS Appl Mater Interfaces. 2017;9:43370–6.10.1021/acsami.7b14369Search in Google Scholar PubMed

246. Nordlander J, De Luca G, Strkalj N, Fiebig M, Trassin M. Probing ferroic states in oxide thin films using optical second harmonic generation. Appl Sci. 2018;8:570.10.3390/app8040570Search in Google Scholar

247. Gorfman S, Bokov AA, Davtyan A, Reiser M, Xie Y, Ye ZG, et al. Ferroelectric domain wall dynamics characterized with X-ray photon correlation spectroscopy. Proc Natl Acad Sci U S A. 2018;115:E6680–9.10.1073/pnas.1720991115Search in Google Scholar PubMed PubMed Central

248. Agar JC, Naul B, Pandya S, van der Walt S, Maher J, Ren Y, et al. Revealing ferroelectric switching character using deep recurrent neural networks. Nat Commun. 2019;10:1–11.10.1038/s41467-019-12750-0Search in Google Scholar PubMed PubMed Central

249. Degen CL. Scanning magnetic field microscope with a diamond single-spin sensor. Appl Phys Lett. 2008;92:24311.10.1063/1.2943282Search in Google Scholar

250. Maze JR, Stanwix PL, Hodges JS, Hong S, Taylor JM, Cappellaro P, et al. Nanoscale magnetic sensing with an individual electronic spin in diamond. Nature. 2008;455:644–7.10.1038/nature07279Search in Google Scholar PubMed

251. Rondin L, Tetienne JP, Hingant T, Roch JF, Maletinsky P, Jacques V. Magnetometry with nitrogen-vacancy defects in diamond. Reports Prog Phys. 2014;77:056503.10.1088/0034-4885/77/5/056503Search in Google Scholar PubMed

252. Gross I, Akhtar W, Garcia V, Martínez LJ, Chouaieb S, Garcia K, et al. Real-space imaging of non-collinear antiferromagnetic order with a single-spin magnetometer. Nature. 2017;549:252.10.1038/nature23656Search in Google Scholar PubMed

253. Geng Y, Das H, Wysocki AL, Wang X, Cheong S-W, Mostovoy M, et al. Direct visualization of magnetoelectric domains. Nat Mater. 2014;13:163–7.10.1038/nmat3813Search in Google Scholar PubMed

254. Schoenherr P, Giraldo L, Lilienblum M, Trassin M, Meier D, Fiebig M. Magnetoelectric force microscopy on antiferromagnetic 180° domains in Cr2O3. Materials. 2017;10:1051.10.3390/ma10091051Search in Google Scholar PubMed PubMed Central

255. Fiebig M, Fröhlich D, Sluyterman G, Pisarev RLV. Domain topography of antiferromagnetic Cr2O3 by second-harmonic generation. Appl Phys Lett. 1995;66:2906.10.1063/1.113699Search in Google Scholar

256. Chauleau JY, Haltz E, Carrétéro C, Fusil S, Viret M. Multi-stimuli manipulation of antiferromagnetic domains assessed by second-harmonic imaging. Nat Mater. 2017;16:803–7.10.1038/nmat4899Search in Google Scholar PubMed

257. Denev SA, Lummen TT, Barnes E, Kumar A, Gopalan V. Probing ferroelectrics using optical second harmonic generation. J Am Ceram Soc. 2011;94:2699–727.10.1111/j.1551-2916.2011.04740.xSearch in Google Scholar

258. Fiebig M, Pavlov VV, Pisarev RV. Second-harmonic generation as a tool for studying electronic and magnetic structures of crystals: review. J Opt Soc Am B. 2005;22:96.10.1364/JOSAB.22.000096Search in Google Scholar

259. Tzschaschel C, Satoh T, Fiebig M. Tracking the ultrafast motion of an antiferromagnetic order parameter. Nat Commun. 2019;10:1–6.10.1038/s41467-019-11961-9Search in Google Scholar PubMed PubMed Central

260. Stanciu CD, Hansteen F, Kimel AV, Kirilyuk A, Tsukamoto A, Itoh A, et al. All-optical magnetic recording with circularly polarized light. Phys Rev Lett. 2007;99:1–4.10.1103/PhysRevLett.99.047601Search in Google Scholar PubMed

261. Lambert CH, Mangin S, Varaprasad BS, Takahashi YK, Hehn M, Cinchetti M, et al. All-optical control of ferromagnetic thin films and nanostructures. Science. 2014;345:1337–40.10.1126/science.1253493Search in Google Scholar PubMed

262. Manz S, Matsubara M, Lottermoser T, Büchi J, Iyama A, Kimura T, et al. Reversible optical switching of antiferromagnetism in TbMnO3. Nat Photonics. 2016;10:653–6.10.1038/nphoton.2016.146Search in Google Scholar

263. Liou YD, Chiu YY, Hart RT, Kuo CY, Huang YL, Wu YC, et al. Deterministic optical control of room temperature multiferroicity in BiFeO3 thin films. Nat Mater. 2019;18:580–7.10.1038/s41563-019-0348-xSearch in Google Scholar PubMed

264. Yang MM, Alexe M. Light-induced reversible control of ferroelectric polarization in BiFeO3. Adv Mater. 2018;30:1704908.10.1002/adma.201704908Search in Google Scholar PubMed

265. Kundys B, Viret M, Colson D, Kundys DO. Light-induced size changes in BiFeO3 crystals. Nat Mater. 2010;9:803–5.10.1038/nmat2807Search in Google Scholar PubMed

266. Vats G, Bai Y, Zhang D, Juuti J, Seidel J. Optical control of ferroelectric domains: nanoscale insight into macroscopic observations. Adv Opt Mater. 2019;7:1800858.10.1002/adom.201800858Search in Google Scholar

267. Rubio-Marcos F, Ochoa DA, Del Campo A, García MA, Castro GR, Fernández JF, et al. Reversible optical control of macroscopic polarization in ferroelectrics. Nat Photonics. 2018;12:29–32.10.1038/s41566-017-0068-1Search in Google Scholar

268. Stoica VA, Laanait N, Dai C, Hong Z, Yuan Y, Zhang Z, et al. Optical creation of a supercrystal with three-dimensional nanoscale periodicity. Nat Mater. 2019;18:377–83.10.1038/s41563-019-0311-xSearch in Google Scholar PubMed

269. Yang M, Kim DJ, Alexe M. Flexo-photovoltaic effect. Science. 2018;907:904–7.10.1126/science.aan3256Search in Google Scholar PubMed

270. Chu K, Jang BK, Sung JH, Shin YA, Lee ES, Song K, et al. Enhancement of the anisotropic photocurrent in ferroelectric oxides by strain gradients. Nat Nanotechnol. 2015;10:972–9.10.1038/nnano.2015.191Search in Google Scholar PubMed

271. Matzen S, Fusil S. Domains and domain walls in multiferroics. Comptes Rendus Phys. 2015;16:227–40.10.1016/j.crhy.2015.01.013Search in Google Scholar

Published Online: 2020-12-18

© 2020 Walter de Gruyter GmbH, Berlin/Boston