Skip to content
Licensed Unlicensed Requires Authentication Published online by De Gruyter January 26, 2021

Changes in porphyrin’s conjugation based on synthetic and post-synthetic modifications

Karolina Urbańska, Marco Farinone and Miłosz Pawlicki ORCID logo
From the journal Physical Sciences Reviews

Abstract

Porphyrins or more broadly defined porphyrinoids are the structures where the extended π-cloud can be significantly modified by several factors. The broad range of introduced structural motifs has shown a possibility of modification of conjugation by a controlled synthetic approach, leading to expected optical or magnetic behaviour, and also by post-synthetic modifications (i.e. redox or protonation/deprotonation), Both approaches lead to noticeab changes in observed properties but also open a potential for further utilization. Thus, this already constituted big family of macrocyclic structures with specific highly extended π-delocalization shows a significant contribution in several fields from fundamental studies, leading to understanding behaviour of skeletons like that with a substantial influence on biological studies and material science. The presented material focuses on the most significant examples of modifications of porphyrinoids skeleton leading to drastic changes in optical response and magnetic properties. Through the presentation, the focus will be placed on the changes leading to the most red-shifted transition as the parameter indicating extending the π-delocalization. Significantly different magnetic character will be also discussed based on the switching between aromatic/antiaromatic character assigned to macrocyclic structures that will be included.


Corresponding author: Miłosz Pawlicki, Wydział Chemii, Uniwersytet Wrocławski, F. Joliot-Curie 14, 50-383Wrocław, Poland, E-mail: .

Funding source: Narodowe Centrum Nauki

Award Identifier / Grant number: 2016/23/B/ST5/01186

  1. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Shimizu, S. Recent advances in subporphyrins and triphyrin analogues: contracted porphyrins comprising three pyrrole ring. Chem Rev 2017;117:2730–84. https://doi.org/10.1021/acs.chemrev.6b00403.Search in Google Scholar

2. a) Tanaka, T, Osuka, A. Chemistry of meso-aryl-substituted expanded porphyrins: aromaticity and molecular twist. Chem Rev 2017;117:2584–640. https://doi.org/10.1021/acs.chemrev.6b00371.Search in Google Scholar

b) Sarma, A, Panda, PK. Annulated isomeric, expanded, and contracted porphyrins. Chem Rev 2017;117:2785–838. https://doi.org/10.1021/acs.chemrev.6b00411.Search in Google Scholar

c) Szyszko, B, Białek, MJ, Pacholska-Dudziak, E, Latos-Grażyński, L. Flexible porphyrinoids. Chem Rev 2017;117:2839–909. https://doi.org/10.1021/acs.chemrev.6b00423.Search in Google Scholar

3. Pawlicki, M, Latos-Grażyński, L. Aromaticity switching in porphyrinoids. Chem Asian J 2015;10:1438–51. https://doi.org/10.1002/asia.201500170.Search in Google Scholar

4. Inokuma, Y, Kwon, JH, Ahn, TK, Yoo, M-C, Kim, D, Osuka, A. Tribenzosubporphines: synthesis and characterization. Angew Chem Int Ed 2006;45:961–4. https://doi.org/10.1002/anie.200503426.Search in Google Scholar

5. Meller, A, Ossko, A. Phthalocyaninartige bor-komplexe. Monatsh Chem 1972;103:150, https://doi.org/10.1007/bf00912939.Search in Google Scholar

6. Inokuma, Y, Yoon, ZS, Kim, D, Osuka, A. Meso-aryl-Substituted subporphyrins: synthesis, structures, and large substituent effects on their electronic properties. J Am Chem Soc 2007;129:4747–61. https://doi.org/10.1021/ja069324z.Search in Google Scholar

7. Kobayashi, N, Takeuchi, Y, Matsuda, A. Meso-aryl subporphyrins. Angew Chem Int Ed 2007;46:758–60. https://doi.org/10.1002/anie.200603520.Search in Google Scholar

8. Myśliborski, R, Latos-Grażyński, L, Szterenberg, L, Lis, T. Subpyriporphyrin—a[14]triphyrin(1.1.1) homologue with an embedded pyridine moiety. Angew Chem Int Ed 2006;45:3670–4. https://doi.org/10.1002/anie.200600589.Search in Google Scholar

9. Xue, Z-L, Shen, Z, Mack, J, Kuzuhara, D, Yamada, H, Okujima, T, et al. A facile one-pot synthesis ofmeso-aryl-substituted [14]triphyrin(2.1.1). J Am Chem Soc 2008;130:16478–9. https://doi.org/10.1021/ja8068769.Search in Google Scholar

10. Anju, KS, Ramakrishnan, S, Srinivasan, A. Meso-aryl triphyrin(2.1.1). Org Lett 2011;13:2498–501. https://doi.org/10.1021/ol200668a.Search in Google Scholar

11. Lima, Y, Kuzuhara, D, Xue, Z-L, Akimoto, S, Yamada, H, Tominaga, K. Time-resolved fluorescence spectroscopy study of excited state dynamics of alkyl- and benzo-substituted triphyrin(2.1.1). Phys Chem Chem Phys 2014;16:13129–35. https://doi.org/10.1039/c4cp00301b.Search in Google Scholar

12. Kim, KS, Lim, JM, Myśliborski, R, Pawlicki, M, Latos-Grażyński, L, Kim, D. Origin of ultrafast radiationless deactivation dynamics of free-base subpyriporphyrins. J Phys Chem Lett 2011;2:477–81. https://doi.org/10.1021/jz1017366.Search in Google Scholar

13. Panda, KN, Thorat, KG, Ravikanth, M. Synthesis of meso-tetraaryl triphyrins(2.1.1). J Org Chem 2018;83:12945–50. https://doi.org/10.1021/acs.joc.8b02242.Search in Google Scholar

14. a) Kuzuhara, D, Yamada, H, Xue, Z, Okujima, T, Mori, S, Shen, Z, et al. New synthesis of meso-free-[14]triphyrin(2.1.1) by McMurry coupling and its derivatization to Mn(i) and Re(i) complexes. Chem Commun 2011;47:722–4. https://doi.org/10.1039/c0cc04286b.Search in Google Scholar

b) Kuzuhara, D, Sakakibara, Y, Mori, S, Okujima, T, Uno, H, Yamada, H. Thiatriphyrin(2.1.1): a core-modified contracted porphyrin. Angew Chem Int Ed 2013;52:3360–3. https://doi.org/10.1002/anie.201209678.Search in Google Scholar

c) Kuzuhara, D, Kawatsu, S, Furukawa, W, Hayashi, H, Aratani, N, Yamada, H. Synthesis of [14]Oxatriphyrins(2.1.1) and their transformation into ethane-bridged oxatripyrrins by boron complexation. Eur J Org Chem 2018:2122–9. https://doi.org/10.1002/ejoc.201800309.Search in Google Scholar

15. Lash, TD, Stateman, LM, AbuSalim, DI. Synthesis of Azulitriphyrins(1.2.1) and related benzocarbatriphyrins. J Org Chem 2019;84:14733−44. https://doi.org/10.1021/acs.joc.9b02315.Search in Google Scholar

16. Okujima, T, Inabaa, H, Mori, S, Takasea, M, Uno, H. Synthesis of azulitriphyrin(2.1.1) porphyr phthalocyanines. J Porphyr Phthalocyanines 2020;24:394–400. https://doi.org/10.1142/S108842461950130X.Search in Google Scholar

17. Stawski, W, Hurej, K, Skonieczny, J, Pawlicki, M. Organoboron complexes in edge‐sharing macrocycles: the triphyrin(2.1.1)-tetraphyrin(1.1.1.1) hybrid. Angew Chem Int Ed 2019;58:10946–50. https://doi.org/10.1002/anie.201904819.Search in Google Scholar

18. Pawlicki, M, Hurej, K, Szterenberg, L, Latos-Grażyński, L. Synthesis and switching the aromatic character of oxatriphyrins(2.1.1). Angew Chem Int Ed 2014;53:2992–6. https://doi.org/10.1002/anie.201310129.Search in Google Scholar

19. Pawlicki, M, Garbicz, M, Szterenberg, L, Latos-Grażyński, L. Oxatriphyrins(2.1.1) incorporating anortho-phenylene motif. Angew Chem Int Ed 2015;54:1906–9. https://doi.org/10.1002/anie.201410595.Search in Google Scholar

20. Bartkowski, K, Dimitrova, M, Chmielewski, PJ, Sundholm, D, Pawlicki, M. Aromatic and antiaromatic pathways in triphyrin(2.1.1) annelated with benzo[ b ]heterocycles. Chem Eur J 2019;25:15477–82. https://doi.org/10.1002/chem.201903863.Search in Google Scholar

21. Kumar, A, Thorat, KG, Ravikanth, M. Benzofuran-/benzothiophene-incorporated NIR-absorbing triphyrins(2.1.1). Org Lett 2018;20:4871–4. https://doi.org/10.1021/acs.orglett.8b02012.Search in Google Scholar

22. Kumar, A, Thorat, KG, Sinha, A, Butcher, RJ, Ravikanth, MJ. Meso-fused carbatriphyrins(2.1.1) and its organo phosphorus(V) complex. Org Chem 2019;84:9067–74. https://doi.org/10.1021/acs.joc.9b01015.Search in Google Scholar

23. a) Młodzianowska, A, Latos-Grażyński, L, Szterenberg, L, Stępień, M. Single-boron complexes of N-confused and N-fused porphyrins. Inorg Chem 2007;46:6950–7. https://doi.org/10.1021/ic700647v.Search in Google Scholar

b) Młodzianowska, A, Latos-Grażyński, L, Szterenberg, L. Phosphorus complexes of N-fused porphyrin and its reduced derivatives: new isomers of porphyrin stabilized via coordination. Inorg Chem 2008;47:6364–74. https://doi.org/10.1021/ic800437y.Search in Google Scholar

24. Pacholska-Dudziak, E, Ulatowski, F, Ciunik, Z, Latos-Grażyński, L. N-fusion approach in construction of contracted carbaporphyrinoids: formation of N-fused telluraporphyrin. Chem Eur J 2009;15:10924–9. https://doi.org/10.1002/chem.200900841.Search in Google Scholar

25. Higashino, T, Osuka, A. Phosphorus complexes of a triply-fused [24]pentaphyrin. Chem Sci 2012;3:103–7. https://doi.org/10.1039/C1SC00653C.Search in Google Scholar

26. Idec, A, Pawlicki, M, Latos-Grażyński, L. Three‐stage aromaticity switching in boron(III) and phosphorus(V) N‐fused p‐Benziporphyrin. Chem Eur J 2019;25:200–4. https://doi.org/10.1002/chem.201804983.Search in Google Scholar

27. Pawlicki, M, Latos-Grażyński, L, Szterenberg, L. 5,10,15-Triaryl-21,23-dioxacorrole and its isomer with a protruding furan ring. J Org Chem 2002;67:5644–53. https://doi.org/10.1021/jo025773f.Search in Google Scholar

28. Pawlicki, M, Kędzia, A, Bykowski, D, Latos-Grażyński, L. Reversible reduction of oxatriphyrin(3.1.1)-adjusting the coordination abilities to the central ion. Chem Eur J 2014;20:17500–6. https://doi.org/10.1002/chem.201404570.Search in Google Scholar

29. Idec, A, Skonieczny, J, Latos-Grażyński, L, Pawlicki, M. A mixed-valence Bis-phosphorus complex entrapped in a oxatriphyrin(3.1.1) surrounding. Eur J Org Chem 2016:3691–5. https://doi.org/10.1002/ejoc.201600701.Search in Google Scholar

30. Adinarayana, B, Thomas, AP, Yadav, P, Mukundam, V, Srinivasan, A. Carbatriphyrin(3.1.1)-a distinct coordination approach of BIII to generate organoborane and weak C−H⋅ ⋅ ⋅B interactions. Chem Eur J 2017;23:2993–7. https://doi.org/10.1002/chem.201605332.Search in Google Scholar

31. Banala, S, Rüh, T, Wurst, K, Kräutler, B. “Blackening” porphyrins by conjugation with quinones. Angew Chem Int Ed 2009;48:599–603. https://doi.org/10.1002/anie.200804143.Search in Google Scholar

32. Xiao, S-C, Liu, C-Z, Liu, W-K, Xie, W-Z, Lin, W-Y, Jiang, G-F, et al. Electrochemical and spectroelectrochemical properties of building blocks for molecular arrays: reactions of quinoxalino[2,3-b]porphyrins containing metal(II) ions. J Porphyr Phthalocyanines 2005;9:142–51. https://doi.org/10.1142/S1088424605000216.Search in Google Scholar

33. Kadish, KM, Wenbo, E, Sintic, PJ, Ou, Z, Shao, J, Ohkubo, K, et al. Quinoxalino[2,3-b’]porphyrins behave as π-expanded porphyrins upon one-electron reduction: broad control of the degree of delocalization through substitution at the macrocycle periphery. J Phys Chem B 2007;111:8762–74. https://doi.org/10.1021/jp0726743.Search in Google Scholar

34. Hutchison, JA, Sintic, PJ, Crossley, MJ, Nagamurac, T, Ghiggino, KP. The photophysics of selectively metallated arrays of quinoxaline-fused tetraarylporphyrins. Phys Chem Chem Phys 2009;11:3478–89. https://doi.org/10.1039/b820969c.Search in Google Scholar

35. Sendt, K, Johnston, LA, Hough, WA, Crossley, MJ, Hush, NS, Reimers, JR. Switchable electronic coupling in model oligoporphyrin molecular wires examined through the measurement and assignment of electronic absorption spectra. J Am Chem Soc 2002;124:9299–309, https://doi.org/10.1021/ja020081u.Search in Google Scholar

36. Wembo, E, Kadish, KM, Sintic, PJ, Khoury, T, Govenlock, LJ, Ou, Z, et al. Control of the orbital delocalization and implications for molecular rectification in the radical anions of porphyrins with coplanar 90° and 180° β,β′-fused extensions. J Phys Chem 2008;112:556–70. https://doi.org/10.1021/jp076406g.Search in Google Scholar

37. a) Yakutkin, V, Aleshchenkov, S, Chernov, S, Miteva, T, Nelles, G, Cheprakov, A, et al. Towards the IR limit of the triplet-triplet annihilation-supported up-conversion: tetraanthraporphyrin. Chem Eur J 2008;14:9846–50. https://doi.org/10.1002/chem.200801305.Search in Google Scholar

b) Lash, TD, Smith, BE, Melquist, MJ, Godfrey, BA. Synthesis of indenoporphyrins, highly modified porphyrins with reduced diatropic characteristics. J Org Chem 2011;76:5335–45. https://doi.org/10.1021/jo2006895.Search in Google Scholar

38. a) Finikova, OS, Cheprakov, AV, Vinogradov, SA. Synthesis and luminescence of solublemeso-unsubstituted tetrabenzo- and tetranaphtho[2,3]porphyrins. J Org Chem 2005;70:9562–72. https://doi.org/10.1021/jo051580.Search in Google Scholar

b) Yamada, H, Kushibe, K, Okujima, T, Unob, H, Ono, N. Novel one-pot synthesis of 5-alkenyl-15-alkynylporphyrins and their derivatisation to a butadiyne-linked benzoporphyrin dimer. Chem Commun 2006:383–5. https://doi.org/10.1039/b513848e.Search in Google Scholar

c) Yamada, H, Kuzuhara, D, Takahashi, T, Shimizu, Y, Uota, K, Okujima, T, et al. Synthesis and characterization of tetraanthroporphyrins. Org Lett 2008;10:2947–50. https://doi.org/10.1021/ol8008842.Search in Google Scholar

39. a) Akita, M, Hiroto, S, Shinokubo, H. Oxidative annulation of β-aminoporphyrins into pyrazine-fused diporphyrins. Angew Chem Int Ed 2012;51:2894–7. https://doi.org/10.1002/anie.201108037.Search in Google Scholar

b) Bruhn, T, Witterauf, F, Götz, DCG, Grimmer, CT, Würtemberger, M, Radius, U, et al. C,C- and N,C-coupled dimers of 2-aminotetraphenylporphyrins: regiocontrolled synthesis, spectroscopic properties, and quantum-chemical calculations. Chem Eur J 2014;20:3998–4006. https://doi.org/10.1002/chem.201304169.Search in Google Scholar

c) Mandoj, F, Nardis, S, Pudi, R, Lvova, L, Fronczek, FR, Smith, KM, et al. β-Pyrazino-fused tetrarylporphyrins. Dyes Pigm 2013;99:136–43. https://doi.org/10.1016/j.dyepig.2013.04.024.Search in Google Scholar

40. Ito, S, Hiroto, S, Lee, S, Son, M, Hisaki, I, Yoshida, T, et al. Synthesis of highly twisted and fully π-conjugated porphyrinic oligomers. J Am Chem Soc 2015;137:142–5. https://doi.org/10.1021/ja511905f.Search in Google Scholar

41. Crossley, MJ, Burn, PL. An approach to porphyrin-based molecular wires: synthesis of a bis(porphyrin)tetraone and its conversion to a linearly conjugated tetrakisporphyrin system. J Chem Soc Chem Commun 1991:1569–71. https://doi.org/10.1039/c39910001569.Search in Google Scholar

42. Crossley, MJ, Burn, PL. Rigid, laterally-bridged bis-porphyrin system. J Chem Soc Chem Commun 1987:39–40. https://doi.org/10.1039/c39870000039.Search in Google Scholar

43. Crossley, MJ, Burn, PL, Langford, SJ, Pyke, SM, Stark, AG. A new method for the synthesis of porphyrin-α-diones that is applicable to the synthesis of trans-annular extended porphyrin systems. J Chem Soc Chem Commun 1991:1567–8. https://doi.org/10.1039/c39910001567.Search in Google Scholar

44. Khoury, T, Crossley, MJ. Expansion of the porphyrin π-system: stepwise annelation of porphyrin β,β′-pyrrolic faces leading to trisquinoxalinoporphyrin. New J Chem 2009;33:1076–86. https://doi.org/10.1039/b901338e.Search in Google Scholar

45. Elliott, ABS, Gordon, KC, Khoury, T, Crossley, MJ. Probing the electronic structure of -fused quinoxalino porphyrins and tetraazaanthracene-bridged bis-porphyrins with resonance Raman spectroscopy and density functional theory. J Mol Struct 2012;1029:187–98. https://doi.org/10.1016/j.molstruc.2012.06.017.Search in Google Scholar

46. Khoury, T, Crossley, MJ. A strategy for the stepwise ring annulation of all four pyrrolic rings of a porphyrin. Chem Commun 2007:4851–3. https://doi.org/10.1039/b714612d.Search in Google Scholar

47. Reimers, JR, Lü, TX, Crossley, MJ, Hush, NS. Molecular electronic properties of fused rigid porphyrin-oligomer molecular wires. Chem Phys Lett 1996;256:353–9. https://doi.org/10.1016/0009-2614(96)00435-6.Search in Google Scholar

48. Grzybowski, M, Skonieczny, K, Butenschön, H, Gryko, DT. Comparison of oxidative aromatic coupling and the Scholl REACTION. Angew Chem Int Ed 2013;52:9900–30. https://doi.org/10.1002/anie.201210238.Search in Google Scholar

49. Fox, S, Boyle, RW. First examples of intramolecular Pd(0) catalysed couplings on ortho-iodinated meso-phenyl porphyrins. Chem Commun 2004:1322–3. https://doi.org/10.1039/b403466j.Search in Google Scholar

50. Mitsushige, Y, Yamaguchi, S, Lee, BS, Sung, YM, Kuhri, S, Schierl, CA, et al. Synthesis of thieno-bridged porphyrins: changing the antiaromatic contribution by the direction of the thiophene ring. J Am Chem Soc 2012;134:16540–3. https://doi.org/10.1021/ja3082999.Search in Google Scholar

51. a) Lewtak, JP, Gryko, D, Bao, D, Sebai, E, Vakuliuk, O, Ścigaja, M, et al. Naphthalene-fused metallo-porphyrins-synthesis and spectroscopy. Org Biomol Chem 2011;9:8178–81. https://doi.org/10.1039/c1ob06281f.Search in Google Scholar

b) Tanaka, M, Hayashi, S, Eu, S, Umeyama, T, Matano, Y, Imahori, H. Novel unsymmetrically π-elongated porphyrin for dye-sensitized TiO2cells. Chem Commun 2007:2069–71. https://doi.org/10.1039/b702501g.Search in Google Scholar

c) Cammidge, AN, Scaife, PJ, Berber, G, Hughes, DL. Cofacial porphyrin−ferrocene dyads and a new class of conjugated porphyrin. Org Lett 2005;7:3413–16. https://doi.org/10.1021/ol050962g.Search in Google Scholar

52. Davis, NKS, Pawlicki, M, Anderson, HL. Expanding the porphyrin π-system by fusion with anthracene. Org Lett 2008;10:3945–7. https://doi.org/10.1021/ol801500b.Search in Google Scholar

53. Ball, JM, Davis, NKS., Wilkinson, JD, Kirkpatrick, J, Teuscher, J, Gunning, R, et al. A panchromatic anthracene-fused porphyrin sensitizer for dye-sensitized solar cells. RSC Adv 2012;2:6846–53. https://doi.org/10.1039/c2ra20952g.Search in Google Scholar

54. Kurotobi, K, Kim, KS, Noh, SB, Kim, D, Osuka, A. A quadruply azulene-fused porphyrin with intense near-IR absorption and a large two-photon absorption cross section. Angew Chem Int Ed 2006;45:3944–7. https://doi.org/10.1002/anie.200600892.Search in Google Scholar

55. Jiao, C, Huang, K-W, Chi, C, Wu, J. Doubly and triply linked porphyrin−perylene monoimides as near IR dyes with large dipole moments and high photostability. J Org Chem 2011;76:661–4. https://doi.org/10.1021/jo1019046.Search in Google Scholar

56. Jiao, C, Zhu, L, Wu, J. BODIPY-fused porphyrins as soluble and stable near-IR dyes. Chem Eur J 2011;17:6610–6614. https://doi.org/10.1002/chem.201100619.Search in Google Scholar

57. Chen, Q, Brambilla, L, Daukiya, L, Mali, KS, De Feyter, S, Tommasini, M, et al. Synthesis of triply fused porphyrin-nanographene conjugates. Angew Chem Int Ed 2018;57:11233–7. https://doi.org/10.1002/anie.201805063.Search in Google Scholar

58. Davis, NKS, Thompson, AL, Anderson, HL. Bis-anthracene fused porphyrins: synthesis, crystal structure, and near-IR absorption. Org Lett 2010;12:2124–7. https://doi.org/10.1021/ol100619p.Search in Google Scholar

59. Gill, HS, Harmjanz, M, Santamaría, J, Finger, I, Scott, MJ. Facile oxidative rearrangement of dispiro-porphodimethenes to nonplanar and sheetlike porphyrins with intense absorptions in the near-IR region. Angew Chem Int Ed 2004;43:485–90. https://doi.org/10.1002/anie.200352762.Search in Google Scholar

60. Diev, VV, Schlenker, CW, Hanson, K, Zhong, Q, Zimmerman, JD, Forrest, SR, et al. Porphyrins fused with unactivated polycyclic aromatic hydrocarbons. J Org Chem 2012;77:143–59. https://doi.org/10.1021/jo201490y.Search in Google Scholar

61. a) Ishizuka, T, Saegusa, Y, Shiota, Y, Ohtake, K, Yoshizawa, K, Kojima, T. Multiply-fused porphyrins-effects of extended π-conjugation on the optical and electrochemical properties. Chem Commun 2013;49:5939–41. https://doi.org/10.1039/c3cc42831a.Search in Google Scholar

b) Saegusa, Y, Ishizuka, T, Komamura, K, Shimizu, S, Kotani, H, Kobayashi, N, et al. Ring-fused porphyrins: extension of π-conjugation significantly affects the aromaticity and optical properties of the porphyrin π-systems and the Lewis acidity of the central metal ions. Phys Chem Chem Phys 2015;17:15001–11. https://doi.org/10.1039/c5cp01420d.Search in Google Scholar

62. Davis, NKS, Thompson, AL, Anderson, HL. A porphyrin fused to four anthracenes. J Am Chem Soc 2011;133:30–1. https://doi.org/10.1021/ja109671f.Search in Google Scholar

63. Fukui, N, Cha, W‐Y, Lee, S, Tokuji, S, Kim, D, Yorimitsu, H, et al. Oxidative fusion reactions of meso-(diarylamino)porphyrins. Angew Chem Int Ed 2013;52:9728–9732. https://doi.org/10.1002/anie.201304794.Search in Google Scholar

64. Nowak-Król, A, Gryko, DT. Oxidative aromatic coupling of meso-arylamino-porphyrins. Org Lett 2013;15:5618–21. https://doi.org/10.1021/ol4022035.Search in Google Scholar

65. a) Pawlicki, M, Hurej, K, Kwiecińska, K, Szterenberg, L, Latos-Grażyński, L. A fused meso-aminoporphyrin: a switchable near-IR chromophore. Chem Commun 2015;51:11362–5. https://doi.org/10.1039/c5cc01231g.Search in Google Scholar

b) Hurej, K, Stawski, W, Latos-Grażyński, L, Pawlicki, M. Meso-N-pyrrole as a versatile substituent influencing the optical properties of porphyrin. Chem Asian J 2016;11:3329–33. https://doi.org/10.1002/asia.201601210.Search in Google Scholar

66. Berthelot, M, Hoffmann, G, Bousfiha, A, Echaubard, J, Roger, J, Cattey, H, et al. Oxidative C-N fusion of pyridinyl-substituted porphyrins. Chem Commun 2018;54:5414–17. https://doi.org/10.1039/c8cc01375f.Search in Google Scholar

67. Fujimoto, K, Oh, J, Yorimitsu, H, Kim, D, Osuka, A. Directly diphenylborane-fused porphyrins. Angew Chem Int Ed 2016;55:3196–9. https://doi.org/10.1002/anie.201511981.Search in Google Scholar

68. Kato, K, Kim, JO, Yorimitsu, H, Kim, D, Osuka, A. Triphenylsilane-fused porphyrins. Chem Asian J 2016;11:1738–46. https://doi.org/10.1002/asia.201600424.Search in Google Scholar

69. a) Fujimoto, K, Kasuga, Y, Fukui, N, Osuka, A. Diphenylphosphine-oxide-fused and diphenylphosphine-fused porphyrins: synthesis, tunable electronic properties, and formation of cofacial dimers. Chem Eur J 2017;23:6741–5. https://doi.org/10.1002/chem.201700909.Search in Google Scholar

b) Fujimoto, K, Osuka, A. Effective stabilization of a planar phosphorus(iii) center embedded in a porphyrin-based fused aromatic skeleton. Chem Sci 2017;8:8231–9. https://doi.org/10.1039/c7sc03882h.Search in Google Scholar

70. a) Shimizu, D, Oh, J, Furukawa, K, Kim, D, Osuka, A. Triarylporphyrin meso-oxy radicals: remarkable chemical stabilities and oxidation to oxophlorin π-cations. J Am Chem Soc 2015, 137, 15584−94. https://doi.org/10.1021/jacs.5b11223.Search in Google Scholar

b) Kato, K, Cha, W, Oh, J, Furukawa, K, Yorimitsu, H, Kim, D, et al. Spontaneous formation of an air-stable radical upon the direct fusion of diphenylmethane to a triarylporphyrin. Angew Chem Int Ed 2016;55:8711–14. https://doi.org/10.1002/anie.201602683.Search in Google Scholar

c) Kato, K, Furukawa, K, Mori, T, Osuka, A. Porphyrin-based air-stable helical radicals. Chem Eur J 2018;24:572–5. https://doi.org/10.1002/chem.201705291.Search in Google Scholar

71. a) Fukui, N, Cha, W, Shimizu, D, Oh, J, Furukawa, K, Yorimitsu, H, et al. Highly planar diarylamine-fused porphyrins and their remarkably stable radical cations. Chem Sci 2017;8:189–99. https://doi.org/10.1039/c6sc02721k.Search in Google Scholar

b) Wei, H, Feng, R, Fang, Y, Wang, L, Chen, C, Zhang, L, et al. The diradical‐dication strategy for BODIPY‐ and porphyrin‐based dyes with near‐infrared absorption maxima from 1070 to 2040 nm. Chem Eur J 2018;24:19341–7. https://doi.org/10.1002/chem.201804449.Search in Google Scholar

72. a) Cissell, JA, Vaid, TP, Rheingold, AL. An antiaromatic porphyrin complex: tetraphenylporphyrinato(silicon)(L)2(L = THF or pyridine). J Am Chem Soc 2005;127:12212–13. https://doi.org/10.1021/ja0544713.Search in Google Scholar

b) Song, H-E, Cissell, JA, Vaid, TP, Holten, D. Photophysics of Reduced Silicon tetraphenylporphyrin. J Phys Chem B 2007;111:2138–42. https://doi.org/10.1021/jp0667386.Search in Google Scholar

73. Cissell, JA, Vaid, TP, Yap, GPA. Reversible oxidation state change in Germanium(tetraphenylporphyrin) induced by a dative ligand: aromatic GeII(TPP) and antiaromatic GeIV(TPP)(pyridine)2. J Am Chem Soc 2007;129:7841–7. https://doi.org/10.1021/ja070794i.Search in Google Scholar

74. a) Yamamoto, Y, Yamamoto, A, Furuta, S-Y, Horie, M, Kodama, M, Sato, W, et al. Synthesis and structure of 16 π octaalkyltetraphenylporphyrins. J Am Chem Soc 2005;127:14540–1. https://doi.org/10.1021/ja052842.Search in Google Scholar

b) Yamamoto, Y, Hirata, Y, Kodama, M, Yamaguchi, T, Matsukawa, S, Akiba, K-Y, et al. Synthesis, reactions, and electronic properties of 16 π-electron octaisobutyltetraphenylporphyrin. J Am Chem Soc 2010;132:12627–38. https://doi.org/10.1021/ja102817a.Search in Google Scholar

75. Cissell, JA, Vaid, TP. The doubly oxidized, antiaromatic tetraphenylporphyrin complex [Li(TPP)][BF4]. Org Lett 2006;8:2401–4. https://doi.org/10.1021/ol060772l.Search in Google Scholar

76. Ito, T, Hayashi, Y, Shimizu, S, Shin, J‐Y, Kobayashi, N, Shinokubo, H. Gram-scale synthesis of nickel(II) norcorrole: the smallest antiaromatic porphyrinoid. Angew Chem Int Ed 2012;51:8542–5. https://doi.org/10.1002/anie.201204395.Search in Google Scholar

77. Xie, D, Liu, Y, Rao, Y, Kim, G, Zhou, M, Yu, D, et al. Meso-triaryl-substituted smaragdyrins: facile aromaticity switching. J Am Chem Soc 2018;140:16553–9. https://doi.org/10.1021/jacs.8b07973.Search in Google Scholar

78. Tanaka, T, Osuka, A. Chemistry of meso-aryl-substituted expanded porphyrins: aromaticity and molecular twist. Chem Rev 2017;117:2584–640. https://doi.org/10.1021/acs.chemrev.6b00371.Search in Google Scholar

79. Rosenthal, I. Phthalocyanines as photodynamic sensitizers*. Photochem Photobiol 1991;53:859–70. https://doi.org/10.1111/j.1751-1097.1991.tb09900.x.Search in Google Scholar

80. Woller, T, Ramos-Berdulas, N, Mandado, M, Alonso, M, de Proft, F, Contreras-Garcia, J. Understanding conductivity in molecular switches: a real space approach in octaphyrins. Phys Chem Chem Phys 2016;18:11829–38. https://doi.org/10.1039/c5cp07411h.Search in Google Scholar

81. Hilderbrand, SA, Weissleder, R. Near-infrared fluorescence: application to in vivo molecular imaging. Curr Opin Chem Biol 2010;14:71–9. https://doi.org/10.1016/j.cbpa.2009.09.029.Search in Google Scholar

82. Pawlicki, M, Collins, HA, Denning, RG, Anderson, HL. Two-photon absorption and the design of two-photon dyes. Angew Chem Int Ed 2009;48:3244–66. https://doi.org/10.1002/anie.200805257.Search in Google Scholar

83. Lim, JM, Yoon, ZS, Shin, J, Kim, KS, Yoon, M, Kim, D. The photophysical properties of expanded porphyrins: relationships between aromaticity, molecular geometry and non-linear optical properties. Chem Commun (J Chem Soc Sect D) 2009;3:261–73. https://doi.org/10.1039/b810718a.Search in Google Scholar

84. Woodward, RB. Aromaticity: an International Symposium Sheffield, 1966. London: The Chemical Society; 1966:21 p.Search in Google Scholar

85. Bauer, VJ, Clive, DLJ, Dolphin, D, Paine, JBIII, Harris, FL, King, MM, et al. Sapphyrins: novel aromatic pentapyrrolic macrocycles. J Am Chem Soc 1983;105:6429–36. https://doi.org/10.1021/ja00359a012.Search in Google Scholar

86. Shin, J, Furuta, H, Yoza, K, Igarashi, S, Osuka, A. Meso-aryl-substituted expanded porphyrins. J Am Chem Soc 2001;123:7190–1. https://doi.org/10.1021/ja0106624.Search in Google Scholar

87. Saito, S, Osuka, A. Expanded porphyrins: intriguing structures, electronic properties, and reactivities. Angew Chem Int Ed 2011;50:4342–73. https://doi.org/10.1002/anie.201003909.Search in Google Scholar

88. Yoon, ZS, Cho, D, Kim, KS, Sessler, JL. Nonlinear optical properties as a guide to aromaticity in congeneric pentapyrrolic expanded porphyrins: pentaphyrin, sapphyrin, isosmaragdyrin, and orangarin. J Am Chem Soc 2008;130:6930–1. https://doi.org/10.1021/ja801395y.Search in Google Scholar

89. Misra, R, Chandrashekar, TK. Structural diversity in expanded porphyrins. Acc Chem Res 2008;41:265–79. https://doi.org/10.1021/ar700091k.Search in Google Scholar

90. Chmielewski, PJ, Latos-Grażyński, L, Rachlewicz, K. 5,10,15,20-Tetraphenylsapphyrin-identification of a pentapyrrolic expanded porphyrin in the Rothemund synthesis. Chem Eur J 1995;1:68–73. https://doi.org/10.1002/chem.19950010111.Search in Google Scholar

91. Narayanan, SJ, Sridevi, B, Chandrashekar, TL, Vij, A, Roy, R. Novel core-modified expanded porphyrins withmeso-aryl substituents: synthesis, spectral and structural characterization. J Am Chem Soc 1999;121:9053–68. https://doi.org/10.1021/ja991472k.Search in Google Scholar

92. Chen, Q, Soll, M, Mizrahi, A, Saltsman, I, Fridman, N, Saphier, M, et al. Synthesis of contracted and expanded porphyrins with meso-CF3 Groups. Angew Chem Int Ed 2018;57:1006–10. https://doi.org/10.1002/anie.201710106.Search in Google Scholar

93. Shin, J, Furuta, H, Osuka, A. N-fused pentaphyrin. Angew Chem Int Ed 2001;40:619–21. https://doi.org/10.1002/1521-3773(20010202)40:3<619::aid-anie619>3.0.co;2-x.10.1002/1521-3773(20010202)40:3<619::AID-ANIE619>3.0.CO;2-XSearch in Google Scholar

94. Yoneda, T, Hoshino, T, Neya, S. [24]Pentaphyrin(2.1.1.1.1): a strongly antiaromatic pentaphyrin. J Org Chem 2017;82:10737–41. https://doi.org/10.1021/acs.joc.7b01998.Search in Google Scholar

95. a) Sessler, JL, Cyr, MJ, Lynch, V, McGhee, E, Ibers, JA. Synthetic and structural studies of sapphyrin, a 22-.pi.-electron pentapyrrolic “expanded porphyrin”. J Am Chem Soc 1990;112:2810–13. https://doi.org/10.1021/ja00163a059.Search in Google Scholar

b) Sessler, JL, Davis, JM. Sapphyrins: versatile anion binding agents. Acc Chem Res 2001;34:989–97. https://doi.org/10.1021/ar980117g.Search in Google Scholar

96. Ajay, J, Shirisha, S, Ishida, M, Ito, K, Mori, S, Furuta, H, et al. Chem Eur J 2019;25:1–10. https://doi.org/10.1002/chem.201805861.Search in Google Scholar

97. Firmansyah, D, Hong, S, Dutta, R, He, Q, Bae, J, Jo, H, et al. Trapping of stable [4 n +1] π‐electron species from peripherally substituted, conformationally rigid, antiaromatic hexaphyrins. Chem Eur J 2019;25:3525–31. https://doi.org/10.1002/chem.201900022.Search in Google Scholar

98. Ishida, M, Kim, S, Preihs, C, Ohkubo, K, Lim, JM, Lee, BS, et al. Protonation-coupled redox reactions in planar antiaromatic meso-pentafluorophenyl-substituted o-phenylene-bridged annulated rosarins. Nat Chem 2012;5:15–20. https://doi.org/10.1038/nchem.1501.Search in Google Scholar

99. a) Mori, H, Lim, JM, Kim, D, Osuka, A. Modulation of dual electronic circuits of [26]Hexaphyrins using internal aromatic straps. Angew Chem Int Ed 2013;52:12997–3001. https://doi.org/10.1002/anie.201308545.Search in Google Scholar

b) Lim, JM, Ganesan, K, Sung, YM, Srinivasan, A, Chandrashekar, TK, Kim, D. Photophysical properties of bridged core-modified hexaphyrins: conjugational perturbation of thiophene bridges. Chem Commun 2014;50:4358–60. https://doi.org/10.1039/c4cc00309h.Search in Google Scholar

100. Białek, MJ, Latos-Grażyński, L. Aromaticity switching via azulene transformations in azulene-bridged A,D-dithiahexaphyrin. Chem Commun (J Chem Soc Sect D) 2018;54:1837–40. https://doi.org/10.1039/c7cc08754c.Search in Google Scholar

101. a) Neves, MGPMS, Martins, RM, Tomé, AC, Silvestre, AJD, Silva, AMS, Félix, V, et al. Meso-substituted expanded porphyrins: new and stable hexaphyrins. Chem Commun (J Chem Soc Sect D) 1999;4:385–6. https://doi.org/10.1039/a808952c.Search in Google Scholar

b) Sankar, J, Mori, S, Saito, S, Rath, H, Suzuki, M, Inokuma, Y, et al. Unambiguous Identification of Möbius Aromaticity formeso-Aryl-Substituted [28]Hexaphyrins(1.1.1.1.1.1). J Am Chem Soc 2008;130:13568–79. https://doi.org/10.1021/ja801983d.Search in Google Scholar

102. Ishida, S, Soya, T, Osuka, A. A stable antiaromatic 5,20-dibenzoyl [28]hexaphyrin(1.1.1.1.1.1): core AuIII metalation and subsequent peripheral BIII metalation. Angew Chem Int Ed 2018;57:13640–3. https://doi.org/10.1002/anie.201808513.Search in Google Scholar

103. Myśliborski, R, Hurej, K, Pawlicki, M, Latos-Grażyński, L. Inversion triggered by protonation—a rubyrin with embedded α, β′-pyridine moieties. Angew Chem Int Ed 2018;57:16866–70. https://doi.org/10.1002/anie.201811138.Search in Google Scholar

104. Narayanan, SJ, Sridevi, B, Chandrashekar, TK, Englich, U, Ruhlandt-Senge, K. Interaction of Rh(I) withmeso-Arylsapphyrins and -Rubyrins: first Structural Characterization of Bimetallic Hetero-rubyrin Complex†. Inorg Chem 2001;40:1637–45. https://doi.org/10.1021/ic000703h.Search in Google Scholar

105. Ishida, S, Higashino, T, Mori, S, Mori, H, Aratani, N, Tanaka, T, et al. Diprotonated [28]Hexaphyrins(1.1.1.1.1.1): triangular antiaromatic macrocycles. Angew Chem Int Ed 2014;53:3427–31. https://doi.org/10.1002/anie.201400301.Search in Google Scholar

106. Shelnutt, JA, Song, X, Ma, J, Jia, S, Jentzen, W, Medforth, CJ, et al. Nonplanar porphyrins and their significance in proteins. Chem Soc Rev 1998;27:31–41. https://doi.org/10.1039/A827031Z.Search in Google Scholar

107. Chandrashekar, TK, Venkatraman, S. Core-modified expanded porphyrins: new generation organic materials. Acc Chem Res 2003;36:676–91. https://doi.org/10.1021/ar020284n.Search in Google Scholar

108. a) Shimizu, S, Taniguchi, R, Osuka, A. Meso-aryl-substituted [26]hexaphyrin(1.1.0.1.1.0) and [38]nonaphyrin(1.1.0.1.1.0.1.1.0) from oxidative coupling of a tripyrrane. Angew Chem Int Ed 2005;44:2225–9. https://doi.org/10.1002/anie.200463054.Search in Google Scholar

b) Seidel, D, Lynch, V, Sessler, JL. Cyclo[8]pyrrole: a simple-to-make expanded porphyrin with no meso bridges. Angew Chem Int Ed 2002;41:1422–5. https://doi.org/10.1002/1521-3773(20020415)41:8<1255::aid-anie1255>3.0.co;2-c.10.1002/1521-3773(20020415)41:8<1422::AID-ANIE1422>3.0.CO;2-OSearch in Google Scholar

109. a) Shimizu, S, Shin, J, Furuta, H, Ismael, R, Osuka, A. Perfluorinatedmeso-aryl-substituted expanded porphyrins. Angew Chem Int Ed 2003;42:78–82. https://doi.org/10.1002/anie.200390058.Search in Google Scholar

b) Shimizu, S, Aratani, N, Osuka, A. Meso-trifluoromethyl-substituted expanded porphyrins. Chem Eur J 2006;12:4909–18. https://doi.org/10.1002/chem.200600158.Search in Google Scholar

110. Anand, VG, Saito, S, Shimizu, S, Osuka, A. Internally 1,4-phenylene-bridgedmeso aryl-substituted expanded porphyrins: the decaphyrin and octaphyrin cases. Angew Chem Int Ed 2005;44:7244–8. https://doi.org/10.1002/anie.200502769.Search in Google Scholar

111. Shin, J, Lim, JM, Yoon, ZS, Kim, KS, Yoon, M, Hiroto, S, et al. Conformational changes ofmeso-aryl substituted expanded porphyrins upon protonation: effects on photophysical properties and aromaticity. J Phys Chem B 2009;113:5794–802. https://doi.org/10.1021/jp8101699.Search in Google Scholar

Published Online: 2021-01-26

© 2020 Walter de Gruyter GmbH, Berlin/Boston