Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter April 21, 2020

Fluorescence and fluorescent dyes

Heinz Langhals EMAIL logo
From the journal Physical Sciences Reviews


The handling and control of light is becoming more and more attractive in science and technology such as data processing and requires functional chromophores. As a consequence, fluorescent materials are of special importance because they allow the processing of light energy. Thus, basics of fluorescence are reported as prerequisites for planning complex functional structures. Various fluorescent systems are presented beginning with historic observations followed by a detailed discussion of light absorption and emission indicating fluorescent chromophores as molecular resonators; molecular dynamics and intermolecular interactions are leading to complex functional materials.


[1] Raab W. Vorläufige Anzeige von der Entdeckung des Schillerstoffes, einer neuen vegetabilischen Substanz. Archiv f d ges Naturlehre. 1827;10:121–3.Search in Google Scholar

[2] Rochleder F, Schwarz R. Über einige Bitterstoffe. Sitzungsberichte der k Akademie d Wiss Naturw Classe. 1852;9:70–9.Search in Google Scholar

[3] Berzelius J. Jahres-Bericht über die Fortschritte der physischen Wissenschaften. Tübingen: Heinrich Laub Verlag, 1837:283–7.Search in Google Scholar

[4] Nichols EL, Merritt E. Studies in luminescence, III. Phys Rev. 1904;19:18. DOI: 10.1103/PhysRevSeriesI.19.18. Chem Abstr. 1906:7432.Search in Google Scholar

[5] Langhals H. Chromophores for picoscale optical computers. In: Sattler K editor, Fundamentals of picoscience, 705–27.Bosa Roca/US: Taylor & Francis Inc. CRC Press Inc, 2013. ISBN 13: 9781466505094, ISBN 10: 146650509510.1201/b15523-47Search in Google Scholar

[6] Bergmann L, Schaefer C. Lehrbuch der Experimentalphysik, Band 2, Elektromagnetismus: Elektromagnetismus. (W.Rath, co-author) Berlin: De Gruyter, 2015; ISBN: 9783110188981.Search in Google Scholar

[7] Bergmann L, Schaefer C. Lehrbuch der Experimentalphysik / Optik. vol. 3. (H. Niedrig, ed.; W. Eichler, co-author) Berlin: De Gruyter, 2004; ISBN 978-3-11-017081-8.Search in Google Scholar

[8] Langhals H. A re-examination of the line-shape of the electronic spectra of complex molecules in solution. Log-Normal Function Versus Gaussian. Spectrochim Acta Part A. 2000;56:2207–10.10.1016/S1386-1425(00)00274-2Search in Google Scholar

[9] Langhals H. The rapid identification of organic colorants by UV/Vis-spectroscopy. Anal Bioanal Chem. 2002;374:573–8.10.1007/s00216-002-1473-xSearch in Google Scholar PubMed

[10] Langhals H. UV-Visible spectroscopy and the potential of fluorescent probes. In: Frimmel FH, Refractory organic substances in the environment. Weinheim: Wiley-VCH, 2002:200–14. ISBN 3-527-30173-9.10.1002/9783527611195.ch2jSearch in Google Scholar

[11] Langhals H, Ritter U. γ-hydroxyalkyl naphthalene-tetracarboxdiimides: Organic white pigments. Eur J Org Chem. 2008;3912–15.10.1002/ejoc.200800428Search in Google Scholar

[12] (a) Daubner SC, Fitzpatrick PF. Pteridines. Encyclopedia Biol Chem. (Eds.: W. J. Lennarz, M. D. Lane) 2004;3:556–60; Chem Abstr. 2005;143:55015; (b) Oliphant LW, Hudon J. Pteridines as reflecting pigments and components of reflecting organelles in vertebrates. Pigm Cell Res. 1993;6:205–8; Chem Abstr. 1994;120:159184; (c) Ziegler I. Pterins: pigments, cofactors and signal connection in cellular interaction. Naturwissenschaften. 1987;74:563–72; (d) Pfleiderer W, Natural pteridines – a chemical hobby. Adv Experim Med Biol. 1993;338:1–16; ISSN 0065–2598; (e) Landymore AF, Antia NJ, White-light promoted degradation of leucopterin and related pteridines dissolved in seawater, with evidence for involvement of complexation from major divalent cations of seawater. Marine Chem. 1978;6:309–25; Chem Abstr. 1978;89:220590.10.1016/B0-12-443710-9/00559-7Search in Google Scholar

[13] Bugnon P, Karrer K, Hahn M, Sieber W. (Ciba Specialty Chemicals Holding Inc., Switzerland). PCT Int Appl. WO 2006003093 (30.6.2004); Chem Abstr. 2006;144:109847.Search in Google Scholar

[14] Langhals H, Eberspächer M. Water nanomicellar solutions naphthalenetetracarboxilic acid bisimides used as sunscreens. Ger Offen. DE 102013014353.5 27 Aug 2013, Ger Offen DE 102014012594 26 Mar 2015; Chem Abstr. 2015;162:454180.Search in Google Scholar

[15] Rohn W. Anomale Dispersion einiger organischer Farbstoffe. Ann Phys. 1912;38:987–1013. DOI: in Google Scholar

[16] Kuhn W. The physical significance of optical rotary power. Trans Faraday Soc. 1930;26:293–308. DOI: 10.1039/TF9302600293.Search in Google Scholar

[17] Kirkwood JG. On the theory of optical rotatory power. J Chem Phys. 1937;5:479–421.10.1063/1.1750060Search in Google Scholar

[18] Roduner E, Krüger T, Forbes P, Kress K. Optical spectroscopy. Fundamentals and advanced applications. London: World Scientific, Publishing Europe Ltd, 2019: ISBN 978-1-78634-610-0.Search in Google Scholar

[19] Langhals H The determination of overlap between UV/Vis absorption and fluorescence spectra’ Ber Bunsenges Phys Chem 1979;83:730–2.10.1002/bbpc.19790830717Search in Google Scholar

[20] Langhals H, Eberspächer M, Hofer A. Learning about structural and optical properties of organic compounds through preparation of functional nano micelles while avoiding hazardous chemicals or complicated apparatus. J Chem Educ. 2015;92:1725–9. DOI: in Google Scholar

[21] Wolfbeis OS. ed. Fluorescence Spectroscopy. New methods and applications. Berlin: Springer Verlag, 1993:ISBN 3-540-55281-2.Search in Google Scholar

[22] in Google Scholar

[23] (a) Rothammel K. Antennenbuch. 5th edn. Stuttgart: Telekosmos Verlag, 1976. (b) Rüdenberg R. Der Empfang elektrischer Wellen in der drahtlosen Telegraphie. Ann d Phys. 1908;330:446–6. (c) Rüdenberg R. Der Empfang elektrischer Wellen in der drahtlosen Telegraphie. Ann d Phys Leipzig. 1908;25:466–500.Search in Google Scholar

[24] McCoy EF, Ross IG. Electronic states of aromatic hydrocarbons: The Franck-Condon principle and geometries in excited states. Aust J Chem. 1962;15:573–90.10.1071/CH9620573Search in Google Scholar

[25] Schmidt W. Optische Spektroskopie. 2nd ed. Weinheim: Wiley-VCH, 2000:ISBN 3-527-29828-2.10.1002/9783527663323Search in Google Scholar

[26] Hund F. Zur Deutung der Molekelspektren III. Zeitschrift für Physik. 1927;43:805–26.10.1007/BF01397249Search in Google Scholar

[27] Strickler SJ, Berg RA. Relationship between absorption intensity and fluorescence lifetime of molecules. J Chem Phys. 1962;37:814–22.10.1063/1.1733166Search in Google Scholar

[28] Förster T. Fluoreszenz organischer Verbindungen. Göttingen: Vandenhoeck & Ruprecht, 1951:158.Search in Google Scholar

[29] Schlücker T, Dhayalan V, Langhals H, Sämann C, Knochel P. Soluble adamantyl-substituted oligothiophenes with short fluorescence decay: An approach for ultra fast optical signal processing. Asian J Org Chem. 2015;4:763–9. DOI: 10.1002/ajoc.201500150.Search in Google Scholar

[30] Langhals H. A concept for molecular addressing by means of far-reaching electromagnetic interactions in the visible. J Electr Electron Syst. 2017;215. DOI: in Google Scholar

[31] Hecht E. Optik. München: Oldenbourg, 2009. ISBN: 978-3-486-58861-3.Search in Google Scholar

[32] Periasamy A, Clegg RM. Flim microscopy in biology and medicine. Boca Raton, Fla.: CRC Press, 2010. ISBN 978-1-4200-7890-9.Search in Google Scholar

[33] Lewis GN, Calvin M. The color of organic substances. Chem Rev. 1939;25:273–328.10.1021/cr60081a004Search in Google Scholar

[34] Baeyer A. Ueber eine neue Klasse von Farbstoffen. Ber Dtsch Chem Ges. 1871;4:555–8.10.1002/cber.18710040209Search in Google Scholar

[35] König W. Ueber den Begriff der “Polymethinfarbstoff” und eine davon ableitbare allgemeine Farbstoff -Formel als Grundlage einer neuen Systematik der Farbenchemie’. J Prakt Chem. 1926;112:1–36.10.1002/prac.19261120101Search in Google Scholar

[36] Wiese WL. Atomic oscillator strengths for light elements - progress and problems. J Korean Phys Soc. 1998;33:207–13.Search in Google Scholar

[37] Liu Y. A new method for obtaining Russell-Saunders terms’. J Chem Educ. 2011;88:295–8.10.1021/ed100721qSearch in Google Scholar

[38] Ludvíková L, Friš P, Heger D, Šebej P, Wirza J, Klán P. Photochemistry of rose bengal in water and acetonitrile: A comprehensive kinetic analysis’. Phys Chem Chem Phys. 2016;18:16266–73.10.1039/C6CP01710JSearch in Google Scholar

[39] Berlman IB. Handbook of fluorescence spectra of aromatic molecules, New York: Academic Press, 1971. LCCC-Nr. 78–154388.Search in Google Scholar

[40] Sauer M, Hofkens J, Enderlein J. Handbook of fluorescence spectroscopy and imaging. Weinheim: Wiley VCH, 2011: ISBN 978-3-527-31669-4.10.1002/9783527633500Search in Google Scholar

[41] Krasowitzkii BM, Bolotin BM. Organic luminescent materials, Weinheim: Wiley-VCH, 1988: ISBN 3-527-26728-X.Search in Google Scholar

[42] 15 Jan 2020.Search in Google Scholar

[43] Christie RM. Fluorescent dyes. Rev Prog Coloration. 1993;23:1–18.10.1533/9780857093974.2.562Search in Google Scholar

[44] Langhals H, Jaschke H. Naphthalene amidine imide dyes by transamination of naphthalene bisimides. Chem Eur J. 2006;12:2815–24.10.1002/chem.200500899Search in Google Scholar PubMed

[45] Langhals H, Ritter U. γ-hydroxyalkyl naphthalene-tetracarboxdiimides: Organic white pigments. Eur J Org Chem. 2008;3912–15.10.1002/ejoc.200800428Search in Google Scholar

[46] Langhals H, Eberspächer M. Water nanomicellar solutions naphthalenetetracarboxilic acid bisimides used as sunscreens. Ger Offen. DE 102014012594.7 27 Aug 2014. Chem Abstr. 2015;162:454180.Search in Google Scholar

[47] Adachi M, Murata Y, Nakamura S. Spectral similarity and difference of Naphthalenetetracarboxylic dianhydride, perylenetetracarboxylic dianhydride, and their derivatives. J Phys Chem. 1995;99:14240–6.10.1021/j100039a009Search in Google Scholar

[48] Zollinger H. Color chemistry: Syntheses, properties, and applications of organic dyes and pigments. Zürich: Verlag Helvetica Chimica Acta, 2003:ISBN 10: 3906390233 ISBN 13: 9783906390239.Search in Google Scholar

[49] Hunger K, Schmidt MU, Heber T, Reisinger F, Wannemacher S. Industrial organic pigments: production, crystal structures, properties, applications. 4th ed. Weinheim: Wiley-VCH, 2018:ISBN 978-3-527-32608-2.10.1002/9783527648320Search in Google Scholar

[50] Langhals H. Primary methods of generating solar power by using the targeted modification of fluorescent systems. Habilitationsschrift, Albert-Ludwigs-Universität Freiburg 1981, translation 9 Aug 2019. DOI: in Google Scholar

[51] Graser F, Feichtmayr F. Perylenetetracarboxylic acid diimide dyes. Eur Pat Appl. 1982;97, 7 July 1982. EP 55363 A1 19820707. Chem Abstr.218033.Search in Google Scholar

[52] 15 Jan 2020.Search in Google Scholar

[53] Langhals H, Demmig S, Potrawa T. The relation between packing effects and solid state fluorescence of dyes. J Prakt Chem. 1991;333:733–48.10.1002/prac.19913330508Search in Google Scholar

[54] Langhals H, Karolin J, Johansson LB. Spectroscopic properties of new and convenient standards for measuring fluorescence quantum yields. J Chem Soc Faraday Trans. 1998;94:2919–22.10.1039/a804973dSearch in Google Scholar

[55] Langhals H, El-Shishtawy R, von Unold P, Rauscher M. Methoxyperylene bisimides and perylene lactame imides: novel, red fluorescent dyes. Chem Eur J. 2006;12:4642–5. supporting information.10.1002/chem.200501439Search in Google Scholar PubMed

[56] Langhals H, Walter A, Rosenbaum E, Johansson LB. A versatile standard for bathochromic fluorescence based on intramolecular FRET. Phys Chem Chem Phys. 2011;13:11055–9.10.1039/c1cp20467jSearch in Google Scholar

[57] Langhals H, Schönmann G, Feiler L. A two-step synthesis of quaterrylenetetracarboxylic bisimides - novel NIR fluorescent dyes. Tetrahedron Lett. 1995;36:6423–4.10.1016/0040-4039(95)01276-NSearch in Google Scholar

[58] Langhals H, Büttner J, Blanke P. A two-step synthesis for quarterrylene bisimides. Application of the “green route” method. Synthesis. 2005;364–6.10.1055/s-2004-837287Search in Google Scholar

[59] Langhals H, Zgela D, Lüling R. Sexterrylenetetracarboxylic bisimides: NIR dyes. J Org Chem. 2015;80:12146–50. DOI: 10.1021/acs.joc.5b02092.Search in Google Scholar

[60] Schweizer HR. Künstliche organische Farbstoffe und ihre Zwischenprodukte, Berlin: Springer-Verlag, 1964:LCCC Nr. 63–23133.10.1007/978-3-642-87245-7Search in Google Scholar

[61] Stauble M, Weber K. peri-Dicarboxylic acid imide dyes. CIBA Ltd., US patent US 2914531 19591124 Chem Abstr. 1960;54:47263.Search in Google Scholar

[62] Syebold G, Wagenblast G. New perylene and violanthrone dyestuffs for fluorescent collectors. Dyes Pigm. 1989;11:303–17.10.1016/0143-7208(89)85048-XSearch in Google Scholar

[63] Langhals H, Christian S, Hofer A. The substitution of aromatics by amines at room temperature with negative energy of activation: Amino peri-arylenes as metal-free components for dye-sensitized solar cells. J Org Chem. 2013;78:9883–91.10.1021/jo401597uSearch in Google Scholar

[64] Langhals H, Kirner S. Novel fluorescent dyes by the extension of the core of perylene-tetracarboxylic bisimides. Eur J Org Chem. 2000;365–80.10.1002/(SICI)1099-0690(200001)2000:2<365::AID-EJOC365>3.0.CO;2-RSearch in Google Scholar

[65] Langhals H, Jaschke H, Ring U, von Unold P. Imidazolo perylene imides: A highly fluorescent and stable replacement of terrylene. Angew Chem. 1999;111:143–5. Angew. Chem. Int. Ed. Engl. 1999;38:201–3.10.1002/(SICI)1521-3757(19990115)111:1/2<143::AID-ANGE143>3.0.CO;2-2Search in Google Scholar

[66] Langhals H. Primary methods of generating solar power by using the targeted modification of fluorescent systems, Habilitationsschrift, Albert-Ludwigs-Universität Freiburg. 1981. Open Access LMU UB München 15 Jan 2020. DOI: in Google Scholar

[67] Schäfer FP, Drexhage KH. Dye lasers. Berlin: Springer-Verlag, 1977: ISBN 978-3-540-51558-6.Search in Google Scholar

[68] Bogert MT, Renshaw RR. 4-Amino-o-phthalic acid and some of its derivatives. J Am Chem Soc. 1908;30:1135–44.10.1021/ja01949a012Search in Google Scholar

[69] Fritzsche K, Langhals H. Elektronenreiche Heterocyclen als Donorgruppen in Fluoreszenzfarbstoffen. Chem Ber. 1984;117:2275–86.10.1002/cber.19841170619Search in Google Scholar

[70] Zhmyreva IA, Zelinskii VV, Kolobkov VP, Krasnitskaya ND. Universal scale for the action of solvents on the electron spectra of organic compounds. Dokl Akad Nauk SSSR. 1959;129:1089–92. Chem Abstr. 1961; 55:141336.Search in Google Scholar

[71] Langhals H. Heterocyclic structures applied as efficient molecular probes for the investigation of chemically important interactions in the liquid phase. Chem Heterocycl Compd. 2017;53:2–10. DOI: 10.1007/s10593-017-2014-z.Search in Google Scholar

[72] Langhals H. ‘Polarität von organischen Gläsern. Angew Chem. 1982;94:452–3. Angew Chem Int Ed Engl. 1982;21:432–433.10.1002/ange.19820940615Search in Google Scholar

[73] Potrawa T, Langhals H. Fluoreszenzfarbstoffe mit großen Stokes-Shifts - lösliche Dihydropyrrolopyrroldione. Chem Ber. 1987;120:1075–8.10.1002/cber.19871200702Search in Google Scholar

[74] Langhals H, Greiner R, Schlücker T, Jakowetz A. Light-driven molecular dynamics in perylenes with medium-controlled emission. J Org Chem. 2019; 84: 5425–30. in Google Scholar PubMed

[75] Haberhauer G, Gleiter R, Burkhart C. Planarized intramolecular charge transfer: A concept for fluorophores with both large stokes shifts and high fluorescence quantum yields. Chem Eur J. 2016;22:971–8.10.1002/chem.201503927Search in Google Scholar PubMed

[76] Lewis GN, Calvin M. The color of organic substances. Chem Rev. 1939;25:273–328.10.1021/cr60081a004Search in Google Scholar

[77] Langhals H, Unold PV. Tetracarboxylic Bisimide-lactame-ring-contractions: A novel type of rearrangement. Angew Chem. 1995;107:2436–9. Angew Chem Int Ed. 1995;34:2234–2236.10.1002/ange.19951072019Search in Google Scholar

[78] Rettig W. Charge separation in excited states of decoupled systems: Twisted intramolecular charge transfer (TICT) compounds and implications for the development of new laser dyes and for the primary process of vision and photosynthesis. Angew Chem. 1986;98:969–86. Angew Chem Int Ed. 1986;25:971–988.10.1002/ange.19860981104Search in Google Scholar

[79] Greiner R, Schlücker T, Zgela D, Langhals H. Fluorescent aryl naphthalene dicarboximides with large Stokes’ shifts and strong solvatochromism controlled by dynamics and molecular geometry. J Mater Chem C. 2016;4:11244–52. DOI: 10.1039/C6TC04453K.Search in Google Scholar

[80] Tietze E, Bayer O. Sulfonic acids of pyrene and their derivatives. Justus Liebigs Ann Chem. 1939;540:189–210.10.1002/jlac.19395400113Search in Google Scholar

[81] Förster T, Völker S. Laser-excited absorption spectroscopy of rapid proton transfer processes. II. Reactions with weak acids. Zeitschr Phys Chem (München, Germany). 1975;97:275–84. Chem Abstr 1976; 84:104801:.Search in Google Scholar

[82] Langhals H, Rauscher M. NIR absorption of perylene dyes and fluorescence with large Stokes shift by simple deprotonation. Z Naturforsch. 2013;68b:683–6.10.5560/znb.2013-3090Search in Google Scholar

[83] Vogt LH, Jr., Wirth JG. Crystal and molecular structure of 2,2’-bis(6-methyl-3-pyridinol). J Am Chem Soc. 1971;93:5402–5.10.1021/ja00750a015Search in Google Scholar

[84] Langhals H, Pust S. Fluoreszenzfarbstoffe mit großen Stokes-Shifts - eine einfache Synthese von (2,2’-Bipyridin)-3,3’-diol. Chem Ber. 1985;118:4674–81.10.1002/cber.19851181204Search in Google Scholar

[85] Bulska H. Intramolecular cooperative double proton transfer in [2,2’-bipyridyl]-3,3’-diol. Chem Phys Lett. 1983;98:398–402.10.1016/0009-2614(83)80231-0Search in Google Scholar

[86] Naumann C, Langhals H. A simple synthesis of Dihydroxybipyridyls. Synthesis. 1990;279–81.10.1055/s-1990-26852Search in Google Scholar

[87] Johansson LB, Persson L, Langhals H. Conspicuous absorption and fluorescence spectroscopic properties of 3,3’-dihydroxy-2,2’-bipyridines in solution. J Chem Soc Faraday Trans. 1996;92:4909–11.10.1039/FT9969204909Search in Google Scholar

[88] Stock K, Schriever C, Lochbrunner S, Riedle E. Reaction path dependent coherent wavepacket dynamics in excited state intramolecular double proton transfer. Chem Phys. 2008;349:197–203.10.1016/j.chemphys.2008.03.007Search in Google Scholar

[89] Plasser F, Barbatti M, Aquino AJ, Lischka H. Excited-state diproton transfer in [2,2’-bipyridyl]-3,3’-diol: The mechanism Is sequential, not concerted. J Phys Chem A. 2009;113:8490–9.10.1021/jp9032172Search in Google Scholar PubMed

[90] Zhao J, Liu X, Zheng Y. Controlling excited state single versus double proton transfer for 2,2’-bipyridyl-3,3’-diol: Solvent effect. J Phys Chem A. 2017;121:4002–8.10.1021/acs.jpca.7b01404Search in Google Scholar PubMed

[91] Reynal A, Etxebarria J, Nieto N, Serres S, Palomares E, Vidal-Ferran A. A bipyridine-based “naked-eye” fluorimetric Cu2+ chemosensor. Europ J Inorg Chem. 2010;1360–5.10.1002/ejic.200900887Search in Google Scholar

[92] Valeur B, Berberan-Santos M. Excitation energy transfer. Molecular fluorescence: Principles and applications. 2nd ed. Weinheim: Wiley-VCH, 2012. DOI: 10.1002/9783527650002.ch8. ISBN 9783527328376.Search in Google Scholar

[93] Golbeck JH. Structure and function of photosystem I. Annual Rev Plant Physiol Plant Mol Biol. 1992;43:293–324.10.1146/annurev.pp.43.060192.001453Search in Google Scholar

[94] Dexter DL. A theory of sensitized luminescence in solids. J Chem Phys. 1953;21:836–50.10.1063/1.1699044Search in Google Scholar

[95] Förster T. Zwischenmolekulare Energiewanderung und Fluoreszenz. Ann Phys. 1948;437:55–75. in Google Scholar

[96] Perrin F. The fluorescence of solutions: Molecular induction, polarization and duration of emission and photochemistry. Ann Phys. [10]. 1929;12:169–275. Chem Abstr 1930;24:0.25377.10.1051/anphys/192910120169Search in Google Scholar

[97] Perrin F. Activation by light and by collisions in thermal equilibrium. Chem Rev. 1930;7:231–7. Chem Abstr 1930; 24:34772.10.1021/cr60026a005Search in Google Scholar

[98] VanBeek DB, Zwier MC, Shorb JM, Krueger BP. Fretting about FRET: Correlation between κ and R. Biophy J. 2007;92:4168–78.10.1529/biophysj.106.092650Search in Google Scholar PubMed PubMed Central

[99] Muñoz-Losa A, Curutchet C, Krueger BP, Hartsell LR, Mennucci B. Fretting about FRET: Failure of the ideal dipole approximation. Biophys J. 2009;96:4779–88.10.1016/j.bpj.2009.03.052Search in Google Scholar PubMed PubMed Central

[100] Langhals H, Poxleitner S, Krotz O, Pust T, Walter A. FRET in orthogonally arranged chromophores. Eur J Org Chem. 2008;4559–62.10.1002/ejoc.200800451Search in Google Scholar

[101] Langhals H, Esterbauer AJ, Walter A, Riedle E, Pugliesi I. Förster resonant energy transfer in orthogonally arranged chromophores. J Am Chem Soc. 2010;132:16777–82.10.1021/ja101544xSearch in Google Scholar PubMed

[102] Nalbach P, Pugliesi I, Langhals H, Thorwart M. Noise-induced Förster resonant energy transfer between orthogonal dipoles in photoexcited molecules. Phys Rev Lett. 2012;108:218302–1–218302-5.10.1103/PhysRevLett.108.218302Search in Google Scholar PubMed

[103] Langhals H, Walter A. FRET in dyads with orthogonal ohromophores and minimal spectral overlap. 2019. submitted.10.1021/acs.jpca.9b11225Search in Google Scholar PubMed

[104] Renger T, Dankl M, Klinger A, Schlücker T, Langhals H, Müh F. Structure-based theory of fluctuation-induced energy transfer in a molecular dyad. J Phys Chem Lett. 2018;9:5940–7. DOI: 10.1021/acs.jpclett.8b02403.Search in Google Scholar

[105] Václav P, Sláma V, Lincoln CN, Langhals H, Riedle E, Mančal T, et al. Geometric dependencies of vibronically mediated excitation transfer in rylene dyads., e-Print Archive, Physics. 2018:1–8. in Google Scholar

[106] Langhals H, Jona W. Intense dyes through chromophore-chromophore Interactions: Bi- and trichromophoric perylene-3,4:9,10-bis(dicarboximide)s. Angew Chem. 1998;110:998–1001. Angew Chem Int Ed. 1998;37:952–955.10.1002/(SICI)1521-3773(19980420)37:7<952::AID-ANIE952>3.0.CO;2-4Search in Google Scholar

[107] Langhals H, Jona W. Identification of carbonyl compounds by fluorescence: A novel carbonyl derivating reagent. Chem Eur J. 1998;4:2110–16.10.1002/(SICI)1521-3765(19981102)4:11<2110::AID-CHEM2110>3.0.CO;2-JSearch in Google Scholar

[108] Langhals H, Demmig S, Huber H. Rotational barriers in perylene fluorescent dyes. Spectrochim Acta. 1988;44A:1189–93.10.1016/0584-8539(88)80091-6Search in Google Scholar

[109] Langhals H, Riedle E, de Vivie-riedle R. unpublished results. 2011.Search in Google Scholar

[110] Mohr GJ, Spichiger UE, Jona W, Langhals H. Using N-aminoperylene-3,4:9,10-tetracarboxyl-bisimide as a fluorogenic reactand in the optical sensing of aqueous propionaldehyde. Anal Chem. 2000;72:1084–7.10.1021/ac991171tSearch in Google Scholar

[111] Tasior M, Gryko DT, Shen J, Kadish KM, Becherer T, Langhals H, et al. Energy- and electron-transfer processes in corrole-perylenebisimide-diphenylacetylene array. J Phys Chem C. 2008;112:19699–709.10.1021/jp8065635Search in Google Scholar

[112] Flamigni L, Ciuciu AI, Langhals H, Böck B, Gryko DT. Improving the photoinduced charge separation parameters in corrole-perylene carboximide dyads by tuning the redox and spectroscopic properties of the components. Chem an Asian J. 2012;7:582–92.10.1002/asia.201100818Search in Google Scholar

[113] Flamigni L, Ventura B, Barbieri A, Langhals H, Wetzel F, Fuchs K, et al. On/Off switching of the perylene tetracarboxylic bisimide luminescence by means of substitution at the N position by electron rich mono-, di- and tri-methoxybenzenes. Chem Eur J. 2010;16:13406–16.10.1002/chem.201001489Search in Google Scholar

[114] Dessolin M. Reactivity of α-effect nucleophiles toward aryl acetates. Effect of substituent in leaving groups. Tetrahedron Lett. 1972;45:4585–8.10.1016/S0040-4039(01)94372-2Search in Google Scholar

[115] Liebman JF, Pollack RM. Aromatic transition states and the α effect. J Org Chem. 1973;38:3444–545.10.1021/jo00959a059Search in Google Scholar

[116] Langhals H, Obermeier A, Floredo Y, Zanelli A, Flamigni L. Light-driven charge separation in isoxazolidine-perylene bisimide dyads. Chem Eur J. 2009;15:12733–44.10.1002/chem.200901839Search in Google Scholar

[117] Woodward RB, Hoffmann R. The conservation of orbital symmetry. Angew Chem Int Ed. 1969;8:781–853.10.1016/B978-1-4832-3290-4.50006-4Search in Google Scholar

[118] Roda A. Chemiluminescence and Bioluminescence. Cambridge: Royal Society of Chemistry, 2011. ISBN 978-1-84755-812-1.Search in Google Scholar

[119] Brolin S, Wettermark G. Bioluminescence analysis, Weinheim: Wiley-VCH, 1992. ISBN 3-527-28194-0.Search in Google Scholar

[120] van Moer A, Ladyjensky J. Chemiluminescent solution based on substituted perylene. Eur Pat Appl. 1990;EP 403809 A2 19901227. Chem Abstr. 1991;114:256680.Search in Google Scholar

[121] Nowak B, Ladyjensky J. Multi-color chemiluminescent lighting device and method of making same. US Patent U.S. (1996), US 5508893 A 19960416. Chem Abstr. 1996;125:21964.Search in Google Scholar

[122] Scheibe G. Variability of the absorption spectra of some sensitizing dyes and its cause. Angew Chem. 1936;49:563.Search in Google Scholar

[123] Langhals H. Handling electromagnetic radiation beyond terahertz using chromophores to transition from visible light to petahertz technology. J Electric Electron Syst. 2014;3:125.Search in Google Scholar

[124] Förster T. Energiewanderung und Fluoreszenz. Naturwissenschaften. 1946;33:166–75.10.1007/BF00585226Search in Google Scholar

[125] Jelley EE. Spectral absorption and fluorescence of dyes in the molecular state. Nature. 1936;138:1009–10.10.1038/1381009a0Search in Google Scholar

[126] Langhals H, Jona W. Intense dyes through chromophore - chromophore Interactions: Bi- and trichromophoric Perylene-3,4:9,10-bis(dicarboximide)s. Angew Chem. 1998;110:998–1001. Angew Chem Int Ed Engl. 1998;37:952–955.10.1002/(SICI)1521-3773(19980420)37:7<952::AID-ANIE952>3.0.CO;2-4Search in Google Scholar

[127] Davydow AS. Theory of molecular excitations, Transl. H. Kasha und M. Oppenheimer, Jr., New York: McGraw-Hill, 1962.Search in Google Scholar

[128] Langhals H, Pust T. Lipophilic optical supramolecular nano devices in the aqueous phase. Green Sustainable Chem. 2011;1:1–6.10.4236/gsc.2011.11001Search in Google Scholar

[129] Langhals H, Ismael R. Cyclophanes as model compounds for permanent, dynamic aggregates - induced chirality with strong CD effects. Eur J Org Chem. 1998;1915–17.10.1002/(SICI)1099-0690(199809)1998:9<1915::AID-EJOC1915>3.0.CO;2-1Search in Google Scholar

[130] Langhals H, Rauscher M, Mayer P. A sustainable preparation of functional perylenophanes by domino metathesis. Green Sustainable Chem. 2019;9:38–77.10.4236/gsc.2019.92004Search in Google Scholar

[131] Chamberlin GJ, Chamberlin DG. Colour, Its measurement, computation and application, London: Heyden & Sons Ltd, 1980. ISBN 0-85501-222-6.Search in Google Scholar

[132] Richter M. Einführung in die Farbmetrik, 2nd ed. Berlin: de Gruyter, 1981:ISBN 3-11-008209-8.10.1515/9783110858266Search in Google Scholar

[133] Aubert C, Fünfschilling J, Zschokke-Gränacher I, Langhals H. Hochempfindliches Nachweisverfahren auf der Basis der Fluorescenz durch Laser-Anregung. Zeitschr Analyt Chem. 1985;320:361–4.10.1007/BF00488124Search in Google Scholar

[134] Renge I, Hubner CG, Renn A, Langhals H, Wild UP. Slow photochemical transformations of single dye molecules in polymer environment at room temperature. J Lumines. 2002;98:91–6.10.1016/S0022-2313(02)00256-9Search in Google Scholar

[135] Günes S, Neugebauer H, Sariciftci NS. Conjugated polymer-based organic solar cells. Chem Rev. 2007;107:1324−38.10.1021/cr050149zSearch in Google Scholar

[136] Langhals H, Saulich S. Bichromophoric perylene derivatives: Energy transfer from non fluorescent chromophores. Chem Eur J. 2002;8:5630–43.10.1002/1521-3765(20021216)8:24<5630::AID-CHEM5630>3.0.CO;2-ZSearch in Google Scholar

Published Online: 2020-04-21

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 27.1.2023 from
Scroll Up Arrow