Skip to content
Licensed Unlicensed Requires Authentication Published by Oldenbourg Wissenschaftsverlag July 13, 2016

Adsorption of volatile polonium and bismuth species on metals in various gas atmospheres: Part I – Adsorption of volatile polonium and bismuth on gold

Emilio Andrea Maugeri, Jörg Neuhausen, Robert Eichler, Rugard Dressler, Kim Rijpstra, Stefaan Cottenier, David Piguet, Alexander Vögele and Dorothea Schumann
From the journal Radiochimica Acta


Polonium isotopes are considered the most hazardous radionuclides produced during the operation of accelerator driven systems (ADS) when lead–bismuth eutectic (LBE) is used as the reactor coolant and as the spallation target material. In this work the use of gold surfaces for capturing polonium from the cover gas of the ADS reactor was studied by thermochromatography. The results show that gaseous monoatomic polonium, formed in dry hydrogen, is adsorbed on gold at 1058 K. Its adsorption enthalpy was calculated as –250±7 kJ mol−1, using a Monte Carlo simulation code. Highly volatile polonium species that were observed in similar experiments in fused silica columns in the presence of moisture in both inert and reducing gas were not detected in the experiments studying adsorption on gold surfaces. PoO2 is formed in both dry and moist oxygen, and its interaction with gold is characterized by transport reactions. The interaction of bismuth, present in large amounts in the atmosphere of the ADS, with gold was also evaluated. It was found that bismuth has a higher affinity for gold, compared to polonium, in an inert, reducing, and oxidizing atmosphere. This fact must be considered when using gold as a material for filtering polonium in the cover gas of ADS.


This work was supported by the project SEARCH, co-funded by the European Commission under the Seventh Euratom Framework Programme for Nuclear Research & Training Activities (2007–2011) under Contract Number 295736.


1. Cohen, B. L.: Risk analysis of buried waste from electricity generation. Am. J. Phys. 54, 38 (1986).10.1002/047147844X.gw993Search in Google Scholar

2. González-Romero, E. M.: Impact of partitioning and transmutation on the high level waste management. Nucl. Eng. Des. 241, 3436 (2011).10.1016/j.nucengdes.2011.03.030Search in Google Scholar

3. Salvatores, M., Palmiotti, G.: Radioactive waste partitioning and transmutation within advanced fuel cycles: achievements and challenges. Prog. Part. Nucl. Phys. 66, 144 (2011).10.1016/j.ppnp.2010.10.001Search in Google Scholar

4. Rubbia, C.: A high gain energy amplifier operated with fast neutrons. AIP Conf. Proc. 346, 44 (1995).10.1063/1.49069Search in Google Scholar

5. Sasa, T.: Research activities for accelerator-driven transmutation system at JAERI. Prog. Nucl. Energ. 47, 314 (2005).10.1016/j.pnucene.2005.05.030Search in Google Scholar

6. Magill, J., Pfennig, G., Dreher, R., Sóti, Z.: Karlsruher Nuklidkarte/Chart of the Nuclides. 9th ed. Nucleonica GmbH, Eggenstein-Leopoldshafen (2015).Search in Google Scholar

7. Colle, R., Fitzgerald, R. P., Laureano-Perez, L.: A new determination of the Po-209 half-life. J. Phys. G Nucl. Part. Phys. 41, 105103 (2014).10.1088/0954-3899/41/10/105103Search in Google Scholar

8. Naimark, D. H.: Effective half-life of polonium in the human, Technical Report MLM-272/XAB, Mound Lab., Miamisburg, OH. MLM-272/XAB; Other: CNN: AEC-AT-33-1-GEN-53 United States Other: CNN: AEC-AT-33-1-GEN-53 Tue Feb 12 16:32:19 EST 2008NTISGRA; GRA-94-31659; EDB-94-119176 English, 1949.Search in Google Scholar

9. Neuhausen, J., Köster, U., Eichler, B.: Investigation of evaporation characteristics of polonium and its lighter homologues selenium and tellurium from liquid Pb-Bi-eutecticum. Radiochim. Acta 92, 917 (2004).10.1524/ract.92.12.917.55105Search in Google Scholar

10. Gonzalez Prieto, B., Van den Bosch, J., Martens, J. A., Neuhausen, J., Aerts, A.: Equilibrium evaporation of trace polonium from liquid lead-bismuth eutectic at high temperature. J. Nucl. Mater. 450, 299 (2014).10.1016/j.jnucmat.2013.06.037Search in Google Scholar

11. Buongiorno, J., Larson, C., Czerwinski, K. R.: Speciation of polonium released from molten lead bismuth. Radiochim. Acta 91, 153 (2003).10.1524/ract. in Google Scholar

12. Ohno, S., Kurata, Y., Miyahara, S., Katsura, R., Yoshida, S.: Equilibrium evaporation behavior of polonium and its homologue tellurium in liquid lead-bismuth eutectic. J. Nucl. Sci. Technol. 43, 1359 (2006).10.1080/18811248.2006.9711230Search in Google Scholar

13. Petryanov, I. V., Borisov, N. B., Churkin, S. L., Borisova, L. I., Starostina, I. A.: Generation and isolation of gaseous fraction of polonium from its solid preparations. Dokl. Akad. Nauk SSSR 322, 557 (1992).Search in Google Scholar

14. Maugeri, E. A., Neuhausen, J., Eichler, R., Piguet, D., Mendonça, T. M., Stora, T., Schumann, D.: Thermochromatography study of volatile polonium species in various gas atmospheres. J. Nucl. Mater. 450, 292 (2014).10.1016/j.jnucmat.2013.11.024Search in Google Scholar

15. Pankratov, D. V., Efimov, E. I., Toshinskii, G. I., Ryabaya, L. D.: Analysis of the polonium hazard in nuclear power systems with lead–bismuth coolant. At. Energ. 97, 559 (2004).10.1023/B:ATEN.0000047682.88612.e1Search in Google Scholar

16. Buongiorno, J., Loewen, E. P., Czerwinski, K., Larson, C.: Studies of polonium removal from molten lead-bismuth for lead-alloy-cooled reactor applications. Nucl. Technol. 147, 406 (2004).10.13182/NT04-A3539Search in Google Scholar

17. Heinitz, S., Neuhausen, J., Schumann, D.: Alkaline extraction of polonium from liquid lead bismuth eutectic. J. Nucl. Mater. 414, 221 (2011).10.1016/j.jnucmat.2011.03.043Search in Google Scholar

18. Heinitz, S.: Investigations on physico-chemical aspects of lead-based alloys for nuclear applications. (Ph.D. Thesis), University of Bern (2013).Search in Google Scholar

19. Obara, T., Koga, T., Miura, T., Sekimoto, H.: Polonium evaporation and adhesion experiments for the development of polonium filter in lead–bismuth cooled reactors. Prog. Nucl. Energ. 50, 556 (2008).10.1016/j.pnucene.2007.11.039Search in Google Scholar

20. Gäggeler, H., Dornhofer, H., Schmidt-Ott, W. D., Greulich, N., Eichler, B.: Determination of adsorption enthalpy for polonium on surfaces of copper, silver, gold, palladium and platinum. Radiochim. Acta 38, 103 (1985).10.1524/ract.1985.38.2.103Search in Google Scholar

21. Rona, E.: Verdampfungsversuche an polonium. Sitzungsber. Akad. Wiss., Wien 141, 533 (1932).Search in Google Scholar

22. Rona, E., Hoffer, M.: Verdampfungsversuche an Polonium in Sauerstoff und Stickstoff. Sitzungsber. Akad. Wiss. Wien 144, 397 (1935).Search in Google Scholar

23. Eichler, B., Gaggeler, H., Rossbach, H., Hübener, S.: Adsorption of volatile metals on metal surfaces and its application in nuclear chemistry. 2. Evaluation of adsorption enthalpies for polonium on surfaces of transition metals and copper, silver and gold. Radiochim. Acta 38, 131 (1985).10.1524/ract.1985.38.3.131Search in Google Scholar

24. Zvara, I.: The inorganic radiochemistry of heavy elements. Springer, Netherlands (2010).Search in Google Scholar

25. Eichler, B., Zude, F., Fan, W., Trautmann, N., Herrmann, G.: Complex transport reactions in a temperature gradient tube: radiochemical study of volatilization and deposition of Iridium oxides and hydroxides. Radiochim. Acta 61, 81 (1993).10.1524/ract.1993.61.2.81Search in Google Scholar

26. Zvara, I.: Simulation of thermochromatographic processes by the Monte Carlo method. Radiochim. Acta 38, 95 (1985).10.1524/ract.1985.38.2.95Search in Google Scholar

27. Eichler, B.: The behaviour of radionuclides in gas adsorption chromatographic processes with superimposed chemical reactions (chlorides). Radiochim. Acta 72, 19 (1996).10.1524/ract.1996.72.1.19Search in Google Scholar

28. Greenwood, N. N., Earnshaw, A.: Chemistry of the elements. Pergamon press, Oxford (1984).Search in Google Scholar

29. Rijpstra, K.: Density functional theory as a tool to get more out of experimantal data: case-studies for Al-Zn-O and for the interaction between Po and Po-Bi-eutectic. (Ph.D. Thesis), Faculteit Wetenschappen Vakgroep Natuurkunde & Sterrenkunde, Universiteit Gent (2014).Search in Google Scholar

30. Eichler, B.: Bestimmung der Adsorptionswärmen gasförmiger Metalle auf festen Metalloberflächen bei Null-Bedeckung. Zentralinstitut für Kernforschung, Rossendorf (1978).Search in Google Scholar

31. Neuhausen, J.,Eichler, R.: Extension of Miedema’s macroscopic atom model to the elements of group 16 (O, S, Se, Te, Po) PSI Report No. 03–13. PSI, Villigen (2003).Search in Google Scholar

32. de Boer, F. R., Boom, R., Mattens, W. C. M., Miedema, A. R., Niessen, A. K.: Cohesion in metals, transition metal alloys. North-Holland, Amsterdam (1988).Search in Google Scholar

33. Eichler, B.,Rossbach, H.: Adsorption of volatile metals on metal-surfaces and its application in nuclear chemistry. 1. Calculation of adsorption enthalpies for hypothetical superheavy elements with Z around 114. Radiochim. Acta 33, 121 (1983).10.1524/ract.1983.33.23.121Search in Google Scholar

34. Abakumov, A. S.: Thermal reactions of polonium. Russ. Chem. Rev. 51, 622 (1982).10.1070/RC1982v051n07ABEH002886Search in Google Scholar

35. Fazio, C.: Handbook on lead-bismuth eutectic alloy and lead properties, materials compatibility, thermal-hydraulics and technologies – 2015 Edition, OECD/NEA Nuclear Science Committee (2015).Search in Google Scholar

36. Gonzáles Prieto, B.: Evaporation of polonium from lead-bismuth eutectic nuclear coolant, PhD, Bioscience Engineering, Ku Leuven (2015).Search in Google Scholar

37. Rizzi, M., Neuhausen, J., Eichler, R., Tuerler, A., Mendonca, T. M., Stora, T., Prieto, B. G., Aerts, A., Schumann, D.: Polonium evaporation from dilute liquid metal solutions. J. Nucl. Mater. 450, 304 (2014).10.1016/j.jnucmat.2014.01.047Search in Google Scholar

Supplemental Material:

The online version of this article (DOI: 10.1515/ract-2016-2573) offers supplementary material, available to authorized users.

Received: 2016-1-12
Accepted: 2016-5-13
Published Online: 2016-7-13
Published in Print: 2016-11-1

©2016 Walter de Gruyter GmbH, Berlin/Boston