Abstract
In this study, the γ-ray energy-dependent mass and linear attenuation coefficients of various granite and Turkish marble species have been experimentally obtained. Radionuclides (133Ba, 137Cs, 60Co and 22Na) with point geometry were used as γ-ray sources. The absorption capacity of each sample at nine γ-ray energies was measured using a high resolution γ-ray spectrometer equipped with a high purity germanium (HPGe) detector. To obtain the precision of the results (1σ standard deviation of the single value), this procedure was repeated six times for each species of granite and marble, respectively. The energy-dependent mass attenuation coefficient (MAC), linear attenuation coefficient (LAC), the half (HVL) and the tenth value layer (TVL) were calculated following that the MAC and LAC results were compared to the literature values.
References
1. Salinas, I. C. P., Conti, C. C., Lopes, R. T.: Effective density and mass attenuation coefficient for building material in Brazil. Appl. Radiat. Isot. 64, 13 (2006).10.1016/j.apradiso.2005.07.003Search in Google Scholar PubMed
2. Gurler, O., Akar Tarim, U.: An investigation on determination of attenuation coefficients for gamma-rays by Monte Carlo method. J. Radioanal. Nucl. Chem. 293, 397 (2012).10.1007/s10967-012-1749-3Search in Google Scholar
3. Sharaf, J. M., Saleh, H.: Gamma-ray energy buildup factor calculations and shielding effects of some Jordanian building structures. Radiat. Phys. Chem. 110, 87 (2015).10.1016/j.radphyschem.2015.01.031Search in Google Scholar
4. SitaMahalakshmi, N. V., Kareem, M. A., Premachand, K.: Total photon attenuation coefficients in some rare earth elements using selective excitation method. Radiat. Phys. Chem. 106, 160 (2015).10.1016/j.radphyschem.2014.06.014Search in Google Scholar
5. Murray, R. L.: Nuclear energy: an introduction to the concepts, systems, and applications of nuclear processes, 5th ed., Radiation protection. B-H, USA (2000).Search in Google Scholar
6. Akbulut, S., Sehhatigdiri, A., Eroglu, H., Celik, S.: A research on the radiation shielding effects of clay, silica fume and cement samples. Radiat. Phys. Chem. 117, 88 (2015).10.1016/j.radphyschem.2015.08.003Search in Google Scholar
7. Bashter, I. I.: Calculation of radiation attenuation coefficients for shielding concretes. Ann. Nucl. Energy 24(17), 1389 (1997).10.1016/S0306-4549(97)00003-0Search in Google Scholar
8. El-Khayatt, A. M.: Radiation shielding of concretes containing different lime/silica ratios. Ann. Nucl. Energy 37, 991 (2010).10.1016/j.anucene.2010.03.001Search in Google Scholar
9. Singh, K., Singh, S., Singh, S. P., Mudahar, G. S., Dhaliwal, A. S.: Gamma radiation shielding and health physics characteristics of diaspore-flyash concretes. J. Radiol. Prot. 35, 401 (2015).10.1088/0952-4746/35/2/401Search in Google Scholar PubMed
10. Vejdani-Noghreiyan, A., Aliakbari, E., Ebrahimi-Khankook, A., Ghasemifard, M.: Theoretical and experimental determination of mass attenuation coefficients of lead-based ceramics and their comparison with simulation. Nucl. Technol. Radiat. Protection 31(2), 142 (2016).10.2298/NTRP1602142VSearch in Google Scholar
11. Gilmore, G. R.: Practical gamma-ray spectroscopy, 2nd ed., John Wiley & Sons Ltd., England (2008).10.1002/9780470861981Search in Google Scholar
12. Atasoy, H., Tarcan, G., Dokmen, S.: Investigation of Turkish Marbles as shielding materials. Nucl. Instrum. Methods B71, 201 (1992).10.1016/0168-583X(92)95322-ISearch in Google Scholar
13. Alam, M. N., Miah, M. M. H., Chowdhury, M. I., Kamal, M., Ghose, S., Rahman, R.: Attenuation coefficients of soils and some building materials of Bangladesh in the energy range 276–1332 keV. Appl. Radiat. Isot. 54, 973 (2001).10.1016/S0969-8043(00)00354-7Search in Google Scholar PubMed
14. Singh, S., Kumar, A., Singh, D., Thind, K. S., Mudahar, G. S.: Barium–borate–flyash glasses: as radiation shielding materials. Nucl. Instrum. Methods B. 266, 140 (2008).10.1016/j.nimb.2007.10.018Search in Google Scholar
15. Medhat, M. E.: Gamma-ray attenuation coefficients of some building materials available in Egypt. Ann. Nucl. Energy 36, 849 (2009).10.1016/j.anucene.2009.02.006Search in Google Scholar
16. Akkurt, I., Altindag, R., Gunoglu, K., Sarikaya, H.: Photon attenuation coefficients of concrete including marble aggregates. Ann. Nucl. Energy 43, 56 (2012).10.1016/j.anucene.2011.12.031Search in Google Scholar
17. Mavi, B.: Experimental investigation of γ-ray attenuation coefficients for granites. Ann. Nucl. Energy. 44, 22 (2012).10.1016/j.anucene.2012.01.009Search in Google Scholar
18. Ozyurt, O., Altinsoy, N., Buyuk, B.: Investigation of gamma ray and neutron attenuation coefficients for granites produced in Turkey. Acta. Phys. Pol. A. 127, 1268 (2015).10.12693/APhysPolA.127.1268Search in Google Scholar
19. Esfandiari, M., Shirmardi, S. P., Medhat, M. E.: Element analysis and calculation of the attenuation coefficients for gold,bronze and water matrixes using MCNP, WinXCom and experimental data. Radiat. Phys. Chem. 99, 30 (2014).10.1016/j.radphyschem.2014.02.011Search in Google Scholar
20. Waly, El-Sayed A., Bourham, M. A.: Comparative study of different concrete composition as gamma-ray shielding materials. Ann. Nucl. Energy 85, 306 (2015).10.1016/j.anucene.2015.05.011Search in Google Scholar
21. Hadad, K., Majidi, H., Sarshough, S.: Enhanced radiation shielding with galena concrete. Nucl. Technol. Radiat. 30(1), 70 (2015).10.2298/NTRP1501070HSearch in Google Scholar
22. Oto, B., Yıldız, N., Akdemir, F., Kavaz, E.: Investigation of gamma radiation shielding properties of various ores. Prog. Nucl. Energ. 85, 391 (2015).10.1016/j.pnucene.2015.07.016Search in Google Scholar
23. Yaltay, N., Ekinci, C. E., Çakır, T., Oto, B.: Photon attenuation properties of concrete produced with pumice aggregate and colemanite addition in different rates and the effect of curing age to these properties. Prog. Nucl. Energ. 78, 25 (2015).10.1016/j.pnucene.2014.08.002Search in Google Scholar
24. Chen, S., Bourham, M., Rabiei, A.: Attenuation efficiency of X-ray and comparison to gamma ray and neutrons in composite metal foams. Radiat. Phys. Chem. 117, 12 (2015).10.1016/j.radphyschem.2015.07.003Search in Google Scholar
25. El-Sersy, A. R., Hussein, A., El-samman, H. M., Khaled, N. E., El-Adawy, A., Donya, H.: Mass attenuation coefficients of B2O3–Al2O3–SiO2–CaF2 glass system at 0.662 and 1.25 MeV gamma energies. J. Radioanal. Nucl. Chem. 288, 65 (2011).10.1007/s10967-010-0924-7Search in Google Scholar
26. Hassan, H. E., Badran, H. M., Aydarous, A., Sharshar, T.: Studying the effect of nano lead compounds additives on the concrete shielding properties for γ-rays. Nucl. Instrum. Methods Phys. Res. Sect. B. 360, 81 (2015).10.1016/j.nimb.2015.07.126Search in Google Scholar
27. Mann, H. S., Brar, G. S., Mudahar, G. S.: Gamma-ray shielding effectiveness of novel light-weight clay-flyash bricks. Radiat. Phys. Chem. 127, 97 (2016).10.1016/j.radphyschem.2016.06.013Search in Google Scholar
28. Pires, L. F., Medhat, M. E.: Different methods of mass attenuation coefficient evaluation: influences in the measurement of somesoil physical properties. Appl. Radiat. Isot. 111, 66 (2016).10.1016/j.apradiso.2016.02.012Search in Google Scholar PubMed
29. Gülbicim, H., Tufan, M. C., Turkan, M. N.: The investigation of vermiculite as analternating shielding material for gamma rays. Radiat. Phys. Chem. 130, 112–117 (2017).10.1016/j.radphyschem.2016.07.025Search in Google Scholar
30. Kaur, U., Sharma, J. K., Singh, P. S., Singh, T.: Comparative studies of different concretes on the basis of some photon interaction parameters. Appl. Radiat. Isot. 70, 233 (2012).10.1016/j.apradiso.2011.07.011Search in Google Scholar PubMed
31. Myers, J. S.: Geology of granite. J. R. Soc. West Aust. 80, 87 (1997).Search in Google Scholar
32. Nudat: National Nuclear Data Center (NNDC) in Brookhaven National Laboratory (2016). http://www.nndc.bnl.gov/nudat2/ Accessed 15 June 2016.Search in Google Scholar
33. Eke, C., Boztosun, I.: Gamma-ray spectrometry for the self-attenuation correction factor of the sand samples from Antalya in Turkey. J. Radioanal. Nucl. Chem. 301, 103 (2014).10.1007/s10967-014-3145-7Search in Google Scholar
34. Agar, O., Boztosun, I., Korkmaz, M. E., Ozmen, S. F.: Measurement of radioactivity levels and assessment of radioactivity hazards of soil samples in Karaman, Turkey. Radiat. Prot. Dosim 162(4), 630 (2014).10.1093/rpd/ncu027Search in Google Scholar PubMed
35. Ahmed, S. N.: Physics and engineering of radiation detection. Academic Press Inc. Published by Elsevier, UK (2007).Search in Google Scholar
36. Kaplan, I.: Nuclear physics. 2nd ed., Addison-Wesley Publishing Company, USA (1962).Search in Google Scholar
37. Chaiphaksa, W., Limkitjaroenporn, P., Kim, H. J., Kaewkhao, J.: The mass attenuation coefficients, effective atomic numbers and effective electron densities for GAGG: Ce and CaMoO4 scintillators. Prog. Nucl. Energ. 92, 48 (2016).10.1016/j.pnucene.2016.06.010Search in Google Scholar
38. McIntire, P.: Nondestructive testing handbook, 2nd ed., American Society for Nondestructive Testing (ASNT), Columbus, OH, USA (1985).Search in Google Scholar
39. Awadallah, M. I., Imran, M. M. A.: Experimental investigation of g-ray attenuation in Jordanian building materials using HPGe-spectrometer. J. Environ. Radioactiv. 94, 129 (2007).10.1016/j.jenvrad.2006.12.015Search in Google Scholar PubMed
©2017 Walter de Gruyter GmbH, Berlin/Boston