Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter (O) April 22, 2017

Attenuation properties of radiation shielding materials such as granite and marble against γ-ray energies between 80 and 1350 keV

  • Canel Eke EMAIL logo , Osman Agar , Christian Segebade and Ismail Boztosun
From the journal Radiochimica Acta

Abstract

In this study, the γ-ray energy-dependent mass and linear attenuation coefficients of various granite and Turkish marble species have been experimentally obtained. Radionuclides (133Ba, 137Cs, 60Co and 22Na) with point geometry were used as γ-ray sources. The absorption capacity of each sample at nine γ-ray energies was measured using a high resolution γ-ray spectrometer equipped with a high purity germanium (HPGe) detector. To obtain the precision of the results (1σ standard deviation of the single value), this procedure was repeated six times for each species of granite and marble, respectively. The energy-dependent mass attenuation coefficient (MAC), linear attenuation coefficient (LAC), the half (HVL) and the tenth value layer (TVL) were calculated following that the MAC and LAC results were compared to the literature values.

References

1. Salinas, I. C. P., Conti, C. C., Lopes, R. T.: Effective density and mass attenuation coefficient for building material in Brazil. Appl. Radiat. Isot. 64, 13 (2006).10.1016/j.apradiso.2005.07.003Search in Google Scholar PubMed

2. Gurler, O., Akar Tarim, U.: An investigation on determination of attenuation coefficients for gamma-rays by Monte Carlo method. J. Radioanal. Nucl. Chem. 293, 397 (2012).10.1007/s10967-012-1749-3Search in Google Scholar

3. Sharaf, J. M., Saleh, H.: Gamma-ray energy buildup factor calculations and shielding effects of some Jordanian building structures. Radiat. Phys. Chem. 110, 87 (2015).10.1016/j.radphyschem.2015.01.031Search in Google Scholar

4. SitaMahalakshmi, N. V., Kareem, M. A., Premachand, K.: Total photon attenuation coefficients in some rare earth elements using selective excitation method. Radiat. Phys. Chem. 106, 160 (2015).10.1016/j.radphyschem.2014.06.014Search in Google Scholar

5. Murray, R. L.: Nuclear energy: an introduction to the concepts, systems, and applications of nuclear processes, 5th ed., Radiation protection. B-H, USA (2000).Search in Google Scholar

6. Akbulut, S., Sehhatigdiri, A., Eroglu, H., Celik, S.: A research on the radiation shielding effects of clay, silica fume and cement samples. Radiat. Phys. Chem. 117, 88 (2015).10.1016/j.radphyschem.2015.08.003Search in Google Scholar

7. Bashter, I. I.: Calculation of radiation attenuation coefficients for shielding concretes. Ann. Nucl. Energy 24(17), 1389 (1997).10.1016/S0306-4549(97)00003-0Search in Google Scholar

8. El-Khayatt, A. M.: Radiation shielding of concretes containing different lime/silica ratios. Ann. Nucl. Energy 37, 991 (2010).10.1016/j.anucene.2010.03.001Search in Google Scholar

9. Singh, K., Singh, S., Singh, S. P., Mudahar, G. S., Dhaliwal, A. S.: Gamma radiation shielding and health physics characteristics of diaspore-flyash concretes. J. Radiol. Prot. 35, 401 (2015).10.1088/0952-4746/35/2/401Search in Google Scholar PubMed

10. Vejdani-Noghreiyan, A., Aliakbari, E., Ebrahimi-Khankook, A., Ghasemifard, M.: Theoretical and experimental determination of mass attenuation coefficients of lead-based ceramics and their comparison with simulation. Nucl. Technol. Radiat. Protection 31(2), 142 (2016).10.2298/NTRP1602142VSearch in Google Scholar

11. Gilmore, G. R.: Practical gamma-ray spectroscopy, 2nd ed., John Wiley & Sons Ltd., England (2008).10.1002/9780470861981Search in Google Scholar

12. Atasoy, H., Tarcan, G., Dokmen, S.: Investigation of Turkish Marbles as shielding materials. Nucl. Instrum. Methods B71, 201 (1992).10.1016/0168-583X(92)95322-ISearch in Google Scholar

13. Alam, M. N., Miah, M. M. H., Chowdhury, M. I., Kamal, M., Ghose, S., Rahman, R.: Attenuation coefficients of soils and some building materials of Bangladesh in the energy range 276–1332 keV. Appl. Radiat. Isot. 54, 973 (2001).10.1016/S0969-8043(00)00354-7Search in Google Scholar PubMed

14. Singh, S., Kumar, A., Singh, D., Thind, K. S., Mudahar, G. S.: Barium–borate–flyash glasses: as radiation shielding materials. Nucl. Instrum. Methods B. 266, 140 (2008).10.1016/j.nimb.2007.10.018Search in Google Scholar

15. Medhat, M. E.: Gamma-ray attenuation coefficients of some building materials available in Egypt. Ann. Nucl. Energy 36, 849 (2009).10.1016/j.anucene.2009.02.006Search in Google Scholar

16. Akkurt, I., Altindag, R., Gunoglu, K., Sarikaya, H.: Photon attenuation coefficients of concrete including marble aggregates. Ann. Nucl. Energy 43, 56 (2012).10.1016/j.anucene.2011.12.031Search in Google Scholar

17. Mavi, B.: Experimental investigation of γ-ray attenuation coefficients for granites. Ann. Nucl. Energy. 44, 22 (2012).10.1016/j.anucene.2012.01.009Search in Google Scholar

18. Ozyurt, O., Altinsoy, N., Buyuk, B.: Investigation of gamma ray and neutron attenuation coefficients for granites produced in Turkey. Acta. Phys. Pol. A. 127, 1268 (2015).10.12693/APhysPolA.127.1268Search in Google Scholar

19. Esfandiari, M., Shirmardi, S. P., Medhat, M. E.: Element analysis and calculation of the attenuation coefficients for gold,bronze and water matrixes using MCNP, WinXCom and experimental data. Radiat. Phys. Chem. 99, 30 (2014).10.1016/j.radphyschem.2014.02.011Search in Google Scholar

20. Waly, El-Sayed A., Bourham, M. A.: Comparative study of different concrete composition as gamma-ray shielding materials. Ann. Nucl. Energy 85, 306 (2015).10.1016/j.anucene.2015.05.011Search in Google Scholar

21. Hadad, K., Majidi, H., Sarshough, S.: Enhanced radiation shielding with galena concrete. Nucl. Technol. Radiat. 30(1), 70 (2015).10.2298/NTRP1501070HSearch in Google Scholar

22. Oto, B., Yıldız, N., Akdemir, F., Kavaz, E.: Investigation of gamma radiation shielding properties of various ores. Prog. Nucl. Energ. 85, 391 (2015).10.1016/j.pnucene.2015.07.016Search in Google Scholar

23. Yaltay, N., Ekinci, C. E., Çakır, T., Oto, B.: Photon attenuation properties of concrete produced with pumice aggregate and colemanite addition in different rates and the effect of curing age to these properties. Prog. Nucl. Energ. 78, 25 (2015).10.1016/j.pnucene.2014.08.002Search in Google Scholar

24. Chen, S., Bourham, M., Rabiei, A.: Attenuation efficiency of X-ray and comparison to gamma ray and neutrons in composite metal foams. Radiat. Phys. Chem. 117, 12 (2015).10.1016/j.radphyschem.2015.07.003Search in Google Scholar

25. El-Sersy, A. R., Hussein, A., El-samman, H. M., Khaled, N. E., El-Adawy, A., Donya, H.: Mass attenuation coefficients of B2O3–Al2O3–SiO2–CaF2 glass system at 0.662 and 1.25 MeV gamma energies. J. Radioanal. Nucl. Chem. 288, 65 (2011).10.1007/s10967-010-0924-7Search in Google Scholar

26. Hassan, H. E., Badran, H. M., Aydarous, A., Sharshar, T.: Studying the effect of nano lead compounds additives on the concrete shielding properties for γ-rays. Nucl. Instrum. Methods Phys. Res. Sect. B. 360, 81 (2015).10.1016/j.nimb.2015.07.126Search in Google Scholar

27. Mann, H. S., Brar, G. S., Mudahar, G. S.: Gamma-ray shielding effectiveness of novel light-weight clay-flyash bricks. Radiat. Phys. Chem. 127, 97 (2016).10.1016/j.radphyschem.2016.06.013Search in Google Scholar

28. Pires, L. F., Medhat, M. E.: Different methods of mass attenuation coefficient evaluation: influences in the measurement of somesoil physical properties. Appl. Radiat. Isot. 111, 66 (2016).10.1016/j.apradiso.2016.02.012Search in Google Scholar PubMed

29. Gülbicim, H., Tufan, M. C., Turkan, M. N.: The investigation of vermiculite as analternating shielding material for gamma rays. Radiat. Phys. Chem. 130, 112–117 (2017).10.1016/j.radphyschem.2016.07.025Search in Google Scholar

30. Kaur, U., Sharma, J. K., Singh, P. S., Singh, T.: Comparative studies of different concretes on the basis of some photon interaction parameters. Appl. Radiat. Isot. 70, 233 (2012).10.1016/j.apradiso.2011.07.011Search in Google Scholar PubMed

31. Myers, J. S.: Geology of granite. J. R. Soc. West Aust. 80, 87 (1997).Search in Google Scholar

32. Nudat: National Nuclear Data Center (NNDC) in Brookhaven National Laboratory (2016). http://www.nndc.bnl.gov/nudat2/ Accessed 15 June 2016.Search in Google Scholar

33. Eke, C., Boztosun, I.: Gamma-ray spectrometry for the self-attenuation correction factor of the sand samples from Antalya in Turkey. J. Radioanal. Nucl. Chem. 301, 103 (2014).10.1007/s10967-014-3145-7Search in Google Scholar

34. Agar, O., Boztosun, I., Korkmaz, M. E., Ozmen, S. F.: Measurement of radioactivity levels and assessment of radioactivity hazards of soil samples in Karaman, Turkey. Radiat. Prot. Dosim 162(4), 630 (2014).10.1093/rpd/ncu027Search in Google Scholar PubMed

35. Ahmed, S. N.: Physics and engineering of radiation detection. Academic Press Inc. Published by Elsevier, UK (2007).Search in Google Scholar

36. Kaplan, I.: Nuclear physics. 2nd ed., Addison-Wesley Publishing Company, USA (1962).Search in Google Scholar

37. Chaiphaksa, W., Limkitjaroenporn, P., Kim, H. J., Kaewkhao, J.: The mass attenuation coefficients, effective atomic numbers and effective electron densities for GAGG: Ce and CaMoO4 scintillators. Prog. Nucl. Energ. 92, 48 (2016).10.1016/j.pnucene.2016.06.010Search in Google Scholar

38. McIntire, P.: Nondestructive testing handbook, 2nd ed., American Society for Nondestructive Testing (ASNT), Columbus, OH, USA (1985).Search in Google Scholar

39. Awadallah, M. I., Imran, M. M. A.: Experimental investigation of g-ray attenuation in Jordanian building materials using HPGe-spectrometer. J. Environ. Radioactiv. 94, 129 (2007).10.1016/j.jenvrad.2006.12.015Search in Google Scholar PubMed

Received: 2016-8-31
Accepted: 2017-3-21
Published Online: 2017-4-22
Published in Print: 2017-10-26

©2017 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 25.3.2023 from https://www.degruyter.com/document/doi/10.1515/ract-2016-2690/html
Scroll Up Arrow