Abstract
Magnetic Fe3O4 nanoparticles with narrow size distribution were synthesized by simple and high yielded co-precipitation technique using ferrous salts with a molar ratio of Fe3+/Fe2+=2. After coating of the nanoparticles with Stöber silica (SiO2@Fe3O4), nanoparticles were functionalized by amine groups. Then chelator molecules diethylenetriaminepentaacetic (DTPA) and tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) were coupled to the APTS-SiO2@Fe3O4 to chelating Y-90 radiometal that makes these nanoparticles a suitable agent for therapeutic application as dual-modality PET/MRI imaging. The results show the coupling of DTPA takes place better than DOTA. Synthesis of magnetic nanoparticles (MNPs) was followed by structure identification using XRD, SEM, TGA and IR techniques. In order to trace MNPs biodistribution, the radiolabeled MNPs-DTPA were prepared using 90Y (production of 90Y/90Sr generator) with a good labeling efficiency (about 92%, RTLS method). The biodistribution of the radiolabeled MNPs was checked in normal male rats up to 24 h compared to free Y3+. The data shows that the tracer accumulation is in reticuloendothelial tissue while the stability of the complex is highly retained.
Acknowledgments
The financial support of Nuclear Fuel Cycle Research Institute and Shahid Beheshti University is gratefully acknowledged.
References
1. Sousa, M. H., Rubim, J. C., Sorbrinho, P. G., Tourinho, F.: Biocompatible magnetic fluid precursors based on aspartic and glutamic acid modified maghemite nanostructures. J. Magn. Magn. Mater. 225, 67 (2001).10.1016/S0304-8853(00)01229-4Search in Google Scholar
2. Elaissari, A., Bourrel, V.: Thermosensitive magnetic latex particles for controlling protein adsorption and desorption. J. Magn. Magn. Mater. 225, 151 (2001).10.1016/S0304-8853(00)01244-0Search in Google Scholar
3. Laurent, S., Forge, D., Port, M.: Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem. Rev. 108, 2064 (2008).10.1021/cr068445eSearch in Google Scholar PubMed
4. Alexiou, Ch., Schmidt, A., Klein, R.: Magnetic drug targeting: biodistribution and dependency on magnetic field strength. J. Magn. Magn. Mater. 252, 363 (2002).10.1016/S0304-8853(02)00605-4Search in Google Scholar
5. Dobson, J.: Magnetic nanoparticles for drug delivery. Drug Dev. Res. 67, 55 (2006).10.1002/ddr.20067Search in Google Scholar
6. McCarthy, J. R., Weissleder, R.: Multifunctional magnetic nanoparticles for targeted imaging and therapy. Adv. Drug Delivery. Rev. 60, 1241 (2008).10.1016/j.addr.2008.03.014Search in Google Scholar PubMed PubMed Central
7. Chertok, B., Moffat, B. A., Davida, A. E., Yu, F., Bergemann, C.: Iron oxide nanoparticles as a drug delivery vehicle for MRI monitored magnetic targeting of brain tumors. Biomaterials 29, 478 (2008).10.1016/j.biomaterials.2007.08.050Search in Google Scholar PubMed PubMed Central
8. Yang, H., Zhang, S., Chen, X., Zhuang, Z.: Magnetite-containing spherical silica nanoparticles for biocatalysis and bioseparations. Anal. Chem. 76, 1316 (2004).10.1021/ac034920mSearch in Google Scholar PubMed
9. Ito, A., Matsuoka, F., Honda, H., Kobayashi, T.: Heat shock protein 70 gene therapy combined with hyperthermia using magnetic nanoparticles. Cancer Gene Ther. 10, 918 (2003).10.1038/sj.cgt.7700648Search in Google Scholar PubMed
10. Gao, L., Zhuang, J., Nie, L., Zhang, Y., Zhang, J.: Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat. Nanotechnol. 2, 577 (2007).10.1038/nnano.2007.260Search in Google Scholar PubMed
11. Morel, A.-L., Nikitenko, S. I., Gionnet, K.: Sonochemical approach to the synthesis of Fe3O4@SiO2 core-shell nanoparticles with tunable properties. ACS Nano 2, 847 (2008).10.1021/nn800091qSearch in Google Scholar
12. Kim, D. K., Milhaylava, M., Zhang, Y., Muhammed, M.: Protective coating of superparamagnetic iron oxide nanoparticles. Chem. Mater. 15, 1617 (2003).10.1021/cm021349jSearch in Google Scholar
13. Lu, Y., Yin, Y., Mayers, B. T., Xia, Y.: Modifying the surface properties of superparamagnetic iron oxide nanoparticles through a Sol−Gel approach. Nano Lett. 2, 183 (2002).10.1021/nl015681qSearch in Google Scholar
14. Jain, T. K., Roy, I., De, T. K., Maitra, A.: Nanometer silica particles encapsulating active compounds:a novel ceramic drug carrier. J. Am. Chem. Soc. 120, 11092 (1998).10.1021/ja973849xSearch in Google Scholar
15. Giri, S., Trewyn, B. G., Stellmaker, M. P., Lin, V. S.: Stimuli-responsive controlled-release delivery system based on mesoporous silica nanorods capped with magnetic nanoparticles. Angew. Chem. Int. Ed. 44, 5038 (2005).10.1002/anie.200501819Search in Google Scholar
16. Selim, K. M., Ha, Y., Kim, S., Chang, Y.: Surface modification of magnetite nanoparticles using lactobionic acid and their interaction with hepatocytes. Biomaterials 28, 710 (2007).10.1016/j.biomaterials.2006.09.014Search in Google Scholar PubMed
17. Indira, T. K., Lakshmi, P. K.: Magnetic nanoparticles. A review. Int. J. Pharm. Sci. Nanotechnol. 3, 1035 (2010).Search in Google Scholar
18. Koneracka, M., Kopcansky, P., Antalik, M., Timko, M.: Immobilization of proteins and enzymes to fine magnetic particles. J. Magn. Magn. Mater. 201, 427 (1999).10.1016/S0304-8853(99)00005-0Search in Google Scholar
19. Yamaura, M., Camilo, R. L.: Preparation and characterization of (3-aminopropyl) triethoxysilane-coated magnetite nanoparticles. J. Magn. Magn. Mater. 279, 210 (2004).10.1016/j.jmmm.2004.01.094Search in Google Scholar
20. Zhang, F., Wang, C. C.: Fabrication of one dimensional iron oxide/silica nanostructures with high magnetic sensitivity by dipole-directed self assembly. J. Phys. Chem. C 112, 15151 (2008).10.1021/jp804452rSearch in Google Scholar
21. Yang, D., Hu, J., Fu, Sh.: Controlled synthesis of magnetite-silica nanocomposites via a seeded sol-gel approach. J. Phys. Chem. C 113, 7674 (2009).10.1021/jp900868dSearch in Google Scholar
22. Chin, A. B., Yaacob, I.: Synthesis and characterization of magnetic iron oxide nanoparticles via w/o microemulsion and Massart’s procedure. J. Mater. Process. Technol. 191, 235 (2007).10.1016/j.jmatprotec.2007.03.011Search in Google Scholar
23. Albornoz, C., Jacobo, S. E.: Magnetic iron oxide nanoparticles synthesis, stabilization, vectorization, physicochemical character. J. Magn. Magn. Mater. 305, 12 (2006).10.1016/j.jmmm.2005.11.021Search in Google Scholar
24. Kim, E. H., Lee, H.: Synthesis of ferrofluid with magnetic nanoparticles by sonochemical method for MRI contrast agent. J. Magn. Magn. Mater. 289, 328 (2005).10.1016/j.jmmm.2004.11.093Search in Google Scholar
25. Wan, J., Chen, X., Wang, Z., Yang, X., Qian, Y.: A soft-template-assisted hydrothermal approach to single-crystal Fe3O4 nanorods. J. Cryst. Growth 276, 571 (2005).10.1016/j.jcrysgro.2004.11.423Search in Google Scholar
26. Kimata, M., Nakagawa, D., Hasegawa, M.: Preparation of monodisperse magnetic particles by hydrolysis of iron alkoxide. Powder Technol. 132, 112 (2003).10.1016/S0032-5910(03)00046-9Search in Google Scholar
27. Nazari, M., Ghasemi, N., Maddah, H.: Synthesis and characterization of maghemite nanopowders by chemical precipitation method. J. Nanostruct. Chem. 4, 99 (2014).10.1007/s40097-014-0099-9Search in Google Scholar
28. Basak, S., Chen, D., Biswas, P.: Electrospray of ionic precursor solutions to synthesize iron oxide nanoparticles: modified scaling law. Chem. Eng. Sci. 62, 1263 (2007).10.1016/j.ces.2006.11.029Search in Google Scholar
29. Jolivet, J., Chaneac, C., Tronc, E.: Iron oxide chemistry. From molecular clusters to extended solid networks. Chem. Commun. 5, 481 (2004).Search in Google Scholar
30. Chomoucka, J., Drbohlavova, J.: Magnetic nanoparticles and targeted drug delivering. Pharmacolo Res. 62, 144 (2010).10.1016/j.phrs.2010.01.014Search in Google Scholar
31. Ahangaran, F., Hassanzadeh, A., Nouri, S.: Surface modification of Fe3O4@SiO2 microsphere by silane coupling agent. Int. Nano Lett. 3, 23 (2013).10.1186/2228-5326-3-23Search in Google Scholar
32. Singh, A., Flounders, W., Volpoui, J., Ashley, C.: Development of sensors for direct detection of organophosphates. Part I: immobilization, characterization and stabilization of acetylcholinesterase and organophosphate hydrolase on silica supports. Biosens. Bioelectron. 14, 703 (1999).10.1016/S0956-5663(99)00044-5Search in Google Scholar PubMed
33. Piers, A., Rochester, C.: Infrared study of the adsorption of 1-aminopropyltrialkoxysilanes on silica at the solid/liquid interface. J. Colloid Interface. Sci. 174, 97 (1995).10.1006/jcis.1995.1369Search in Google Scholar
34. Okabayashi, H., Shimizu, H., O’Connor, J.: Diffuse reflectance infrared Fourier transform spectral study of the interaction of 3-aminopropyltriethoxysilane on silica gel. Behavior of amino groups on the surface. Colloid Polym. Sci. 275, 774 (1997).10.1007/s003960050143Search in Google Scholar
35. Vranchen, K., De Coster, L., Van Der Voort, P., Grobet, P.: The role of silanols in the modification of silica gel with aminosilanes. J. Colloid Interface Sci. 170, 71 (1995).10.1006/jcis.1995.1073Search in Google Scholar
36. Lubbe, S., Bergmann, C.: Physiological aspects in magnetic drug-targeting. J. Magn. Magn. Mater. 194, 149 (1999).10.1016/S0304-8853(98)00574-5Search in Google Scholar
37. Hafeli, U. O., Pauer, G.: In vitro and in vivo toxicity of magnetic microspheres. J. Magn. Magn. Mater. 194, 76 (1999).10.1016/S0304-8853(98)00560-5Search in Google Scholar
38. Pankhurst, Q., Connolly, J.: Applications of magnetic nanoparticles in biomedicine. J. Phys. D: Appl. Phys. 36, R167 (2003).10.1088/0022-3727/36/13/201Search in Google Scholar
39. Hafeli, U. O., Sweeney, S. M., Beresford, B. A.: Effective targeting of magnetic radioactive 90Y-microspheres to tumor cells by an externally applied magnetic field. Preliminary in vitro and in vivo results. Nucl. Med. Biol. 22, 147 (1995).10.1016/0969-8051(94)00124-3Search in Google Scholar PubMed
40. Liu, X., Ma, Z., Xing, J.: Preparation and characterization of amino-silane modified superparamagnetic silica nanospheres. J. Magn. Magn. Mater. 270, 1 (2004).10.1016/j.jmmm.2003.07.006Search in Google Scholar
41. Abdukayum, A., Yang, C. H., Zhao, Q.: Gadolinium complexes functionalized persistent luminescent nanoparticles as a multimodal probe for near-infrared luminescence and magnetic resonance imaging in vivo. Ana. Chem. 86, 4096 (2014).10.1021/ac500644xSearch in Google Scholar PubMed
42. Kim, K., Kim, S.: Formation and surface modification of Fe3O4 nanoparticles by co-precipitation and sol-gel method. J. Ind. Eng. Chem. 13, 1137 (2007).Search in Google Scholar
43. Grigorev, A. I., Pododilova, E. G.: An infrared spectroscopic study of the structures of aluminum and yttrium acetate and formate amines. J. Structural Chem. 10, 43 (1969).10.1007/BF00751951Search in Google Scholar
44. Rahman, O., Chandra, S., Ahmad, Sh.: Fe3O4 inverse spinal super paramagnetic nanoparticles. Mater. Chem. Phy. 132, 196 (2012).10.1016/j.matchemphys.2011.11.032Search in Google Scholar
45. Todaka, Y., Nakamura, M., Hattori, S.: Synthesis of ferrite nanoparticles by mechanochemical processing using a ball mill. Mater. Trans. 44, 277 (2003).10.2320/matertrans.44.277Search in Google Scholar
46. Cao, H., He, J., Deng, L.: Fabrication of cyclodextrin-functionalized superparamagnetic Fe3O4/amino-silane core–shell nanoparticles via layer-by-layer method. Appl. Surf. Sci. 255, 7974 (2009).10.1016/j.apsusc.2009.04.199Search in Google Scholar
47. Zolghadri, S., Jalilian, A. R., Yousefnia, H., Bahrami-Samani, A., Shirvani-Arani, S., Mazidi, M.: Production and quality control of 166Ho-Chitosan for therapeutic applications. Iran J Nucl. Med, 18, 1 (2010).Search in Google Scholar
48. Johansson, R., Falch, D.: 113mIn-DTPA, a useful compound for the determination of glomerular filtration rate (GFR). Eur. J. Nucl. Med. 3, 179 (1978).10.1007/BF00256640Search in Google Scholar PubMed
49. Klooper, F., Houser, W., Atkins, L.: Evaluation of 99mTc-DTPA for the measurement of glomerular filtration rate. J. Nucl. Med. 13, 107 (1971).Search in Google Scholar
©2018 Walter de Gruyter GmbH, Berlin/Boston