Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter (O) July 4, 2018

Natural radioactivity levels in sediments in Algiers Bay using instrumental neutron activation analysis

  • Lateffa Baba-Ahmed , Mohammed E. A. Benamar EMAIL logo , Mohamed Belamri , Ahmed Azbouche , Samah Benarous and Abderrahmane Benkhalifa
From the journal Radiochimica Acta


The main objective of this study is to evaluate natural radioactivity levels in sediments collected from different points of Algiers bay. Particular attention was paid to understand correlations between the distribution of uranium and thorium and the geomorphological characteristics of the Bay. Instrumental neutron activation analysis (INAA) has been employed in order to measure the isotopic composition and concentration of uranium and thorium, with emphasis on isotopes, 232Th and 238U. The concentrations reported in Bq kg−1 (dry weight) vary between 19.73 and 34.53 for 238U and between 22.26 and 36.02 for 232Th. The obtained results are within the world typical ranges and did not show any anomalous values. Results revealed clear inverse relationship between activity concentration and grain size. The radioactivity content in sediments had a positive correlation with clay and silt percentage, and a negative correlation with sand percentage. The concentration ratios of 232Th/238U are found to be slightly below the world average value unite (3.94) in sediments. Values below unite indicate that the medium is reductor or the existence of an external source of U-contaminated particles in the bay; Values greater than the unit show either depletion of uranium or enrichment of thorium due to alteration or natural processes in these areas. The strong correlation of uranium and Thorium in samples reflects the source of same origin. The results of the study can be used as basic radiometric data for future sedimentological studies. The situation in the Bay of Algiers is reassuring but the risk of possible contamination cannot be excluded and requires constant vigilance for the preservation of the coast and the Mediterranean from all contamination. The results can also be used as reference data for the monitoring of possible radioactive pollution in the future.


The authors wish to gratefully acknowledge the Director of the CRNB (Nuclear Research Centre of Birine, Algeria). Thanks are due our colleagues for their interest and support of this research especially the NAA group of CRNB.


1. Belkessa, R., Houma, F., Ciortan, R., Mezouar, K.: Protection Works Of The Sea Coast In Algéria, Copedec VII, Dubai, UAE, Paper No: S-26 (2008).Search in Google Scholar

2. Lilley, J.: Nuclear Physics: Principles and Applications, Chichester, John Wiley & Sons, Ltd. (2001).Search in Google Scholar

3. Eisenbud, M., Gesell, T.: Environmental Radioactivity from Natural, Industrial, and Military Sources (4th edition). Academic Press, London (1997).Search in Google Scholar

4. Klement, A. W.: CRC Handbook of Environmental Radiation. CRC Press Inc., Florida (1982).Search in Google Scholar

5. UNSCEAR: Sources and Effects of Ionizing Radiation, United Nations Scientific Committee on the Effects of Atomic Radiation. Report to General Assembly with Scientific Annexes, United Nations, New York (2000).Search in Google Scholar

6. NCRP: National Council on Radiation Protection and Measurements: Natural Background Radiation in the United States”, NCRP Report No.45. NCRP, Washington, DC (1975).Search in Google Scholar

7. Ligero, R. A., Ramos-Lerate, I., Barrera, M., Casa-Ruiz, M.: Relationships between seabed radionuclide activities and some sedimentological variables. J. Environ. Radioact. 57, 7 (2001).10.1016/S0265-931X(00)00213-7Search in Google Scholar

8. Venema, L. B., De Meijer, R. J.: Natural radionuclides as tracers of the dispersal of dredge spoil dumped at sea. J. Environ. Radioact. 55, 221 (2001).10.1016/S0265-931X(00)00198-3Search in Google Scholar PubMed

9. Van der Graaf, E. R., Koomans, R. I., Limburg, J., De Vries, K.: In situ radiometric mapping as a proxy of sediment contamination: assessment of the underlying geochemical and -physical principles. Appl. Radiat. Isot. 65, 619 (2007).10.1016/j.apradiso.2006.11.004Search in Google Scholar PubMed

10. Papaefthymiou, H., Papatheodorou, G., Moustakli, A., Christodoulou, D., Geraga, M.: Natural radionuclides and 137Cs distributions and their relationship with sedimentological processes in Patras Harbour, Greece. J. Environ. Radioact. 94, 55 (2007).10.1016/j.jenvrad.2006.12.014Search in Google Scholar PubMed

11. Brown, J. I., Hosseini, A., Borretzen, P., Thorring, H.: Development of a methodology for assessing the environmental impact of radioactivity in Northern Marine environments. Marine Poll. Bull. 52, 1127 (2006).10.1016/j.marpolbul.2006.05.021Search in Google Scholar PubMed

12. Dugalic, G., Krstic, D., Jelic, M., Nikezic, D., Milenkovic, B., Pucarevic, M., Zeremski-Skoric, T.: Heavy metals, organics and radioactivity in soil of western Serbia. J. Hazard. Mater. 177, 697 (2010).10.1016/j.jhazmat.2009.12.087Search in Google Scholar PubMed

13. Narayana, Y., Rajashekara, K. M.: The importance of physico-chemical parameters on the speciation of natural radionuclides in riverine ecosystems. J. Environ. Radioact. 101, 958 (2010).10.1016/j.jenvrad.2010.06.015Search in Google Scholar PubMed

14. Sivakumar, S., Chandrasekaran, A., Ravisankar, R., Ravikumarc, S. M., Prince Prakash Jebakumar, J., Vijayagopale, P., Vijayalakshmie, I., Josee, M. T.: Measurement of natural radioactivity and evaluation of radiation hazards in coastal sediments of east coast of Tamilnadu using statistical approach. J. Taibah Univ. Sci. 8, 375 (2014).10.1016/j.jtusci.2014.03.004Search in Google Scholar

15. Cho, Y. H., Jeong, C. H., Hahn, R. S.: Sorption characteristics of 137Cs onto clay minerals: effect of mineral structure and ionic strength. J. Radioanal. Nucl. Chem. 204, 33 (1996).10.1007/BF02060865Search in Google Scholar

16. Narayana, Y., Radhakrishna, A. P., Somashekarappa, H. M., Karunakara, N., Balakrishna, K. M., Siddappa, K.: Distribution and enrichment of radionuclides in the newly discovered high background area in Ullal on the Southwest Coast of India. Health Phys. 69(20), 178 (1995).10.1097/00004032-199508000-00002Search in Google Scholar PubMed

17. Breitner, D., Arvela, H., Hellmuth, K. H., Renval, T.: Effect of moisture content on emantion at different grain size fractions-a pilot study on granitic esker sand sample. J. Environ. Radioact. 101, 1002 (2010).10.1016/j.jenvrad.2010.07.008Search in Google Scholar

18. LEM: Laboratoire d’Etudes Maritime, Etude de délimitation d’une zone d’extraction de sable en baie d’Alger (1998).Search in Google Scholar

19. Benzohra, M.: Les structures hydrodynamiques le long des côtes Algériennes. Centre d’Océanologie de Marseille 33 (1993).Search in Google Scholar

20. Lederer, C. M., Shirley, V. S.: Tables of Isotopes (8th edition), Wiley, New York, Lawrence Radiation Laboratory, Berkley (1968).Search in Google Scholar

21. Burrough, P. A.: Principles of Geographical Information Systems for Land Resources Assessment, Oxford University Press, New York (1986).10.1080/10106048609354060Search in Google Scholar

22. Heine, G. W.: A controlled study of some two-dimensional interpolation methods. Computer Contributions 3(2), 60 (1986).Search in Google Scholar

23. McBratney, A. B., Webster, R.: Choosing functions for semi-variograms of soil properties and fitting them to sampling estimates. J. Soil Sci. 37, 617 (1986).10.1111/j.1365-2389.1986.tb00392.xSearch in Google Scholar

24. Oliver, M. A.: Kriging: a method of interpolation for geographical information systems. Int. J. Geogr. Inf. Sys. 4, 313 (1990).10.1080/02693799008941549Search in Google Scholar

25. Press, W. H., Teukolsky, S. A., Vetterling, W. T., Flannery, B. P.: Numerical Recipes in C: The Art of Scientific Computing. Cambridge University Press, New York (1988).10.1016/S0003-2670(00)82860-3Search in Google Scholar

26. Royle, A. G., Clausen, F. L., Frederiksen, P.: Practical universal Kriging and automatic contouring. Geoprocessing 1, 377 (1981).Search in Google Scholar

27. Tsabaris, C., Eleftheriou, G., Kapsimalis, V., Anagnostou, C., Vlastou, R., Durmishi, C., Kedhi, M., Kalfas, C. A.: Radioactivity levels of recent sediments in the Butrint Lagoon and the adjacent coast of Albania. Appl. Radiat. Isot. 65(4), 445 (2007).10.1016/j.apradiso.2006.11.006Search in Google Scholar PubMed

28. Lozano, J. C., Rodrigues, P. B., Tome, F. V.: Distribution of long-lived radionuclides of the 238U series in the sediments of a small river in a uranium mineralized region of Spain. J. Environ. Radioact. 63, 153 (2002).10.1016/S0265-931X(02)00024-3Search in Google Scholar

29. Benamar, M. E. A., Zerrouki, A., Idiri, Z., Tobbeche, S.: Natural and artificial levels in sediments in Algiers Bay. Appl. Radiat. Isot. 48(8), 1161 (1997).10.1016/S0969-8043(97)00047-XSearch in Google Scholar

30. Ibrahiem, N. M., Shawky, S. M., Amer, H. A.: Radioactivity levels in Lake Nasser sediments. Appl. Radiat. Isot. 46(5), 297 (1995).10.1016/0969-8043(94)00144-OSearch in Google Scholar

31. Doretti, L., Ferrar, D., Barison, G., Gerbasi, R., Battiston, G.: Natural radionuclides in the muds and waters used in thermal therapy in Abano Terme, Italy. Radiat. Prot. Dosim. 45(1), 175 (1992).10.1093/rpd/45.1-4.175Search in Google Scholar

32. Florou, H., Kriditis, P.: Gamma radiation measurements and dose rate in the coastal areas of a volkanic island, Aegan Sea, Greece. Radiat. Prot. Dosim. 45(1), 277 (1992).Search in Google Scholar

33. Lambrechts, A., Foulquier, L., Garnier-Laplace, J.: Natural radioactivity in the aquatic components of the main French rivers. Radiat. Prot. Dosim. 45(1), 253 (1992).10.1093/rpd/45.1-4.253Search in Google Scholar

34. Carreira, M. C. U., Sequeira, M. M. A.: 226Ra and 228Ac in a fresh water ecosystem. Radiat. Prot. Dosim. 24(1), 133 (1988).10.1093/oxfordjournals.rpd.a080257Search in Google Scholar

35. Kurnaz, A., Kucukomeroglu, B., Keser, R., Okumusoglu, N. T., Korkmaz, F., Karahan, G., Cevik, U.: Determination of radioactivity levels and hazards of soil and sediment samples in Firtina Valley (Rize, Turkey). Appl. Radiat. Isot. 65, 1281 (2007).10.1016/j.apradiso.2007.06.001Search in Google Scholar PubMed

36. Yu, K. N., Guan, Z. J., Stokes, M. J., Young, E. C. M.: Natural and artificial radionuclides in seabed sediments of Hong Kong. Nucl. Geophys. 8, 45 (1994).Search in Google Scholar

37. Muhammad, B. G., Jaafar, M. S., Rahman, A. S., Ingawa, F. A.: Determination of radioactive elements and heavy metals in sediments and soil from domestic water sources in northern peninsular Malaysia. Environ. Monit. Assess 184, 5043 (2012).10.1007/s10661-011-2320-3Search in Google Scholar PubMed

38. Nagdya, M., Shawkis, S., Amer, H. A.: Radioactivity levels in lake Nasser sédiments. Int. J Appl. Radiat. Isot. 46, 297 (1995).10.1016/0969-8043(94)00144-OSearch in Google Scholar

39. UNSCEAR: United Nation Scientific Committee on the Effects of Atomic Radiation. Sources Effects and Risk of Ionizing Radiation, vol. 1, New York (1998).Search in Google Scholar

40. Mora, S., De Sheikholeslami, M. R., Wyse, E., Azemard, S., Cassi, R.: An assessment of metal contamination in coastal sediments of the Caspian Sea. Marine Poll. Bull. 48(1–2), 61 (2004).10.1016/S0025-326X(03)00285-6Search in Google Scholar

41. Ramasamy, V., Paramasivam, K., Suresh, G., Jose, M. T.: Function of minerals in the natural radioactivity level of Vaigai river sediments, Tamilnadu, India: spectroscopical approach. Spectrochim. Acta A 117, 340 (2014).10.1016/j.saa.2013.08.022Search in Google Scholar

42. Guimond, R. J.: Radium in fertilizers, Technical Report No. 310 International Atomic Energy Agency (IABA), Environmental behaviour of radium, ppl 13–128 (1920).Search in Google Scholar

43. UNSCEAR: Ionzing Radiation Sources and Biological Effects, United Nations Scientific Committee on the Effects of Atomic Radiation Report. (1988).Search in Google Scholar

44. Leclaire, L.: La sédimentation holocène sur le versant Méridional du bassin Algéro-Baléares (Précontinent Algérien). Tome XXIV. Edition de Muséum, Paris, France (1972), p. 391.Search in Google Scholar

45. NCRP: National Council on Radiation Protection and Measurements. Exposure of the Population in the United States and Canada from Natural Background Radiation, NCRP Report no. 94. Maryland (1987).Search in Google Scholar

46. Sabina, Y., Bijoy Sonker, B., Mayeen, U. K., Masud. K, Md. Abdur, R., Abdul. S., Ahmed, H., Bijan, N., Bradley, D.: The presence of radioactive materials in soil, sand and sediment samples of Potenga sea beach area, Chittagong, Bangladesh: geological characteristics and environmental implication. Results in Physics 8, 268 (2018).Search in Google Scholar

47. Veeh, H. H.: Deposition of uranium from the ocean. Earth Planet. Sci. Lett. 3, 145 (1967).10.1016/0012-821X(67)90026-XSearch in Google Scholar

48. Kolodny, Y., Kaplan, I. R.: Uranium isotopes in sea-floor phosphorites. Geochim. Cosmochim. Acta 34, 1 (1973).10.1016/0016-7037(70)90148-1Search in Google Scholar

49. Mo, T., Suttele, A. D., Sachett, W. M.: Uranium concentration in marine sediments. Geochim. Cosmochim. Acta 37, 1 (1973).10.1016/0016-7037(73)90242-1Search in Google Scholar

50. McKee, B. A., De Master, D. J., Nitrouer, C. A.: Uranium geochemistry on the Amazon shelf: evidence for uranium release from bottom sediments. Geochim. Cosmochim. Acta 51, 2779 (1987).10.1016/0016-7037(87)90157-8Search in Google Scholar

51. Barnes, C. E., Cochran, J. K.: Uranium geochemistry in estuarine sediments: controls on removal and release processes. Geochim. Cosmochim. Acta 57, 555 (1993).10.1016/0016-7037(93)90367-6Search in Google Scholar

52. Ivanovich, M., Harmon, R. S.: Uranium Series Disequilibrium; Application to Environmental Problems. Clarendon Press, Oxford (1982), p. 32.Search in Google Scholar

53. Dawood, Y. H., Abd-El Naby H. H.: Mineral Chemistry of Monazite from the black sand deposits, northern Sinai, Egypt: a Provenance Perspective. Miner. Mag. 71(4), 441 (2007).10.1180/minmag.2007.071.4.389Search in Google Scholar

54. Murray, A. S., Olley J. M., Wallbrink P. J.: Radionuclides for analysis of sediments in water supply catchments. CSIRO, Division of Water Resources Consultancy Report No. 9 118, Canberra (1991).Search in Google Scholar

55. Murray, A. S., Caitcheon, G., Olley, J. M., Crockford, H.: Methods for determining the sources of sediment reaching reservoirs: targeting soil conservation. Ancold Bulletin 85, 1 (1990).Search in Google Scholar

Received: 2018-01-10
Accepted: 2018-06-04
Published Online: 2018-07-04
Published in Print: 2018-11-27

©2018 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 8.12.2023 from
Scroll to top button