Abstract
Dysprosium-titanate (Dy2TiO5), being highly refractory in nature, its dissolution using conventional (hot-plate and fusion) methods is very difficult. Hence, for quantitative dissolution, a microwave method has been developed. The instrumental parameters and amount of acids has been optimized. Studies have been carried out for precise and accurate estimation of major elements such as Dy, Ti, and Mo. An anion exchange column has been used to separate Mo, Dy and Ti. Analysis of these elements has been carried out using ICP-MS, UV-visible spectroscopy, and gravimetric methods. In the developed method, precipitation of molybdenum and dysprosium has been done using α-benzoine oxime, and oxalic acid respectively. These precipitates have been converted into their respective oxide form. The purities of these oxides (Dy2O3 and MoO3) have been determined using ICP-MS. The method has been validated using synthetic samples where it is found that accuracy of Dy and Mo is >99% and precision is <1 (%RSD). The titanium has been determined using UV-visible spectroscopy with accuracy >98% and precision <2 (%RSD).
Acknowledgments
I am heartily thankful to Dr. N. L. Misra, FCD, BARC and Dr. (Smt.) Sangita Dhara, FCD, BARC, for providing data of TXRF for the validation of the developed method.
References
1. IAEA-TECDOC-813: Advances in Control assembly materials for water reactors, Proceedings of a Technical Committee meeting held in Vienna, 29 November–2 December (1993).Search in Google Scholar
2. IAEA-TECDOC-1132: Control assembly materials for water reactors: Experience, performance and perspectives, proceeding of a Technical Committee held in Vienna, 12–15 October (1998).Search in Google Scholar
3. Subramanian, C., Suri, A. K., Murthy, T. S. R. C.: BARC News Letter, Issue No 313, Mar-Apr 14–22 (2010).Search in Google Scholar
4. Risovany, V. D., Varlashova, E. E., Susloy, D. N.: Dysprosium titanate as an absorber material for control rods. J. Nucl. Mater. 281, 84 (2000).10.1016/S0022-3115(00)00129-XSearch in Google Scholar
5. Soo-Youl, O., Choong-Sup, G., Jonghwa, C.: Evaluation of neutron cross section of Dy isotopes in the resonance region. J. Korean Chem. Soc. 33(1), 46 (2001).Search in Google Scholar
6. Renier, J. P. A., Grossbeck, M. L.: ORNL/TM-2001/238 Report: Development of improved burnable poisons for commercial nuclear power reactors. (2001). Available at: http://www.osti.gov/bridge.Search in Google Scholar
7. Kandan, R., Prabhakara Reddy, B., Panneerselvem, G., Nagarajan, K.: Calorimetric measurements on rare earth titanates: RE2TiO5 (RE=Sm, Gd and Dy). J. Therm. Anal. Calorim. 124, 1349 (2016).10.1007/s10973-016-5272-6Search in Google Scholar
8. Marinenko, G., Koch, W. F., Edgar, S. E.: High precision coulometric titration of uranium. J. Res. Natl. Bur. Stand. 88(2), 117 (1983).10.6028/jres.088.007Search in Google Scholar
9. Slanina, J., Bakker, F., Groen, A. J. P., Lingerak, W. A.: Accurate and precise determination of 2–25mg amounts of uranium by means of a special automatic potentiometric titration. Fresenius Z. Anal. Chem. 289, 102 (1978).10.1007/BF00443954Search in Google Scholar
10. Noronha, D. M., Pius, I. C., Chaudhury, S.: Co-precipitation of plutonium (IV) and americium (III) from nitric acid-oxalic acid solutions with bismuth oxalate. J. Radioanal. Nucl. Chem. 313, 523 (2017).10.1007/s10967-017-5348-1Search in Google Scholar
11. Nan, Z.: Gravimetric determination of tin with sodium cyclotetramethylenedithiocarbamate and its applications in metal analysis. Talanta 46, 1237 (1998).10.1016/S0039-9140(97)00305-6Search in Google Scholar PubMed
12. Ramos, G. R., Tomas, R. I.: Gravimetric determination of palladium with biguanide sulfate. Microchem. J. 33, 379 (1986).10.1016/0026-265X(86)90015-9Search in Google Scholar
13. Uesugi, K., Kumagai, T., Wada, S.: Gravimetric determination of copper with 2-hydroxy-1-naphthaldoxime. Microchem. J. 33, 204 (1986).10.1016/0026-265X(86)90056-1Search in Google Scholar
14. Wiley, R. C.: Gravimetric and direct volumetric determination of cadmium. Ind. Eng. Chem. Anal. Ed. 3(1), 14 (1931).10.1021/ac50073a009Search in Google Scholar
15. Marangoni, G., Degetto, S., Croatto, U.: Gravimetric determination of uranium (VI) with pyridine-2,6-dicarboxylic acid. Talanta 20, 1217 (1973).10.1016/0039-9140(73)80086-4Search in Google Scholar PubMed
16. Dogan, H., Hilmioglu, N. D.: Dissolution of cellulose with NMMO by microwave heating. Carbohydr. Polym. 75, 90 (2009).10.1016/j.carbpol.2008.06.014Search in Google Scholar
17. Mirashi, N. N., Chaudhury, S., Aggarwal, S. K.: Dissolution of sintered thoria in phosphoric acid using autoclave and microwave methods with detection by gamma spectrometry. Microchem. J. 94, 24 (2010).10.1016/j.microc.2009.08.002Search in Google Scholar
18. Lynn, B. F.: Microwave dissolution of geologic material: application to isotope dilution analysis. Anal. Chem. 58, 261 (1986).10.1021/ac00292a066Search in Google Scholar
19. Kumari, S., Singh, S. K., Kumar, B.: Rapid microwave digestion procedures for the elemental analysis of alloy and slag samples of smelted ocean bed polymetallic nodules. J. Chem. 2013, 6 (2012).Search in Google Scholar
20. William, R. M., John, C., Stephan, G. C.: Elemental Analysis Manual for food and related products, Section 2.3, Digestion and separation, U.S. Department of Health and Human Services (Sep 2014). Available at: http://www.fda.gov/Food/FoodScienceResearch/LaboratoryMethods/ucm2006954.htm.Search in Google Scholar
21. Turan, M. D., Sari, Z. A., Miller, J. D.: Leaching of blended copper slag in microwave oven. Trans. Nonferrous Met. Soc. China 27, 1404 (2017).10.1016/S1003-6326(17)60161-4Search in Google Scholar
22. Hewitt, A. D., Reynolds, C. M.: Microwave digestion of soils and sediments for assessing contamination by hazardous waste metals. Special Report 90-19, AD-A226 367. U.S. Army Corp. of Engineers (1990).10.21236/ADA226367Search in Google Scholar
23. Esen, C., Balci, A.: Application of microwave-assisted digestion to trace heavy metal determination in sea sediment sample. Hacettepe J. Biol. Chem. 36(2), 123 (2008).Search in Google Scholar
24. Larrea, M. T., Gomez-pinilla, I., Farinas, J. C.: Microwave-assisted acid dissolution of sintered advanced ceramics for inductively coupled plasma atomic emission spectrometry. J. Anal. Atom. Spectrom. 12, 1323 (1997).10.1039/A702875JSearch in Google Scholar
25. Ho-Song, Y., Chul-Joo, K., Kyeong-Woo, C., Sung-Don, K., Jin-Young, L., Kumar, J. R.: Solvent extraction, separation and recovery of dysprosium (Dy) and neodymium (Nd) from aqueous solutions: waste recycling strategies for permanent magnet processing. Hydrometallurgy 165, 27 (2016).10.1016/j.hydromet.2016.01.028Search in Google Scholar
26. Truong, H. T., Nguyen, T. H., Lee, M. S.: Separation of molybdenum(VI), rhenium (VII), tungsten (VI), and vanadium (V) by solvent extraction. Hydrometallurgy 171, 298 (2017).10.1016/j.hydromet.2017.06.006Search in Google Scholar
27. Hao, X., Lu, L., Liang, B., Li, C., Wu, P., Wang, J.: Solvent extraction of titanium from the simulated ilmenite sulfuric acid leached by trialkylphosphine oxide. Hydrometallurgy 113–114, 185 (2012).10.1016/j.hydromet.2011.12.023Search in Google Scholar
28. Sing, D. K., Kotekar, M. K., Singh, H.: Development of a solvent extraction process for production of nuclear grade dysprosium oxide from a crude concentrate. Desalination 232, 49 (2008).10.1016/j.desal.2007.10.036Search in Google Scholar
29. Altunay, N., Gurkan, R.: Separation/preconcentration of ultra-trace level of inorganic Sb and Se from different sample matrices by charge transfer sensitized ion-pairing using ultrasonic-assisted cloud point extraction prior to their speciation and determination by hydride generation AAS. Talanta 159, 344 (2016).10.1016/j.talanta.2016.06.054Search in Google Scholar PubMed
30. De Souza, A. L., Cotrim, M. E. B., Pires, M. A. F.: An overview of spectrometric techniques and sample preparation for the determination of impurities in uranium nuclear fuel grade. Microchem. J. 106, 194 (2013).10.1016/j.microc.2012.06.015Search in Google Scholar
31. Taylor, A., Barlow, N., Day, M. P., Sarah, H., Marina, P., White, M.: Atomic spectrometry update: review of advances in the analysis of clinical and biological materials foods and beverages. J. Anal. At. Spectrom. 32, 432 (2017).10.1039/C7JA90005HSearch in Google Scholar
32. Enders, M. S. P., de Souza, J. P., Balestrin, P., de Azevedo Mello, P., Duarte, F. A., Muller, E. I.: Microwave-induced combustion of high purity nuclear flexible graphite for determination of potentially embrittling elements using atomic spectrometric techniques. Microchem. J. 124, 321 (2016).10.1016/j.microc.2015.09.015Search in Google Scholar
33. Nagar, B. K., Saha, A., Deb, S. B., Saxena, M. K.: Quantification of trace and ultra trace elements in uranium-silicide (U3Si2) fuel employing inductively coupled plasma mass spectrometry. At. Spectrosc. 35(5), 187 (2014).10.46770/AS.2014.05.001Search in Google Scholar
34. Nagar, B. K., Saxena, M. K., Tomar, B. S.: Development of an analytical method for quantification of trace metallic impurities in U-Mo alloy employing time of flight based ICP-MS. Atom. Spectrosc. 38(5), 117 (2017).10.46770/AS.2017.05.001Search in Google Scholar
35. Asari, P. S., Iyer, C. S. P.: Precipitation of molybdenum α-benzoin oximate from homogeneous solution. Talanta 30(6), 423 (1983).10.1016/0039-9140(83)80099-XSearch in Google Scholar PubMed
36. Hoenes, H. J., Stone, K. G.: Analytical chemistry of α-benzoinoxime complexes of molybdenum, tungsten, and vanadium. Talanta 4, 250 (1960).10.1016/0039-9140(60)80129-4Search in Google Scholar
37. Vasireddi, S. P., Rao, V. R.: Studies on rare earth mixed complexes. J. Inorg. Nucl. Chem. 39, 311 (1977).10.1016/0022-1902(77)80020-1Search in Google Scholar
38. Ng, K. Y. S., Zhou, X., Gulari, E.: Spectroscopic characterization of molybdenum oxalate in solution and on alumina. J. Phys. Chem. 89(12), 2477 (1985).10.1021/j100258a011Search in Google Scholar
39. Beltran, A., Caturla, F., Cervilla, A., Beltran, J.: Mo(VI) oxalate complexes. J. Inorg. Nucl. Chem. 43(12), 3277 (1981).10.1016/0022-1902(81)80102-9Search in Google Scholar
40. Malinovsky, D., Vanhaecke, F.: Molybdenum isotope enrichment by anion-exchange chromatography. J. Anal. Atom. Spectrom. 29, 1090 (2014).10.1039/c4ja00013gSearch in Google Scholar
41. Stacey, B., Weihua, L., Barbara, E., Yuan, T., Joel, B.: An XAS study of molybdenum speciation in hydrothermal chloride solutions from 25–385°C and 600 bar. Geochim. Cosmochim. Acta 92, 292 (2012).10.1016/j.gca.2012.06.001Search in Google Scholar
42. Cservenyak, I., Kelsall, H., Wang, W.: Reduction of Ti(IV) in aqueous sulfuric and hydrochloric acids I. Titanium speciation. Electrochim. Acta 41(4), 563 (1996).10.1016/0013-4686(95)00343-6Search in Google Scholar
43. Kelsal, G. I., Robbins, D. J.: Thermodynamics of Ti-H2O-F(-Fe) systems at 298 K. J. Electroanal. Chem. 283, 135 (1990).10.1016/0022-0728(90)87385-WSearch in Google Scholar
44. Paris, J. P., Warton, J. W.: Anion exchange resin separation of the rare earths, yttrium, and scandium in nitric acid-methanol mixtures. Anal. Chem. 34, 1077 (1962).10.1021/ac60189a013Search in Google Scholar
45. Riri, M., Hor, H., Kamal, O., Eljaddi, T., Benjjar, A., Hlaibi, M.: New gadolinium complexes with simple organic acids (oxalic, glycolic and malic acid). J. Mater. Environ. Sci. 2(3), 303 (2011).Search in Google Scholar
46. Zhaogang, L., Mei, L., Yanhong, H., Mitang, W., Zhenxue, S.: Preparation of large particle rare earth oxides by precipitation with oxalic acid. J. Rare Earth 26(2), 158 (2008).10.1016/S1002-0721(08)60057-5Search in Google Scholar
47. Chi, R., Xu, Z.: A solution chemistry approach to the study of rare earth element precipitation by oxalic acid. Metall. Mater. Trans. B 30, 789 (1999).10.1007/s11663-999-0047-0Search in Google Scholar
48. Van De Velde, G. M. H.: The oxalato complex of titanium (IV)-I Mononuclear Ti(OH)2(C2O4)22− in solution. J. Inorg. Nucl. Chem. 39, 1357 (1977).10.1016/0022-1902(77)80298-4Search in Google Scholar
49. Chung, D.Y., Kim, E. H., Lee, E. H., Yoo, J. H.: Solubility of rare earth oxalate in oxalic and nitric medium. J. Ind. Eng. Chem. Res. 4(4), 277 (1998).Search in Google Scholar
50. Yoe, J. H., Armstrong, L. R.: Colorimetric determination of titanium with disodium-1,2-dihydroxybenzene-3,5-disulfonate. Anal. Chem. 19(2), 100 (1947).10.1021/ac60002a009Search in Google Scholar
51. Srilalitha, V., Prasad, A. R. G., Kumar, K. R., Seshagiri, V.: A new spectrophotometry method for the determination of trace amount of titanium (IV). FACTA UNIVERSITATIS Series: Phys. Chem. Technol. 8, 15 (2010).Search in Google Scholar
52. Reddy, B. V. N., Saleem, V., Reddy, T. S.: Determination of titanium and vanadium with 2,4-dihydroxy acetophenone isonicotinoylhydrazone by direct and derivative spectrophotometric method. Der. Pharma. Chemica. 7(3), 16 (2015).Search in Google Scholar
53. Tarafder, P. K., Durani, S., Saran, R., Ramanaiah, G. V.: Rapid spectrophotometric method (aqueous and extractive) for the determination of titanium in silicate rocks. Talanta 41(8), 1345 (1994).10.1016/0039-9140(94)E0023-KSearch in Google Scholar PubMed
54. Xianfeng, D.,Youlong, X., Li, Q., Xiangfei, L., Qiong, L., Yang, B.: Simple and rapid spectrophotometric determination of titanium on etched aluminium foils. Am. J. Analyt. Chem. 5, 149 (2014).10.4236/ajac.2014.53018Search in Google Scholar
©2018 Walter de Gruyter GmbH, Berlin/Boston