Accessible Unlicensed Requires Authentication Published by Oldenbourg Wissenschaftsverlag July 14, 2018

Measurement and covariance analysis of 59Co(n, 2n)58Co reaction cross sections at the effective neutron energies of 11.98 and 15.75 MeV

Santhi Sheela Yerraguntla, Haladhara Naik, Manjunatha Karantha, Srinivasan Ganesan, Suryanarayana Venkata Saraswatula and Sreekumaran Narayana Pillai Nair
From the journal Radiochimica Acta


The 59Co(n, 2n)58Co reaction cross sections relative to the cross sections of the 115In(n, n′)115mIn reaction have been measured at the effective neutron energies of 11.98 and 15.75 MeV by using activation and off-line γ-ray spectrometric technique. Neutron beam used in the present experiment was generated from the 7Li(p, n)7Be reaction with the proton energies of 14 and 18 MeV at the 14UD BARC-TIFR Pelletron facility, Mumbai. We also present the covariance information by taking into account the sources of error and the correlations between the attributes influencing the measurements. The 59Co(n, 2n)58Co reaction cross sections from the present work are then compared with the values from different evaluated nuclear data libraries. The micro-correlation technique suggested by Smith was modified to generate the covariance matrix for the measurements of reaction cross sections as the efficiencies of detector for the sample and monitor are correlated.


One of the authors, Santhi Sheela, thanks Department of Atomic Energy-Board of Research in Nuclear Sciences (DAE-BRNS), Mumbai for the financial support through a research project (Sanction No. 36(6)/14/52/2014-BRNS/2708). The authors would like to thank Tim Vidmar, Belgian Nuclear Research Centre (SCK⋅CEN), Belgium for providing EFFTRAN software for calculating the correction factor due to coincidence summing. The authors would also like to thank Vinay Madhusudanan, Asst. Prof. Department of Mathematics, MIT, Manipal for his association in developing a Matlab code for computing covariance matrix. The authors are thankful to Naohiko Otsuka, International Atomic Energy Agency for his valuable expert opinion on the method of retrieving monitor cross section from IRDFF. They are also grateful to the staff of Pelletron facility, TIFR for giving the proton beam during the irradiation.


1. Ganesan, S.: Nuclear data requirements for accelerator driven sub-critical systems – a roadmap in the Indian context. Pramana 68(2), 257 (2007).10.1007/s12043-007-0029-1 Search in Google Scholar

2. Qaim, S.: Radiochemical determination of nuclear data for theory and applications. J. Radioanal. Nucl. Chem. 284(3), 489 (2010).10.1007/s10967-010-0460-5 Search in Google Scholar

3. Qaim, S.: Activation cross sections, isomeric cross-section ratios and systematics of (n, 2n) reactions at 14–15 MeV. Nucl. Phys. A 185(2), 614 (1972).10.1016/0375-9474(72)90036-X Search in Google Scholar

4. Sudar, S., Qaim, S.: Isomeric cross-section ratio for the formation of 58m,gCo in neutron, proton, deuteron, and alpha-particle induced reactions in the energy region up to 25 MeV. Phys. Rev. C 53(6), 2885 (1996).10.1103/PhysRevC.53.2885 Search in Google Scholar

5. Bostan, M., Qaim, S.: Excitation functions of threshold reactions on 45Sc and 55Mn induced by 6 to 13 MeV neutrons. Phys. Rev. C 49(1), 266 (1994).10.1103/PhysRevC.49.266 Search in Google Scholar

6. Bormann, M., Seebeck, U., Voights, W., Woelfer, G.: Level densities of dome medium weight nuclei from evaporation spectra of the alpha particles from (n, alpha) reactions. Z. Naturforsch. A 21, 988 (1966). Search in Google Scholar

7. Dighe, P., Pansare, G., Sarkar, R., Bhoraskar, V.: Cross sections of (n, 2n) reactions induced by 14.7 MeV neutrons in 46Ti, 50Cr and 59Co. Indian J. Pure Appl. Phys. 29(10), 665 (1991). Search in Google Scholar

8. Garlea, I., Garlea, C., Dobrea, D., Roth, C., Rosu, H. N., Rapeanu, S.: Cross sections of some reactions induced by 14 MeV neutrons. Revue Roumaine de Physique 30(8), 673 (1985). Search in Google Scholar

9. Ghorai, S., Gaiser, J., Alford, W.: The (n, 2n) isomeric cross section ratios and the (n, 2n) and (n, α) excitation functions for 59Co. Ann. Nucl. Energy 7(1), 41 (1980).10.1016/0306-4549(80)90005-5 Search in Google Scholar

10. Greenwood, L. R.: Recent research in neutron dosimetry and damage analysis for materials irradiations. In: Influence of Radiation on Material Properties: 13th International Symposium (Part II) (1987), ASTM International, Philadelphia, p. 743. Search in Google Scholar

11. Hasan, S., Pavlik, A., Winkler, G., Uhl, M., Kaba, M.: Precise measurement of cross sections for the reactions 59Co(n, 2n)58m+ gCo and 59Co (n, p)59Fe around 14 MeV. J. Phys. G: Nucl. Phys. 12(5), 397 (1986).10.1088/0305-4616/12/5/007 Search in Google Scholar

12. Iwasaki, S., Matsuyama, S., Ohkubo, T., Fukuda, H., Sakuma, M., Kitamura, M.: Measurement of activation cross-sections for several elements between 12 and 20 MeV. Vol. 1. p. 305. (No. CONF-940507) American Nuclear Society, Inc., La Grange Park, IL (United States), (1994). Search in Google Scholar

13. Kimura, I., Kobayashi, K.: Calibrated fission and fusion neutron fields at the Kyoto University Reactor. Nucl. Sci. Eng. 106(3), 332 (1990).10.13182/NSE90-A29061 Search in Google Scholar

14. Majerle, M., Bém, P., Novák, J., Šimečková, E., Štefánik, M.: Au, Bi, Co and Nb cross-section measured by quasimonoenergetic neutrons from p+7Li reaction in the energy range of 18–36 MeV. Nucl. Phys. A 953, 139 (2016).10.1016/j.nuclphysa.2016.04.036 Search in Google Scholar

15. Mannhart, W., Schmidt, D.: Measurement of neutron activation cross sections in the energy range from 8 MeV to 15 MeV. In. Physikalisch-Technische Bundesanstalt (PTB-N-53), (2007). Search in Google Scholar

16. Meadows, J., Smith, D., Bretscher, M., Cox, S.: Measurement of 14.7 MeV neutron-activation cross sections for fusion. Ann. Nucl. Energy 14(9), 489 (1987).10.1016/0306-4549(87)90066-1 Search in Google Scholar

17. Molla, N., Miah, R., Basunia, S., Hossain, S., Rahman, M.: Cross sections of (n, p), (n, α), and (n, 2n) processes on scandium, vanadium, cobalt, copper and zinc isotopes in the energy range 13.57–14.71 MeV. Vol. 2. p. 938. (No. CONF-940507) American Nuclear Society, Inc., La Grange Park, IL (United States), (1994). Search in Google Scholar

18. Osman, K. T., Habbani, F. I.: Measurement and study of (n, p) reaction cross-sections for Cr, Ti, Ni, Co, Zr and Mo isotopes using 14.7 MeV neutrons. International Atomic Energy Agency (IAEA) No. INDC (SUD)–001 (1996). Search in Google Scholar

19. Ryves, T., Kolkowski, P., Judge, S.: Cobalt cross sections for 14 MeV neutrons. Ann. Nucl. Energy 15(12), 561 (1988).10.1016/0306-4549(88)90060-6 Search in Google Scholar

20. Semkova, V., Avrigeanu, V., Glodariu, T., Koning, A., Plompen, A., Smith, D., Sudar, S.: A systematic investigation of reaction cross sections and isomer ratios for neutrons up to 20 MeV on Ni-isotopes and 59Co by measurements with the activation technique and new model studies of the underlying reaction mechanisms. Nucl. Phys. A 730(3), 255 (2004).10.1016/j.nuclphysa.2003.11.005 Search in Google Scholar

21. Suita, J. C., da Silva, A. G., Auler, L. T., de Barros, S.: Neutron-induced reaction cross sections between 9 and 14 MeV. Nucl. Sci. Eng. 126(1), 101 (1997).10.13182/NSE97-A24461 Search in Google Scholar

22. Uno, Y., Uwamino, Y., Soewarsono, T. S., Nakamura, T.: Measurement of the neutron activation cross sections of 12C, 30Si, 47Ti, 48Ti, 52Cr, 59Co, and 58Ni between 15 and 40 MeV. Nucl. Sci. Eng. 122(2), 247 (1996).10.13182/NSE96-A24159 Search in Google Scholar

23. Ganesan, S.: Nuclear data covariances in the indian context–progress, challenges, excitement and perspectives. Nucl. Data Sheets 123, 21 (2015).10.1016/j.nds.2014.12.005 Search in Google Scholar

24. Chadwick, M., Herman, M., Obložinský, P., Dunn, M. E., Danon, Y., Kahler, A., Smith, D. L., Pritychenko, B., Arbanas, G., Arcilla, R., Brewer, R., Brown, D. A., Capote, R., Carlson, A. D., Cho, Y. S., Derrien, H., Guber, K., Hale, G. M., Hoblit, S., Holloway, S., Johnson, T. D., Kawano, T., Kiedrowski, B. C., Kim, H., Kunieda, S., Larson, N. M., Leal, L., Lestone, J. P., Little, R. C., McCutchan, E. A., MacFarlane, R. E., MacInnes, M., Mattoon, C. M., McKnight, R. D., Mughabghab, S. F., Nobre, G. P. A., Palmiotti, G., Palumbo, A., Pigni, M. T., Pronyaev, V. G., Sayer, R. O., Sonzogni, A. A., Summers, N. C., Talou, P., Thompson, I. J., Trkov, A., Vogt, R. L., van der Marck, S. C., Wallner, A., White, M. C., Wiarda, D., Young, P. G.: ENDF/B-VII.1 Nuclear data for science and technology: cross sections, covariances, fission product yields and decay data. Nucl. Data Sheets 112(12), 2887 (2011).10.1016/j.nds.2011.11.002 Search in Google Scholar

25. Ge, Z., Zhao, Z., Xia, H., Zhuang, Y., Liu, T., Zhang, J., Wu, H.: The updated version of Chinese Evaluated Nuclear Data Library (CENDL-3.1). J. Korean Phys. Soc 59(2), 1052 (2011).10.3938/jkps.59.1052 Search in Google Scholar

26. Zabrodskaya, S. V., Ignatyuk, A. V., Koscheev, V. N., Manochin, V. N., Nikolaev M. N., Pronyaev, V. G. ROSFOND – Rossiyskaya Natsionalnaya Biblioteka Nejtronnykh Dannykh, VANT, Nuclear Constants 1–2, 3 (2007). Search in Google Scholar

27. Shibata, K., Iwamoto, O., Nakagawa, T., Iwamoto, N., Ichihara, A., Kunieda, S., Chiba, S., Furutaka, K., Otuka, N., Ohasawa, T., Murata, T., Matsunobu, H., Zukeran, A., Kamada, S., Katakura, J.-I.: JENDL-4.0: a new library for nuclear science and engineering. J. Nucl. Sci. Technol. 48(1), 1 (2011).10.1080/18811248.2011.9711675 Search in Google Scholar

28. Koning, A., Bauge, E., Dean, C., Dupont, E., Fischer, U., Forrest, R., Jacqmin, R., Leeb, H., Kellett, M., Mills, R.: Status of the JEFF nuclear data library. J. Korean Phys. Soc 59(2), 1057 (2011).10.3938/jkps.59.1057 Search in Google Scholar

29. Koning, A. J., Rochman, D., Kopecky, J., Sublet, J. C., Fleming, M., Bauge, E., Hilaire, S., Romain, P., Morillon, B., Duarte, H., Marck, S. C. V., Pomp, S., Sjostrand, H., Forrest, R., Henriksson, H., Cabellos, O., Goriely, S., Leppanen, J., Leeb, H., Lompen, A., Mills, R.: TENDL-2015: TALYS-based evaluated nuclear data library. Available at: (2015). Search in Google Scholar

30. Capote, R., Zolotarev, K. I., Pronyaev, V. G., Trkov, A.: Updating and extending the IRDF-2002 dosimetry library. J. ASTM Int. 9(4), 1 (2012). Search in Google Scholar

31. Ziegler, J. F., Ziegler, M. D., Biersack, J. P.: SRIM–The stopping and range of ions in matter. Nucl. Instrum. Methods Phys. Res. B 268(11–12), 1818 (2010). Available at: Search in Google Scholar

32. Badwar, S., Ghosh, R., Lawriniang, B. M., Vansola, V., Sheela, Y. S., Naik, H. Naik, Y., Suryanarayana, S. V., Jyrwa, B., Ganesan, S.: Measurement of formation cross-section of 99Mo from the 98Mo(n,γ) and 100Mo(n,2n) reactions. Appl. Radiat. Isot. 129, 117 (2017).10.1016/j.apradiso.2017.08.01928843159 Search in Google Scholar

33. Yerraguntla, S. S., Naik, H., Karantha, M. P., Ganesan, S., Suryanarayana, S. V., Badwar, S.: Measurement of 59Co(n, γ)60Co reaction cross sections at the effective neutron energies of 11.98 and 15.75 MeV. J. Radioanal. Nucl. Chem. 314(1), 457 (2017).10.1007/s10967-017-5374-z Search in Google Scholar

34. Sonzogni, A.: NuDat 2.7β (2017), National Nuclear Data Center, Brookhaven National Laboratory. Search in Google Scholar

35. Smith, D. L., Plompen, A. J. M., Semkova, V.: Correction for low energy neutrons by spectral indexing, vol. 75. Organisation for Economic Co-Operation and Development-Nuclear Energy Agency (NEA/WPEC-19, ISBN 92-64-01070-X), Paris (France), (2005). Search in Google Scholar

36. Millsap, D., Landsberger, S.: Self-attenuation as a function of gamma ray energy in naturally occurring radioactive material in the oil and gas industry. Appl. Radiat. Isot. 97, 21 (2015).10.1016/j.apradiso.2014.12.00825527897 Search in Google Scholar

37. Nowotny, R.: XMuDat: Photon attenuation data on PC. In: IAEA Report IAEA-NDS, vol. 195 (1998). Search in Google Scholar

38. Santhi Sheela, Y., Naik, H., Manjunatha Prasad, K., Ganesan, S., Sreekumaran Nair, N., Suryanarayana, S. V.: The efficiency and error covariance matrix of HPGe detector at characteristic gamma energies of reaction products 58Co and 115mIn in the measurement of 59Co(n, 2n)58Co reaction cross section relative to 115In(n, n′)115mIn Internal Report No. MU/STATISTICS/DAE-BRNS/2017/2, March-2017, DOI: 10.13140/RG.2.2.28301.95206 (2017). Search in Google Scholar

39. Santhi Sheela, Y., Naik, H., Manjunatha Prasad, K., Ganesan, S., Sreekumaran Nair, N., Suryanarayana, S. V.: Covariance analysis of efficiency calibration of HPGe detector. Internal Report, No. MU/STATISTICS/DAE-BRNS/2017/1, 19-February-2017, DOI: 10.13140/RG.2.2.32025.21605 (2017). Search in Google Scholar

40. Smith, D.: On the relationship between micro and macro correlations in nuclear measurement uncertainties. Nucl. Instr. Methods Phys. Res. A 257(2), 365 (1987).10.1016/0168-9002(87)90758-3 Search in Google Scholar

41. Koning, A., Rochman, D., van der Marck, S., Kopecky, J., Sublet, J., Pomp, S., Sjostrand, H., Forrest, R.: TALYS Evaluated Nuclear Data Library (TENDL-2015). Nuclear Research and Consultancy Group (NRG) Petten, The Netherlands (2015). Search in Google Scholar

42. Evaluated Nuclear Data File ENDF/B-VII.1. (2011). Search in Google Scholar

43. Otuka, N., Dupont, E., Semkova, V., Pritychenko, B., Blokhin, A. I., Aikawa, M., Babykina, S., Bossant, M., Chen, G., Dunaeva, S., Forrest, R. A., Fukahori, T., Furutachi, N., Ganesan, S., Ge, Z., Gritzay, O. O., Herman, M., Hlavac, S., Kato, K., Lalremruata, B., Lee, Y. O., Makinaga, A., Matsumoto, K., Mikhaylyukova, M., Pikulina, G., Pronyaev, V. G., Saxena, A., Schwerer, O., Simakov, S. P., Soppera, N., Suzuki, R., Takacs, S., Tao, X., Taova, S., Tarkanyi, F., Varlamov, V. V., Wang, J., Yang, S. C., Zerkin, V., Y, Z.: Towards a more complete and accurate experimental nuclear reaction data library (EXFOR): international collaboration between nuclear reaction data centres (NRDC). Nuclear Data Sheets 120, 272 (2014).10.1016/j.nds.2014.07.065 Search in Google Scholar

Received: 2018-02-06
Accepted: 2018-05-30
Published Online: 2018-07-14
Published in Print: 2018-11-27

©2018 Walter de Gruyter GmbH, Berlin/Boston