Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter (O) July 27, 2018

Fast burn-up measurement in simulated nuclear fuel using ICP-MS

  • Ujjwal Kumar Maity , Periasamy Manoravi , Nagarajan Sivaraman , Mathew Joseph EMAIL logo and Uthandi Kamachi Mudali
From the journal Radiochimica Acta


A double focusing ICP-MS with pulsed laser deposition (PLD) of thin films as sampling tool has been used in simulated spent fuels for a quick measurement on burn-up of nuclear reactor fuels by measuring the atom ratio of U (representing total heavy elements of mass >225) to selected lanthanide fission monitors. A linear correlation is established between the measured intensity ratios of 238U/143Nd, 238U/(145Nd+146Nd) and 238U/139La against the actual atom ratios present in the samples. The samples in the form of solution are obtained by dissolving different concentrations of U, Nd and La in nitric acid medium, representing a wide burn-up range (0.19 to 19.98 at.%). In addition, PLD films were deposited using 1064 nm, 100 ps Nd:YAG laser pulses on solid targets of U and Nd mixed oxide, corresponding to different burn-ups. ICP-MS analysis of these films after dissolving in nitric acid showed values close to that of the solid target composition. Burn-up data obtained with films deposited at a high laser power density of 1.67×1011 W/cm2 agrees well with the values of the respective target compositions compared to the films deposited at 3.3×109 W/cm2. Present analytical method requires only a very small sample quantity, typically a few nanograms and generally does not require any chemical separation in comparison to the conventional mass spectrometry method, which is traditionally employed to determine the burn-up of a nuclear fuel.


1. Standard Test Method for Atom Percent Fission in uranium and plutonium fuel (Neodymium-148 method) Designation E 321-96 Annual Book of ASTM standards, 12.02,1996. Also, ASTM Standards E321-69, American Society for Testing Materials, Philadelphia (1974).Search in Google Scholar

2. Bevard, B. B., Wagner, J. C., Parks, C. V., Aissa, M.; Review of Information for Spent Nuclear Fuel Burnup Confirmation, Nuclear Regulatory Commission, Washington, DC, Report NUREG/CR-6998 (2009).Search in Google Scholar

3. Bishop, W. N.: Nuclear Regulatory Commission, Washington, DC, 1, Report NUREG/CP004 (1997), p. 496.Search in Google Scholar

4. Sivaraman, N., Subramaniam, S., Srinivasan, T. G., Rao, P. V.: Burn-up measurements on nuclear reactor fuels using high performance liquid chromatography. J. Radioanal. Chem. 253, 35 (2002).10.1023/A:1015800114488Search in Google Scholar

5. Joe, K. S., Jeon, Y. S., Kim, J. S., Han, S. H., Kim, J. G., Kim, W. H.: Separation of burnup monitors in spent nuclear fuel samples by liquid chromatography. Bull. Korean Chem. Soc. 26, 569 (2005).10.5012/bkcs.2005.26.4.569Search in Google Scholar

6. Cassidy, R. M., Elchuk, S., Elliot, N. L., Green, L. W., Knight, C. H., Recoskie, B. M.: Dynamic ion exchange chromatography for the determination of number of fissions in uranium dioxide fuels. Anal. Chem. 58, 1181 (1986).10.1021/ac00297a045Search in Google Scholar

7. Datta, A., Sivaraman, N., Srinivasan, T. G., Rao, P. V.: Rapid separation of lanthanides and actinides on small particle based reverse phase supports. Radiochimica. Acta 98, 277 (2010).10.1524/ract.2010.1715Search in Google Scholar

8. Jaison, P. G., Raut, N. M., Aggarwal, S. K.: Direct determination of lanthanides in simulated irradiated thoria fuels using reversed-phase high-performance liquid chromatography. J. Chromatogr. A 1122, 47 (2006).10.1016/j.chroma.2006.04.037Search in Google Scholar PubMed

9. Joseph, M., Karunasagar, D., Saha, B.: Development of high performance liquid chromatography for rapid determination of burn-up of nuclear fuels. IGC Report-184 (1996).Search in Google Scholar

10. Saha, B., Bagyalakshmi, R., Periaswami, G., Kavimandan, V. D., Chitambar, S. A., Jain, H. C., Mathews, C. K.: Determination of nuclear fuel burn-up using mass spectrometric techniques. BARC Report-891 (1977).Search in Google Scholar

11. Becker, J. S.: Inorganic Mass Spectrometry: Principles and Applications. John Wiley & Sons Ltd., West Sussex, England (2007).Search in Google Scholar

12. Heumann, K. G.: Isotope dilution mass spectrometry. In: F. Adams, R. Gijbels, R. Van Grieken (Eds.), Inorganic Mass Spectrometry (1988), John Wiley & Sons, New York, p. 301.Search in Google Scholar

13. Koyama, S. I., Osaka, M., Sekine, T., Morozumi, K., Namekawa, T., Itoh, M.: Measurement of burnup in FBR MOX fuel irradiated to high burnup. J. Nucl. Sci. Technol. 40, 998 (2003).10.3327/jnst.40.998Search in Google Scholar

14. Management of small quantities of radioactive waste, IAEA-Tecdoc-1041, 1998.Search in Google Scholar

15. Sajimol, R., Bera, S., Nalini, S., Sivaraman, N., Joseph, M., Kumar, T.: Preferential removal of Sm by evaporation from Nd–Sm mixture and its application in direct burn-up determination of spent nuclear fuel. J. Radioanal. Nucl. Chem. 309, 563 (2016).10.1007/s10967-015-4631-2Search in Google Scholar

16. Sajimol, R., Bera, S., Sivaraman, N., Joseph, M.: Direct burn-up determination of fast reactor mixed oxide (MOX) fuel by preferential evaporation of interfering elements. J. Radioanal. Nucl. Chem. 311, 1593 (2017).10.1007/s10967-016-5152-3Search in Google Scholar

17. Günther, D., Heinrich, C. A.: Comparison of the ablation behaviour of 266 nm Nd:YAG and 193 nm ArF excimer lasers for LA-ICP-MS analysis. J. Anal. At. Spectrom. 14, 1369 (1999).10.1039/A901649JSearch in Google Scholar

18. Russo, R. E., Mao, X. L., Borisov, O. V., Liu, H.: Influence of wavelength on fractionation in laser ablation ICP-MS. J. Anal. At. Spectrom. 15, 1115 (2000).10.1039/b004243iSearch in Google Scholar

19. Diwakar, P. K., Gonzalez, J. J., Harilal, S. S., Russo, R. E., Hassanein, A.: Ultrafast laser ablation ICP-MS: role of spot size, laser fluence, and repetition rate in signal intensity and elemental fractionation. J. Anal. At. Spectrom. 29, 339 (2014).10.1039/C3JA50315ASearch in Google Scholar

20. Sajimol, R., Manoravi, P., Bera, S., Joseph, M.: Effect of laser parameters on the measurement of U/Nd ratio using pulsed laser deposition followed by isotopic dilution mass spectrometry. Intl. J. Mass Spectrom. 387, 51 (2015).10.1016/j.ijms.2015.07.003Search in Google Scholar

21. Manoravi, P., Sajimol, R., Joseph, M., Sivakumar, N.: Laser-mass spectrometric studies on measurement of isotopic ratios – a comparative study using ps and ns pulsed lasers. Intl. J. Mass Spectrom. 367, 16 (2014).10.1016/j.ijms.2014.04.019Search in Google Scholar

22. Borisov, O. V., Mao, X., Russo, R. E.: Effects of crater development on fractionation and signal intensity during laser ablation inductively coupled plasma mass spectrometry. Spectrochim. Acta B 55, 1693 (2000).10.1016/S0584-8547(00)00272-XSearch in Google Scholar

23. Guillong, M., Heimgartner, P., Kopajtic, Z., Günther, D., Günther-Leopold, I.: A laser ablation system for the analysis of radioactive samples using inductively coupled plasma mass spectrometry. J. Anal. At. Spectrom. 22, 399 (2007).10.1039/B616364ESearch in Google Scholar

24. Konegger-Kappel, S., Prohaska, T.: Spatially resolved analysis of plutonium isotopic signatures in environmental particle samples by laser ablation-MC-ICP-MS. Anal. Bioanal. Chem. 408, 431 (2016).10.1007/s00216-015-8876-ySearch in Google Scholar PubMed PubMed Central

25. Chrisey, D. B., Hubler, G. K. (Eds.), Pulsed Laser Deposition of Thin Films. Wiley-Interscience, New York (1994).Search in Google Scholar

26. Eason, R.: Pulsed Laser Deposition of Thin Films. John Wiley & Sons Ltd., USA (2006).10.1002/0470052120Search in Google Scholar

27. Roboz, J.: Introduction to Mass Spectrometry – Instrumentation and Techniques. Inter Science Publishers, New York (1968), p. 512–513.Search in Google Scholar

28. Boulyga, S. F., Matusevich, J. L., Mironov, V. P., Kudrjashov, V. P., Halicz, L., Segal, I., McLean, J. A., Montaser, A., Becker, J. S.: Determination of 236U/238U isotope ratio in contaminated environmental samples using different ICP-MS instruments. J. Anal. Atom. Spectrom. 17, 958 (2002).10.1039/b201803aSearch in Google Scholar

29. Boulyga, S. F., Becker, J. S.: Isotopic analysis of uranium and plutonium using ICP-MS and estimation of burn-up of spent uranium in contaminated environmental samples. J. Anal. Atom. Spectrom. 17, 1143 (2002).10.1039/B202196JSearch in Google Scholar

30. Konno, K., Hirosawa, T.: Melting temperature of simulated high-burn-up mixed oxide fuels for fast reactors. J. Nucl. Sci. Technol. 36, 596 (1999).10.1080/18811248.1999.9726243Search in Google Scholar

31. Merck cat # 110580, ICP multi-element standard solution VI, for ICP-MS (30 elements in dilute nitric acid) Certipur®. Available at:,MDA_CHEM-110580.Search in Google Scholar

32. Haynes, W. M., Lide, D. R.: CRC handbook of chemistry and physics (2011–2012), CRC Press, London, New York, 92nd edition, Section 11: Nuclear and particle physics.Search in Google Scholar

33. Crouch, E. A. C.: Atomic Data and Nuclear Data Tables: Fission Product Yields from Neutron Induced Fission. Academic Press, New York and London (1977).10.1016/0092-640X(77)90023-7Search in Google Scholar

34. De Regge, P., Boden, R.: Determination of neodymium isotopes as burn-up indicator of highly irradiated (U, Pu) O2 LMFBR fuel. J. Radioanal. Nucl. Chem. 35, 173 (1977).10.1007/BF02518224Search in Google Scholar

35. Joseph, M., Manoravi, P., Sivakumar, N., Balasubramanian, R.: Laser mass spectrometric studies on rare earth doped UO2. Intl. J. Mass. Spectrom. 253, 98 (2006).10.1016/j.ijms.2006.03.015Search in Google Scholar

36. Bera, S., Balasubramanian, R., Datta, A., Sajimol, R., Nalini, S., Narasimhan, T. L., Antony, M. P., Sivaraman, N., Nagarajan, K., Rao, P. V.: Burn-up measurements on dissolver solution of mixed oxide fuel using HPLC-mass spectrometric method. Int. J. Anal. Mass Spec. Chrom. 1, 55 (2013).10.4236/ijamsc.2013.11007Search in Google Scholar

37. Joseph, M., Sivakumar, N., Manoravi, P.: Laser-induced-vaporisation mass-spectrometry studies on UO2, UC, and ThO2. High Temp. High Press. 34, 411 (2002).10.1068/htjr046Search in Google Scholar

38. Joseph, M., Sivakumar, N., Manoravi, P.: High temperature vapour pressure studies on graphite using laser pulse heating. Carbon 40, 2031 (2002).10.1016/S0008-6223(02)00158-6Search in Google Scholar

39. Wei-E, W., Olander, D. R., Lindemer, T. B.: Vaporization thermodynamics of urania-neodymia mixed oxides. J. Nucl. Mater. 211, 85 (1994).10.1016/0022-3115(94)90283-6Search in Google Scholar

40. Willmott, P. R., Manoravi, P., Holliday, K.: Production and characterization of Nd, Cr: GSGG thin films on Si (001) grown by pulsed laser ablation. Appl. Phys. A 70, 425 (2000).10.1007/s003390051061Search in Google Scholar

41. Venkiteswaran, C. N., Raghu, N., Karthik, V., Vijayaraghavan, A., Anandraj, V., Ulaganathan, T., Saravanan, T., Jayaraj, V. V., Kurien, S., Philip, J., Johny, T.: Irradiation behavior of FBTR mixed carbide fuel at various burn-ups. Energy Procedia 7, 227 (2011).10.1016/j.egypro.2011.06.030Search in Google Scholar

42. Venkiteswaran, C. N., Jayaraj, V. V., Ojha, B. K., Anandaraj, V., Padalakshmi, M., Vinodkumar, S., Karthik, V., Vijaykumar, R., Vijayaraghavan, A., Divakar, R., Johny, T.: Irradiation performance of PFBR MOX fuel after 112 GWd/t burn-up. J. Nucl. Mater. 449, 31 (2014).10.1016/j.jnucmat.2014.01.045Search in Google Scholar

Received: 2018-03-27
Accepted: 2018-06-14
Published Online: 2018-07-27
Published in Print: 2018-11-27

©2018 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 4.10.2023 from
Scroll to top button