Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter (O) October 17, 2018

Effects of initial concentration and irradiation dose to degradation of di butyl phthalate from phosphoric acid (30 % P2O5)

  • Louisa Bounemia EMAIL logo and Abdelhamid Mellah
From the journal Radiochimica Acta


The pretreatment of the phosphoric acid is a stage of utmost importance leading to an optimal recovery of the uranium present in this acid. To this end, the degradation of the organic matter which obstructs considerably this recovery was tested by γ irradiation. This study lies within the scope of the radiation/matter interaction; concerning the use of the γ irradiator as proceed of phosphoric acid purification by the degradation of di butyl phthalate (DBP). Studies of the interaction of γ radiation with phosphoric acid solutions polluted by an organic matter concern the study of the influence of some parameters such as: dose rate (0.5–35 kGy), initial concentration (50–500 mg/L) of the pollutant, pH and % in P2O5 on the degradation of organic matter by γ irradiation. The reactions followed pseudo first order kinetics for different initial concentrations. The results made it possible to say that the degradation of di butyl phthalate by γ irradiation is dependent on the amount of the concentration of DBP and pH. The G-values decreased with absorbed doses, and increased with higher initial concentrations.Purification of phosphoric acid by γ radiation does not degrade the quality of this acid.


The authors are grateful for the financial support of this project by Nuclear Research Center of Algiers (C.R.N.A).


1. Hanna, A. A., Ali, A. F.: Removal of organic matter from crude wet-process phosphoric acid. J. Chem. Technol. Biotechnol. 55(3), 205 (1992).10.1002/jctb.280550302Search in Google Scholar

2. Baudu, M., Guibaud, G., Raveau, D., Lafrance, P.: Prevision de l’adsorption de molecules organiques en solution aqueuse en fonctions de quelques caracteristiques physicochimiques de charbons actifs. Water Qual. Res. J. 36(4), 631 (2001).10.2166/wqrj.2001.034Search in Google Scholar

3. Silem, A., Boualia, A., Mellah, A., Kada, R.: Quantitative and qualitative analysis of organic matter contained in industrial phosphoric acid. Can. J. Appl. Spectrosc. 36(4), 94 (1991).Search in Google Scholar

4. Mellah, A., Silem, A., Boualia, A., Kada, R.: Adsorption of organic matter from a wet phosphoric acid using activated carbon: equilibrium study. Chem. Eng. Process. 31, 191 (1991).10.1016/0255-2701(92)80015-USearch in Google Scholar

5. Debaene, J.: GénieNucléaire. Technique de l’ingénieur J 21, Paris (1998).Search in Google Scholar

6. Fujishima, A., Honda, K.: Electrochemical photolysis of water at a semiconductor electrode. Nature 238, 37 (1972).10.1038/238037a0Search in Google Scholar

7. Fujishima, A., Rao, T. N., Tryk, A.: Titanium dioxide photocatalysis. J. Photochem. Photobiol. C: Photochem. Rev. 1, 1 (2000).10.1016/S1389-5567(00)00002-2Search in Google Scholar

8. Yoshida, H., Kawase, T., Miyashita, Y., Murata, C., Ooka, C., Hattori, T.: Effect of hydrothermal treatment of titania-pillared montmorillonite for photocatalytic degradation of dibutyl phthalate in water. Chem. Lett. 8, 715 (1999).10.1246/cl.1999.715Search in Google Scholar

9. Proksch, E., Gehringer, P., Szinovatz, W., Eschweiler, H.: Radiation-induced decomposition of small amounts of perchloroethylene in drinking water. Appl. Radiat. Isot. 38, 911 (1987).10.1016/0883-2889(87)90260-7Search in Google Scholar

10. Gehringer, P., Matschiner, H.: Radiation induced pollutant in water. Wat. Sci. Tech. 37, 195 (1998).10.2166/wst.1998.0325Search in Google Scholar

11. Yoshida, T., Tanabe, T., Miyashit, Y., Yoshida, H., Hattori, T.: Degradation of dibutyl phthalate in water by the aid of metals under gamma ray irradiation. Chem. Lett. 9, 876 (2001).10.1246/cl.2001.876Search in Google Scholar

12. Yu, S., Lee, B., Lee, M., Cho, I. H., Chang, S. W.: Decomposition and mineralization of cefaclor by ionizing radiation: kinetics and effects of the radical scavengers. Chemosphere 71, 2106 (2008).10.1016/j.chemosphere.2008.01.020Search in Google Scholar PubMed

13. Criquet, J., Karpel Vel Leitner, N.: Electron beam irradiation of citric acidaqueous solutions containing persulfate. Sep. Purif. Technol. 88, 168 (2012).10.1016/j.seppur.2011.12.006Search in Google Scholar

14. Cooper, W. J., Cadavid, E., Nickelsen, M. G., Lin, K., Kurucz, C. N., Waite, T. D.: Removing THMs from drinking water using high-energy electron-beam irradiation. J. Am. Water Works Assoc. 85, 106 (1993).10.1002/j.1551-8833.1993.tb06068.xSearch in Google Scholar

15. Basfar, A. A., Khan H. M., Al-Shahrani, A. A., Cooper, W. J.: Radiation induced decomposition of methyl tert-butyl ether in water in presence of chloroform: kinetic modelling. Water Res. 39, 2085 (2005).10.1016/j.watres.2005.02.019Search in Google Scholar PubMed

16. Sánchez-Polo, M., López-Peñalver, J., Prados-Joya, G., Ferro-García, M. A., Rivera-Utrilla, J.: Gamma irradiation of pharmaceutical compounds, nitroimidazoles, as a new alternative for water treatment. Water Res. 43, 4028 (2009).10.1016/j.watres.2009.05.033Search in Google Scholar PubMed

17. Tanaka, K., Padermpole, K., Hisanaga, T.: Photocatalytic degradation of commercial azo dyes. Water Res. 34, 327 (2000).10.1016/S0043-1354(99)00093-7Search in Google Scholar

18. Poulis, I., Tsachpinis, I.: Photodegradation of the textile reactive black 5 in the presence of semiconducting oxides. J. Chem. Technol. Biotechnol. 74, 349 (1999).10.1002/(SICI)1097-4660(199904)74:4<349::AID-JCTB5>3.0.CO;2-7Search in Google Scholar

19. Chapman, A. C., Thirlwell, L. E.: Spectra of phosphorus compounds – I The infra-red spectra of orthophosphtes. Spectrochim. Acta 20, 937 (1964).10.1016/0371-1951(64)80094-1Search in Google Scholar

20. Rajkumar, B. J. M., Ramakrishnan, V.: Vibrational spectroscopic study of DL-methionine dihydrogen phosphate. Spectrochim. Acta A 57, 247 (2001).10.1016/S1386-1425(00)00355-3Search in Google Scholar

21. Lucarelli, L., Nadtochenko, V., Kiwi, J.: Environmental photochemistry: quantitative adsorption and FTIR studies during the TiO2-photocatalyzed degradation of Orange II. Langmuir 16, 1102 (2000).10.1021/la990272jSearch in Google Scholar

22. Bauer, C., Jacques, P., Kalt, A.: Photooxidation of an azo dye induced by visible light incident on the surface of TiO2. J. Photochem. Photobiol. A 140, 87 (2001).10.1016/S1010-6030(01)00391-4Search in Google Scholar

23. Bajt, O., Mailhot, G., Bolte, M.: Degradation of dibutyl phthalate by homogeneous photocatalysis with Fe(III) in aqueous solution. Appl. Catal. B: Environ. 33, 239 (2001).10.1016/S0926-3373(01)00179-5Search in Google Scholar

24. Gkorgkolia, C., Bizani, E., Fytianos, K.: Photo-fenton decomposition of the endocrine disrupting Compound di-butyl phthalate. Proceedings of the 11th International Conference on Environmental Science and Technology. Chania, Crete, Greece, 3–5.Search in Google Scholar

Received: 2018-05-16
Accepted: 2018-06-15
Published Online: 2018-10-17
Published in Print: 2018-11-27

©2018 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 6.12.2023 from
Scroll to top button