Accessible Requires Authentication Published by Oldenbourg Wissenschaftsverlag October 26, 2018

Copper-catalyzed click reactions: quantification of retained copper using 64Cu-spiked Cu(I), exemplified for CuAAC reactions on liposomes

Karolin Wagener, Dennis Renisch, Meike Schinnerer, Matthias Worm, Yvonne Jakob, Klaus Eberhardt and Frank Rösch
From the journal Radiochimica Acta

Abstract

The Cu(I)-catalyzed azide-alkyne cycloaddition (CuAAC) is a powerful, highly reliable and selective reaction which allows for a rapid synthesis in high yields and under mild conditions (pH, temperature). However, the cytotoxicity of copper requires its complete removal prior to an application in vivo. This is an issue especially when it comes to CuAAC reactions on macromolecular structures or drug delivery systems, as copper might be retained by these systems. Thus, a quantification of the final copper content of these systems is inevitable, which we exemplified for a CuAAC reaction on liposomes using 64Cu-spiked Cu(I). In this respect, a Cu(II) nitrate solution was irradiated at the TRIGA Mark II research reactor Mainz to obtain c.a. [64Cu]Cu(II). The irradiated solution was directly used for a CuAAC on liposomes. After purification, their copper content was calculated utilizing γ-ray spectrometry. Only 0.018% of the added 64Cu-activity was still present in the liposome containing fractions after purification. This refers to a total amount of copper of 0.17 ng. The amount of retained copper is so low, that an in vivo application of the liposomes is absolutely reasonable. Besides this particular study, the experimental methodology may be applied to study many other CuAAC reactions, used for the synthesis of radiolabeled or non-radioactive species, which are intended for human applications.


Corresponding author: Prof. Dr. Frank Rösch, Institute of Nuclear Chemistry, Johannes Gutenberg University, Fritz-Strassmann-Weg 2, 55128 Mainz, Germany, Tel.: +49 6131 39 25302, Fax: +49 6131 39 25253

Acknowledgment

The authors are very grateful to the Max-Planck Graduate Center (MPGC, K. Wagener) as well as to the DFG in the context of the SFB 1066 for financial support. K. Wagener and M. Schinnerer and M. Worm are members of the Graduate School of the SFB 1066.

References

1. Kettenbach, K., Schieferstein, H., Ross, T. L.: 18F-labeling using click cycloadditions. Biomed. Res. Int. 2014, 361329 (2014).25003110 Search in Google Scholar

2. Meyer, J.-P., Adumeau, P., Lewis, J. S., Zeglis, B. M.: Click chemistry and radiochemistry: The first 10 years. Bioconjug. Chem. 27, 2791 (2016).2778798310.1021/acs.bioconjchem.6b00561 Search in Google Scholar

3. Nwe, K., Brechbiel, M. W.: Growing applications of ‘click chemistry’ for bioconjugation in contemporary biomedical research. Cancer Biother. Radiopharm. 24, 289 (2009).10.1089/cbr.2008.0626 Search in Google Scholar

4. Mamat, C., Ramenda, T., Wuest, F. R.: Recent applications of click chemistry for the synthesis of radiotracers for molecular imaging. Mini-Rev. Org. Chem. 6, 21 (2009).10.2174/157019309787316148 Search in Google Scholar

5. Bock, V. D., Hiemstra, H., Van Maarseveen, J. H.: CuI-catalyzed alkyne-azide ‘click’ cycloadditions from a mechanistic and synthetic perspective. Eur. J. Org. Chem. 2006, 51 (2006).10.1002/ejoc.200500483 Search in Google Scholar

6. Ross, T. L.: The click chemistry approach applied to fluorine-18. Curr. Radiopharm. 3, 202 (2010).10.2174/1874471011003030202 Search in Google Scholar

7. Kolb, H. C., Finn, M. G., Sharpless, K. B.: Click chemistry: diverse chemical function from a few good reactions. Angew. Chem. Int. Ed. 40, 2004 (2001).10.1002/1521-3773(20010601)40:11<2004::AID-ANIE2004>3.0.CO;2-5 Search in Google Scholar

8. Marik, J., Sutcliffe, J. L.: Click for PET: rapid preparation of [18F]fluoropeptides using CuI catalyzed 1,3-dipolar cycloaddition. Tetrahedron Lett. 47, 6681 (2006).10.1016/j.tetlet.2006.06.176 Search in Google Scholar

9. Bost, M., Houdart, S., Oberli, M., Kalonji, E., Huneau, J.-F., Margaritis, I.: Dietary copper and human health: current evidence and unresolved issues. J. Trace Elem. Med. Biol. 35, 107 (2016).10.1016/j.jtemb.2016.02.00627049134 Search in Google Scholar

10. Turnlund, J. R.: Human whole-body copper metabolism. Am. J. Clin. Nutr. 67, 960S (1998).10.1093/ajcn/67.5.960S9587136 Search in Google Scholar

11. Cerchiaro, G., Manieri, T. M., Bertuchi, F. R.: Analytical methods for copper, zinc and iron quantification in mammalian cells. Metallomics 5, 1336 (2013).2392547910.1039/c3mt00136a Search in Google Scholar

12. Wagener, K., Worm, M., Pektor, S., Schinnerer, M., Thiermann, R., Miederer, M., Frey, H., Rösch, F.: Comparison of linear and hyperbranched polyether lipids for liposome shielding by 18F-radiolabeling and Positron emission tomography. Biomacromolecules 19, 2506 (2018).2966028010.1021/acs.biomac.8b00115 Search in Google Scholar

13. Gaetke, L. M., Chow, C. K.: Copper toxicity, oxidative stress, and antioxidant nutrients. Toxicology 189, 147 (2003).1282128910.1016/S0300-483X(03)00159-8 Search in Google Scholar

14. Pretze, M., Kuchar, M., Bergmann, R., Steinbach, J., Pietzsch, J., Mamat, C.: An efficient bioorthogonal strategy using CuAAC click chemistry for radiofluorinations of SNEW peptides and the role of copper depletion. ChemMedChem. 8, 935 (2013).10.1002/cmdc.20130005323559494 Search in Google Scholar

15. Reibel, A. T., Müller, S. S., Pektor, S., Bausbacher, N., Miederer, M., Frey, H., Rösch, F.: Fate of linear and branched polyether-lipids in vivo in comparison to their liposomal formulations by 18F-radiolabeling and positron emission tomography. Biomacromolecules 16, 842 (2015).2564750910.1021/bm5017332 Search in Google Scholar

16. Rokka, J., Snellman, A., Zona, C., La Ferla, B., Nicotra, F., Salmona, M., Forloni, G., Haaparanta-Solin, M., Rinne, J. O., Solin, O.: Synthesis and evaluation of a 18F-curcumin derivate for β-amyloid plaque imaging. Bioorg. Med. Chem. 22, 2753 (2014).10.1016/j.bmc.2014.03.01024702859 Search in Google Scholar

17. Carneiro De Sousa, F. N., Eichholz, G. G.: Dosimetry of gamma rays from nitrogen-16 decay. Int. J. Appl. Radiat. Isot. 36, 981 (1985).10.1016/0020-708X(85)90260-14086110 Search in Google Scholar

18. Tahir, S. N. A., Chettle, D. R.: Identification of oxygen-19 during in vivo neutron activation analysis of water phantoms. Physiol. Meas. 36, N127 (2015).2650227010.1088/0967-3334/36/12/N127 Search in Google Scholar

19. Bé, M.-M., Chisté, V., Dulieu, C., Browne, E., Chechev, V., Kuzmenko, N., Helmer, R., Nichols, A., Schönfeld, E., Dersch, R.: Table of radionuclides (Vol. 1 – A=1 to 150). Le bureau international des poids et mesures, sèvres 2004. Search in Google Scholar

20. Horen, D. J., Meyerhof, W. E.: Decay of copper-66. Phys. Rev. 111, 559 (1958).10.1103/PhysRev.111.559 Search in Google Scholar

Supplementary Material

The online version of this article offers supplementary material (https://doi.org/10.1515/ract-2018-3000).

Received: 2018-06-06
Accepted: 2018-09-25
Published Online: 2018-10-26
Published in Print: 2019-07-26

©2019 Walter de Gruyter GmbH, Berlin/Boston