Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter (O) June 1, 2019

Chemical alteration of 238Pu-loaded borosilicate glass under saturated leaching conditions

Bella Yu. Zubekhina , Andrei A. Shiryaev , Boris E. Burakov , Irina E. Vlasova , Alexey A. Averin , Vasily O. Yapaskurt and Vladimir G. Petrov EMAIL logo
From the journal Radiochimica Acta


Highly radioactive 238Pu-doped and non-radioactive samples of borosilicate glass with chemical compositions and synthesis routine similar to SON68 glass were studied under static saturated leaching conditions in distilled water at 90 °C. Dramatic differences in behavior of the radioactive and model glasses were observed. On time scale of 4 months the radioactive glass is fully covered by mechanically unstable alteration layer, possibly consisting of aluminum hydroxides with small fraction of a separate secondary Pu bearing phase. The model glass remains virtually pristine. Addition of Eu3+ into the glass allowed examination of the glass radio- and photoluminescence and to assess changes or REE3+ impurity local environment during self-irradiation and leaching. Photoluminescence spectra suggest more ordered local environment of europium ions in the alteration “gel” than in the bulk glass. Peculiar behavior of the photoluminescence spectra excited at different laser power is observed for the alteration layer and is ascribed to optical bleaching of color centers.

Funding source: RFBR

Award Identifier / Grant number: #17-303-50018

Award Identifier / Grant number: 18-29-12032

Funding statement: We thank anonymous reviewer for useful comments. This study was partly supported by RFBR grants #17-303-50018 and 18-29-12032. Part of the measurements were performed using equipment of CKP FMI IPCE RAS.


1. Lutze, W., Ewing, R. C.: Radioactive Waste Forms for the Future. North Holland, Amsterdam (Netherlands), 1988.Search in Google Scholar

2. Burakov, B. E., Ojovan, M. I., Lee, W. E.: Crystalline Materials for Actinide Immobilization, Imperial College Press, London (UK), 2011.10.1142/p652Search in Google Scholar

3. Gras, J. M., Do Quang, R., Masson, H., Lieven, T., Ferry, C., Poinssot, C., Debes, M., Delbecq, J. M.: Perspectives on the closed fuel cycle – implications for high-level waste matrices. J. Nucl. Mater. 362, 383 (2007).10.1016/j.jnucmat.2007.01.210Search in Google Scholar

4. Advocat, T., Jollivet, P., Crovisier, J. L., Del Nero, M.: Long-term alteration mechanisms in water for SON68 radioactive borosilicate glass. J. Nucl. Mater. 298, 55 (2001).10.1016/S0022-3115(01)00621-3Search in Google Scholar

5. Fillet, S., Nogues, J. L., Vernaz, E., Jacquet-Francillon, N.: Leaching of actinides from the French LWR reference glass. MRS Proc. 50, 211 (1985).10.1557/PROC-50-211Search in Google Scholar

6. Rolland, S., Tribet, M., Jégou, C., Broudic, V., Magnin, M., Peuget, S., Wiss, T., Janssen, A., Blondel, A., Toulhoat, P.: 99Tc- and 239Pu-Doped glass leaching experiments: residual alteration rate and radionuclide behavior. Int. J. Appl. Glass Sci. 4, 295 (2013).10.1111/ijag.12051Search in Google Scholar

7. Sattonnay, G., Ardois, C., Corbel, C., Lucchini, J. F., Barthe, M. F., Garrido, F., Gosset, D.: Alpha-radiolysis effects on UO2 alteration in water. J. Nucl. Mater. 288, 11 (2001).10.1016/S0022-3115(00)00714-5Search in Google Scholar

8. Ershov, B. G., Gordeev, A. V: A model for radiolysis of water and aqueous solutions of H2, H2O2 and O2. Radiat. Phys. Chem. 77, 928 (2008).10.1016/j.radphyschem.2007.12.005Search in Google Scholar

9. Abdelouas, A., Ferrand, K., Grambow, B., Mennecart, T., Fattahi, M., Blondiaux, G., Houée-Lévin, C.: Effect of gamma and alpha irradiation on the corrosion of the French borosilicate glass SON 68. MRS Proc. 807, 175 (2003).10.1557/PROC-807-175Search in Google Scholar

10. Clark, D. L., Hecker, S. S., Jarvinen, G. D., Neu, M. P.: Plutonium. In: L. R. Morss, N. M. F. J. Edelstein (Eds.), Chem. Actin. Trans. Elem. (2008), Springer, Dordrecht (The Netherlands), pp. 813–1264.Search in Google Scholar

11. Gin, S., Jollivet, P., Tribet, M., Peuget, S., Schuller, S.: Radionuclides containment in nuclear glasses: an overview. Radiochim. Acta 105, 927 (2017).10.1515/ract-2016-2658Search in Google Scholar

12. Vernaz, E. Y., Godon, N.: Leaching of actinides from nuclear waste glass: French experience. MRS Proc. 257, 37 (1991).10.1557/PROC-257-37Search in Google Scholar

13. Bates, J. K., Bradley, J. P., Teetsov, A., Bradley, C. R., Ten Brink, M. B.: Colloid formation during waste form reaction: implications for nuclear waste disposal. Science 256, 649 (1992).10.1126/science.256.5057.649Search in Google Scholar PubMed

14. Ménard, O., Advocat, T., Ambrosi, J. P., Michard, A.: Behaviour of actinides (Th, U, Np and Pu) and rare earths (La, Ce and Nd) during aqueous leaching of a nuclear glass under geological disposal conditions. Appl. Geochem. 13, 105 (1998).10.1016/S0883-2927(97)00057-7Search in Google Scholar

15. Advocat, T., Menard, O., Chouchan, J., Jollivet, P.: Retention des actinides et des terres rares dans les gels d’alteration du verre. In: CEA/Valrho Summer Sess. Glas. Sci. Res. High Perform. Contain., Mejannes-Le-Clap (France); 31 Aug–7 Sep 1997, 1997, pp. 450–460.Search in Google Scholar

16. Valcke, E., Gysemans, M., Moors, H., Van Iseghem, P., Godon, N., Jollivet, P.: Leaching and migration of Np, Pu, and Am from α-doped SON68 HLW glass in contact with dense clay. MRS Proc. 932, (2006) in Google Scholar

17. Godon, N., Andriambololona, Z., Vernaz, E.: Effect of a siliceous additive in a clay engineered barrier on aqueous corrosion of R7T7 nuclear waste glass. MRS Proc. 257, 135 (1991).10.1557/PROC-257-135Search in Google Scholar

18. Valcke, E., Smets, S., Labat, S., Lemmens, K., Van Iseghem, P., Thomas, P., Godon, N., Jollivet, P., Parisot, G., Mestre, J., Jockwer, N., Wieczorek, K., Pozo, C.: CORALUS: an integrated in situ corrosion test on α-active HLW glass. MRS Proc. 932, 118.1 (2006).10.1557/PROC-932-118.1Search in Google Scholar

19. Van Iseghem, P., Valcke, E., Lodding, A.: In situ testing of the chemical durability of vitrified high-level waste in a Boom Clay formation in Belgium: discussion of recent data and concept of a new test. J. Nucl. Mater. 298, 86 (2001).10.1016/S0022-3115(01)00618-3Search in Google Scholar

20. Inagaki, Y., Sakata, H., Furuya, H., Idemitsu, K., Arima, T., Banba, T., Maeda, T., Matsumoto, S., Tamura, Y., Kikkawa, S.: Effects of water redox conditions and presence of magnetite on leaching of Pu and Np from HLW glass. Mater. Res. Soc. Symp. – Proc. 506, 177 (1997).10.1557/PROC-506-177Search in Google Scholar

21. Bidoglio, G., Offermann, P., De Plano, A., Lazzari, G. P.: Influence of groundwater composition on glass leaching and actinide speciation. MRS Proc. 112, 621 (1987).10.1557/PROC-112-621Search in Google Scholar

22. Peuget, S., Delaye, J. M., Jégou, C.: Specific outcomes of the research on the radiation stability of the French nuclear glass towards alpha decay accumulation. J. Nucl. Mater. 444, 76 (2014).10.1016/j.jnucmat.2013.09.039Search in Google Scholar

23. Zubekhina, B. Y., Burakov, B. E.: Leaching of actinides and other radionuclides from matrices of Chernobyl “lava” as analogues of vitrified HLW. J. Chem. Thermodyn. 114, 25 (2017).10.1016/j.jct.2016.08.029Search in Google Scholar

24. Stefanovsky, S. V., Shiryaev, A. A., Vlasova, I. E., Yapaskurt, V. O., Marra, J. C.: Electron microscopy and Raman spectroscopy study of Pu-bearing LaBS glasses. Mater. Res. Soc. Symp. Proc. 1444, 223 (2012).10.1557/opl.2012.950Search in Google Scholar

25. Stefanovsky, S., Shyriaev, A., Zubavichus, Y. V., Marra, J. C.: Plutonium environment in lanthanide borosilicate glass. MRS Proc. 1264, (2010) 1264-Z11–9.10.1557/PROC-1264-Z11-09Search in Google Scholar

26. Batuk, D. N., Shiryaev, A. A., Kalmykov, S. N., Zakharova, E. V., Teterin, Y. A., Batuk, O. N., Myasoedov, B. F.: Interaction of U, Np, and Pu with colloidal SiO2 particles. Radiochemistry 54, 537 (2012).10.1134/S1066362212060045Search in Google Scholar

27. Manara, D., Grandjean, A., Neuville, D. R.: Advances in understanding the structure of borosilicate glasses: a Raman spectroscopy study. Am. Mineral. 94, 777 (2009).10.2138/am.2009.3027Search in Google Scholar

28. Stefanovsky, S. V., Fox, K. M., Marra, J. C., Shiryaev, A. A., Zubavichus, Y. V.: Structural features of high-Fe2O3 and high-Al2O3/Fe2O3 SRS HLW glasses. Phys. Chem. Glass J. Glas. Sci. Technol. Part B 53, 158 (2012).Search in Google Scholar

29. Eremyashev, V. E., Korinevskaya, G. G., Aysin, R. R.: Spectroscopic investigation of the influence of aluminum addition on characteristic features of alkali borosilicate glasses. Bull. South Ural State Univ. Ser. Chem. 7, 46 (2015).Search in Google Scholar

30. Tanner, P. A.: Lanthanide luminescence in solids. In: Springer Ser. Fluoresc. 2010, pp. 183–233.10.1007/4243_2010_6Search in Google Scholar

31. Ollier, N., Concas, G., Panczer, G., Champagnon, B., Charpentier, T.: Structural features of a Eu3+ doped nuclear glass and gels obtained from glass leaching. J. Non-Cryst. Solids. 328, 207 (2003).10.1016/S0022-3093(03)00368-5Search in Google Scholar

32. Ollier, N., Panczer, G., Champagnon, B., Boulon, G., Jollivet, P.: Europium as a luminescent probe of an aluminoborosilicate nuclear glass and its weathering gels. J. Lumin. 94–95, 197 (2001).10.1016/S0022-2313(01)00277-0Search in Google Scholar

33. Tiseanu, C., Kumke, M. U., Parvulescu, V. I., Martens, J.: Species-related luminescence-structure relationships in europium-exchanged mesoporous material. J. Appl. Phys. 105 (2009).10.1063/1.3086634Search in Google Scholar

34. Shiryaev, A. A., Nickolsky, M. S., Averin, A. A., Grigoriev, M. S., Zubavichus, Y. V., Vlasova, I. E., Petrov, V. G., Burakov, B. E.: Structural peculiarities of aged 238Pu-doped monazite. MRS Adv. 1, 4275 (2016).10.1557/adv.2017.220Search in Google Scholar

35. Binnemans, K.: Interpretation of europium(III) spectra. Coord. Chem. Rev. 295, 1 (2015).10.1016/j.ccr.2015.02.015Search in Google Scholar

36. Dobretsov, G. E., Syrejschikova, T. I., Smolina, N. V.: On mechanisms of fluorescence quenching by water. Biophysics 59, 183 (2014).10.1134/S0006350914020079Search in Google Scholar

37. Yamamoto, S., Komori, M., Koyama, S., Toshito, T.: Luminescence imaging of water during alpha particle irradiation. Nucl. Instrum. Methods Phys. Res. A 819, 6 (2016).10.1016/j.nima.2016.02.088Search in Google Scholar

38. Tarasov, M. D., El’yash, S. L., Goncharova, V. F., Petrushin, O. N., Savel’ev, Y. A., Tarakanov, M. Y., Shigaev, Y. S.: Efficiency of radioluminescence of water under the action of accelerated electrons. Instrum. Exp. Tech. 50, 761 (2007).10.1134/S0020441207060085Search in Google Scholar

39. Brekhovskih, S. M., Viktorova, Y. N., Landa, L. M.: Radiation effects in glasses. Energoizdat, Moscow (Russia) (1982).Search in Google Scholar

40. Mir, A. H., Boizot, B., Charpentier, T., Gennisson, M., Odorico, M., Podor, R., Jégou, C., Bouffard, S., Peuget, S.: Surface and bulk electron irradiation effects in simple and complex glasses. J. Non-Cryst. Solids. 453, 141 (2016).10.1016/j.jnoncrysol.2016.10.009Search in Google Scholar

41. Schiwietz, G., Luderer, E., Xiao, G., Grande, P. L.: Energy dissipation of fast heavy ions in matter. Nucl. Instrum. Methods Phys. Res. B 175–177, 1 (2001).10.1016/S0168-583X(00)00544-9Search in Google Scholar

42. Johnson, R. E., Brown, W. L.: Electronic mechanisms for sputtering of condensed-gas solids by energetic ions. Nucl. Instrum. Methods Phys. Res. 198, 103 (1982).10.1016/0167-5087(82)90059-XSearch in Google Scholar

43. Ojovan, M. I., Burakov, B. E., Lee, W. E.: Radiation-induced microcrystal shape change as a mechanism of wasteform degradation. J. Nucl. Mater. 501, 162 (2018).10.1016/j.jnucmat.2018.01.030Search in Google Scholar

44. Baryakhtar, V., Gonchar, V., Zhidkov, A., Zhydkov, V.: Radiation damages and self-sputtering of high-radioactive dielectrics: spontaneous emission of submicronic dust particles. Condens. Matter Phys. 5, 449 (2002).10.5488/CMP.5.3.449Search in Google Scholar

45. Patsahan, T., Taleb, A., Sta1ej, J., Holovko, M., Badiali, J. P.: Stochastic simulation of destruction processes in self-irradiated materials. Condens. Matter Phys. 20(3), 33003 (2017).10.5488/CMP.20.33003Search in Google Scholar

46. Shiryaev, A. A., Hinks, J. A., Marks, N. A., Greaves, G., Valencia, F. J., Donnelly, S. E., González, R. I., Kiwi, M., Trigub, A. L., Bringa, E. M., Fogg, J. L., Vlasov, I. I.: Ion implantation in nanodiamonds: size effect and energy dependence. Sci. Rep. 8, 2 (2018).10.1038/s41598-018-23434-ySearch in Google Scholar PubMed PubMed Central

Received: 2018-12-18
Accepted: 2019-04-18
Published Online: 2019-06-01
Published in Print: 2019-12-18

©2020 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 1.12.2022 from
Scroll Up Arrow