Accessible Requires Authentication Published by Oldenbourg Wissenschaftsverlag May 31, 2019

Measurement of the laser resonance ionization efficiency for lutetium

Vadim Maratovich Gadelshin, Reinhard Heinke, Tom Kieck, Tobias Kron, Pascal Naubereit, Frank Rösch, Thierry Stora, Dominik Studer and Klaus Wendt
From the journal Radiochimica Acta

Abstract

The development of a highly efficient resonance ionization scheme for lutetium is presented. A laser ion source, based on the all-solid-state Titanium:sapphire laser system, was used at the 30 keV RISIKO off-line mass separator to characterize different possible optical excitation schemes in respect to their ionization efficiency. The developed laser resonance ionization scheme can be directly applied to the use at radioactive ion beam facilities, e. g. at the CERN-MEDICIS facility, for large-scale production of medical radioisotopes.

Acknowledgements

The work has been carried out in collaboration based upon the long-term experiences in the field of laser resonance ionization spectroscopy [23] and radionuclides applied for radiopharmacy [24] between the Institute of Nuclear Chemistry and the Institute of Physics at Mainz University. This research project has been supported by a Marie Skłodowska-Curie Innovative Training Network Fellowship of the European Commission’s Horizon 2020 Programme under, Funder Id: http://dx.doi.org/10.13039/100010665, contract number 642889 MEDICIS-PROMED; by the German Federal Ministry of Education and Research under, Funder Id: http://dx.doi.org/10.13039/501100002347 the consecutive projects 05P12UMCIA and 05P15UMCIA.

References

1. dos Santos Augusto, R. M., Buehler, L., Lawson, Z., Marzari, S., Stachura, M., Stora, T.: CERN-MEDICIS collaboration: CERN-MEDICIS (Medical Isotopes Collected from ISOLDE): a new facility. Appl. Sci. 4, 265 (2014).10.3390/app4020265 Search in Google Scholar

2. Kugler, E.: The ISOLDE facility. Hyperfine Interact. 129, 23 (2000).10.1023/A:1012603025802 Search in Google Scholar

3. Catherall, R., Andreazza, W., Breitenfeldt, M., Dorsival, A., Focker, G. J., Gharsa, T. P., Giles, T. J., Grenard, J.-L., Locci, F., Martins, P., Marzari, S., Schipper, J., Shornikov, A., Stora, T.: The ISOLDE facility. J. Phys. G Nucl. Part. Phys. 44, 094002 (2017).10.1088/1361-6471/aa7eba Search in Google Scholar

4. Fedosseev, V., Chrysalidis, K., Day Goodacre, T., Marsh, B., Rothe, S., Seiffert, C., Wendt, K.: Ion beam production and study of radioactive isotopes with the laser ion source at ISOLDE. J. Phys. G Nucl. Part. Phys. 44(8), 084006 (2017).10.1088/1361-6471/aa78e0 Search in Google Scholar

5. Letokhov, V. S.: Laser Photoionization Spectroscopy. Academic Press, Orlando (1987), p. 353. Search in Google Scholar

6. Banerjee, S., Pillai, M. R. A., Knapp, F. F.: Lutetium-177 therapeutic radiopharmaceuticals: linking chemistry, radiochemistry, and practical applications. Chem. Rev. 115, 2934 (2015).10.1021/cr500171e25865818 Search in Google Scholar

7. Tishchenko, V. K., Petriev, V. M., Skvortsov, V. G.: Radiopharmaceuticals based on polyaminophosphonic acids labeled with α-, β-, and γ-emitting radionuclides (Review). Pharm. Chem. J. 49(7), 3 (2015). Search in Google Scholar

8. Ljungberg, M., Celler, A., Konijnenberg, M. W., Eckerman, K. F., Dewaraja, Y. K., Sjögreen-Gleisner, K.: MIRD Pamphlet No. 26: joint EANM/MIRD guidelines for quantitative 177Lu SPECT applied for dosimetry of radiopharmaceutical therapy. J. Nucl. Med. 57, 151 (2016).10.2967/jnumed.115.15901226471692 Search in Google Scholar

9. Gadelshin, V. M., Cocolios, T., Fedosseev, V., Heinke, R., Kieck, T., Marsh, B., Naubereit, P., Rothe, S., Stora, T., Studer, D., Van Duppen, P., Wendt, K.: Laser resonance ionization spectroscopy on lutetium for the MEDICIS project. Hyperfine Interact. 238, 28 (2017).10.1007/s10751-017-1406-x Search in Google Scholar

10. D’yachkov, A. B., Firsov, V. A., Gorkunov, A. A., Labozin, A. V., Mironov, S. M., Panchenko, V. Y., Semenov, A. N., Shatalova, G. G., Tsvetkov, G. O.: Photoionization spectroscopy for laser extraction of the radioactive isotope Lu-177. Appl. Phys. B 121(4), 425 (2015).10.1007/s00340-015-6248-0 Search in Google Scholar

11. Zimmer, K.: Konzeption, aufbau und test der ionenoptik des RISIKO-Massenseparators (Diploma thesis). Johannes Gutenberg University Mainz, Mainz, Germany (1990). Search in Google Scholar

12. Kron, T., Liu, Y., Richter, S., Schneider, F., Wendt, K.: High efficiency resonance ionization of palladium with Ti:sapphire lasers. J. Phys. B At. Mol. Opt. 49(18), 185003 (2016).10.1088/0953-4075/49/18/185003 Search in Google Scholar

13. Kieck T., Biebricher S., Düllmann C., Wendt K.: Optimizaion of a laser ion source for Ho-163 isotope separation. Rev. Sci. Instrum. 90(5), 053304 (2019). https://aip.scitation.org/doi/10.1063/1.5081094.10.1063/1.5081094 Search in Google Scholar

14. Schneider, F., Chrysalidis, K., Dorrer, H., Düllmann, Ch. E., Eberhardt, E., Haas, R., Kieck, T., Mokry, C., Naubereit, P., Schmidt, S., Wendt, K.: Resonance ionization of holmium for ion implantation in microcalorimeters. Nucl. Instrum. Methods B 376, 388 (2016).10.1016/j.nimb.2015.12.012 Search in Google Scholar

15. Lutetium AAS Standard Solution [Online]. Available: https://www.alfa.com/de/catalog/089886/ [2018, December]. Search in Google Scholar

16. Mattolat, C., Rothe, S., Schwellnus, F., Gottwald, T., Raeder, S., Wendt, K.: An all-solid-state high repetition rate Titanium:sapphire laser system for resonance ionization laser ion sources. AIP Conf. Proc. 1104, 114 (2009). Search in Google Scholar

17. Rothe, S., Marsh, B., Mattolat, C., Fedosseev, V. N., Wendt, K.: A complementary laser system for ISOLDE RILIS. J. Phys. Conf. Ser. 312, 052020 (2011).10.1088/1742-6596/312/5/052020 Search in Google Scholar

18. Bekov, G. I., Vidolova-Angelova, E. P.: Optimal scheme for multistage photoionization of lutetium atoms by laser radiation. Sov. J. Quant. Electron. 11(1), 137 (1981).10.1070/QE1981v011n01ABEH005395 Search in Google Scholar

19. Kurucz, R. L., Bell, B.: Atomic Line Data. Smithsonian Astrophysical Observatory, Cambridge, MA (1995), Kurucz CD-ROM No. 23. Search in Google Scholar

20. Ralchenko, Y., Kramida, A. E., Reader, J., NIST ASD Team: NIST Atomic Spectra Database (version 5) [Online]. Available: https://www.nist.gov/pml/atomic-spectra-database [2016, September]. National Institute of Standards and Technology, Gaithersburg, MD. Search in Google Scholar

21. Miller, C. M., Nogar, N. S.: Autoionizing and high-lying Rydberg states of lutetium atoms. AIP Conf. Proc. 90, 90 (1982). Search in Google Scholar

22. Alkhazov, G. D., Batist, L. Kh., Bykov, A. A., Vitman, V. D., Letokhov, V. S., Mishin, V. I., Panteleyev, V. N., Sekatsky, S. K., Fedoseyev, V. N.: Application of a high efficiency selective laser ion source at the IRIS facility. Nucl. Instrum. Meth. A. 306(1–2), 400 (1991).10.1016/0168-9002(91)90348-T Search in Google Scholar

23. Trautmann, N., Wendt, K.: Fast chemical separations and laser mass spectrometry – tools for nuclear research. Radiochim. Acta 100, 675 (2012).10.1524/ract.2012.1951 Search in Google Scholar

24. Rösch, F.: The basics of nuclear chemistry and radiochemistry: an introduction to nuclear transformations and radioactive emissions. In: L. S. Lewis, A. D. Windhorst, B. M. Zeglis (Eds.), Radiopharmaceutical Chemistry (2019), Springer International Publishing, Cham, Switzerland, p. 27. Search in Google Scholar

Received: 2019-02-10
Accepted: 2019-04-29
Published Online: 2019-05-31
Published in Print: 2019-07-26

©2019 Walter de Gruyter GmbH, Berlin/Boston