Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter (O) January 17, 2020

Volume oxidation of uranium mononitride and uranium monocarbide in the dry NOX-gaseous atmosphere

  • Sergey A. Kulyukhin , Yuri M. Nevolin EMAIL logo , Vladimir G. Petrov and Stepan N. Kalmykov
From the journal Radiochimica Acta


Gaseous volume oxidation (voloxidation) of uranium mononitride (UN) and uranium monocarbide (UC) was investigated in the “NOx-air” atmosphere in the temperature range 298–673 K. It was shown that UN can be converted into uranium water-soluble compounds using an alternative oxidation atmosphere based on NOX-gases. UO3 and uranyl nitrates are the main products of the reaction. Maximum degree of the UN conversion to water-soluble compounds equal to 80 % was observed at the temperature 565 K. Products of the UC conversion are uranium oxides and oxihydroxides. The observed degree of the UC conversion into water-soluble compounds was less then 20 %.


This work is partially sponsored by the Ministry of Education and Science of the Russian Federation under grant number № AAAA-A16-116110910010-3.


1. Johnson, J. A.: Studies of Reaction Process for Voloxidation Methods. PhD diss. The University of Tennessee, Knoxville, USA (2013).Search in Google Scholar

2. Volk, V. I., Veselov, S. N., Dvoeglazov, K. N., Arseenkov, L. V., Gavrilov, P. M., Smirnov, S. I., Alekseenko, V. N.: New technology and hardware for reprocessing spent nuclear fuel from thermal reactors. Atom. Energy 119, 339 (2016).10.1007/s10512-016-0069-zSearch in Google Scholar

3. Metalidi, M. M., Shapovalov, S. V., Ismailov, R. V., Skriplev, M. I., Beznosyuk, V. I., Fedorov, Y. S.: Thermochemical embrittlement of the zirconium cladding of a fuel rod and oxidative recrystallization of the fuel material in the course of spent nuclear fuel reprocessing. Radiochemistry 57, 98 (2015).10.1134/S1066362215010154Search in Google Scholar

4. Collins, E. D., Delcul, G. D., Hunt, R. D., Johnson, J. A., Spencer, B. B.: Advanced dry head-end reprocessing of light water reactor spent nuclear fuel. Patent US 8574523.2013 (2013).Search in Google Scholar

5. Goode, J. H.: Voloxidation – Removal of Volatile Fission Products from Spent LMFBR Fuels, ORNL-TM-3723 report (1973).10.2172/4610735Search in Google Scholar

6. Song, K. C., Park, G. Il, Lee, J. W., Park, J. J., Yang, M. S.: Fractional release behavior of volatile and semivolatile fission products during a voloxidation and OREOX treatment of spent PWR fuel. Nucl. Technol. 162, 158 (2008).10.13182/NT08-A3943Search in Google Scholar

7. Dvoeglazov, K. N., Shadrin, A. Y., Shudegova, O. V., Pavlyukevich, E.Y., Bogdanov, A. I., Zverev, D. V.: Okislenie model’nogo uran-plutonievogo nitridnogo topliva i vliyanie ehtogo processa na rastvorenie v azotnoj kislote. VANT 87, 81 (2016).Search in Google Scholar

8. Kotel’nikov, R. B., Bashlykov, S. N., Kashtanov, A. I., Men’shikova, T. S.: Vysokotemperaturnoe Yadernoe Toplivo. Atomizdat, Moscow (1978)Search in Google Scholar

9. Antill, J. E., Myatt, B. L.: Kinetics of the oxidation of UN and U(CO) in carbon dioxide, steam and water at elevated temperatures. Corros. Sci. 6, 17 (1966).10.1016/S0010-938X(66)80046-XSearch in Google Scholar

10. Dell, M., Wheeler, V. J.: The ignition of uranium mononitride and uranium monocarbide in oxygen. J. Nucl. Mater. 21, 328 (1966).10.1016/0022-3115(67)90185-7Search in Google Scholar

11. Dell, R. M., Wheeler, V. J., McIver, E. J.: The oxidation of uranium mononitride and uranium monocarbide. Trans. Faraday Soc. 62, 3591 (1966).10.1039/tf9666203591Search in Google Scholar

12. Dell, R. M., Wheeler, V. J., Bridger, N. J.: Hydrolysis of uranium mononitride. Trans. Faraday Soc. 63, 1286 (1967).10.1039/tf9676301286Search in Google Scholar

13. Allbutt, M., Dell, R.: Chemical aspects of nitride, phosphide and sulphide fuels. J. Nucl. Mater. 24, 1 (1967).10.1016/0022-3115(67)90076-1Search in Google Scholar

14. Ohmichi, T., Honda, T.: The oxidation of UC and UN powder in air. J. Nucl. Sci. Technol. 5, 600 (1968).10.1080/18811248.1968.9732521Search in Google Scholar

15. Sole, M. J., Van der Walt, C. M.: Oxidation and deformation studies of uranium nitride by electron microscopy. Acta Metall. 16, 501 (1968).10.1016/0001-6160(68)90124-7Search in Google Scholar

16. Ferris, L. M.: Reactions of uranium mononitride, thorium monocarbide and uranium monocarbide with nitric acid and other aqueous reagents. J. Inorg. Nucl. Chem. 30, 2661 (1968).10.1016/0022-1902(68)80393-8Search in Google Scholar

17. Sugihara, S., Imoto, S.: Hydrolysis of uranium nitrides. J. Nucl. Sci. Technol. 6, 237 (1969).10.1080/18811248.1969.9732878Search in Google Scholar

18. Paljevic, M., Despotovic, Z.: Oxidation of uranium mononitride. J. Nucl. Mater. 57, 253 (1975).10.1016/0022-3115(75)90208-1Search in Google Scholar

19. Rama Rao, G. A., Mukerjee, S. K., Vaidya, V. N., Venugopal, V., Sood, D. D.: Oxidation and hydrolysis kinetic studies on UN. J. Nucl. Mater. 185, 231 (1991).10.1016/0022-3115(91)90340-DSearch in Google Scholar

20. Dehadraya, J. V., Mukerjee, S. K., Rama Rao, G. A., Vaidya, V. N., Venugopal, V., Sood, D. D.: The oxidation of uranium-cerium mononitride microspheres. J. Alloys Compd. 257, 313 (1997).10.1016/S0925-8388(97)00010-8Search in Google Scholar

21. Rama Rao, G. A., Jayanthi, K., Mukerjee, S. K., Vaidya, V. N., Venugopal, V.: Oxidation behaviour of U2N3. Thermochim. Acta. 159, 349 (1990).10.1016/0040-6031(90)80120-NSearch in Google Scholar

22. Sunder, S., Miller, N. H.: XPS and XRD studies of corrosion of uranium nitride by water. J. Alloys Compd. 271, 568 (1998).10.1016/S0925-8388(98)00157-1Search in Google Scholar

23. Liu, K., Luo, L., Long, Z., Hong, Z., Yang, H., Wu, S.: Initial oxidation behaviors of nitride surfaces of uranium by XPS analysis. Appl. Surf. Sci. 280, 268 (2013).10.1016/j.apsusc.2013.04.147Search in Google Scholar

24. Lu, L., Li, F., Hu, Y., Xiao, H. Bai, B., Zhang, Y., Luo, L., Liu, J., Liu, K.: The initial oxidation behaviors of uranium nitride UNx (x=0, 0.23, 0.68, 1.66) films. J. Nucl. Mater. 480, 189 (2016).10.1016/j.jnucmat.2016.08.025Search in Google Scholar

25. Johnson, K., Strom, V., Wallenius, J., Lopes, D. A.: Oxidation of accident tolerant fuel candidates. J. Nucl. Sci. Technol. 54, 280 (2017).10.1080/00223131.2016.1262297Search in Google Scholar

26. Luo, L., Hu, Y., Pan, Q., Long, Z., Lu, L., Liu, K., Wang, X.: Extended study on oxidation behaviors of UN0.68 and UN1.66 by XPS. J. Nucl. Mater. 371, 501 (2018).10.1016/j.jnucmat.2018.01.020Search in Google Scholar

27. Ustinov, O. A., Kulyukhin, S. A., Shadrin, A. Y., Voskresenskaya, Y. A.: Nitrogen hemioxide: properties and neutralization methods. Atom. Energy 120, 138 (2016).10.1007/s10512-016-0108-9Search in Google Scholar

28. Kulyukhin, S. A., Shadrin, A. Y., Voskresenskaya, Y. A., Bessonov, A. A., Ustinov O.: A study of nitrogen oxides released into the gas phase during uranium nitride dissolution in nitric acid. J. Radioanal. Nucl. Chem. 304, 425 (2015).10.1007/s10967-014-3693-xSearch in Google Scholar

29. Zverev, D. V., Kirillov, S. N., Dvoeglazov, K. N., Shadrin, A. Y., Logunov, M. V., Mashkin, A. N., Schmidt, O. V., Arseenkov, L. V.: Possible options for uranium-carbide SNF processing. Procedia Chem. 7, 116 (2012).10.1016/j.proche.2012.10.021Search in Google Scholar

30. Natarajan, R.: Reprocessing of FBTR mixed carbide fuel- some process chemistry aspects. In: 16th Ann. Conf. Ind. Nucl. Soc. INSAC-2005. Mumbai (2005).Search in Google Scholar

31. Kudinov, A. S., Goleckij, N. D., Zil’berman, B. Y., Fedorov, Y. S., Rodionov, S. A., Petrov, Y. Y., Murzin, A. A., Naumov, A. A., Kormilicyn, M. V., Poglyad S. S., Chistyakov, V. M.: Podhody k pererabotke karbidnogo oyat na primere oyat amb. In: 7-ya Ross. Konf. po radiohimii ‘Radiohimiya-2012’. Dimitrovgrad (2012).Search in Google Scholar

32. Kudinov, A. S., Goleckij, N. D., Zil’berman, B. Y., et al.: Novye podhody k pererabotke karbidnogo topliva In: VIII Vseross. Konf. po radiohimii ‘Radiohimiya-2015’. ZHeleznogorsk (2015).Search in Google Scholar

33. Kudinov, A. S., Goleckij, N. D., Zil’berman, B. Y.: Sposob podgotovki karbidnogo OYAT k ehkstrakcionnoj pererabotke (varianty). Patent RU 2529185 (2014).Search in Google Scholar

34. Kulyukhin, S. A., Nevolin, Y. M., Mizina, L. V., Konovalova, N. A., Gordeev, A. V.: Gas-phase conversion of the U, Sr, Mo, and Zr oxides into water-soluble compounds in the NOx–H2O (vapor)–air atmosphere. Radiochemistry 58, 13 (2016).10.1134/S1066362216010045Search in Google Scholar

35. Kulyukhin, S. A., Nevolin, Y. M., Gordeev, A. V.: Gas-phase conversion of U, Sr, and Mo compounds into water-soluble forms in a nitrating atmosphere. Radiochemistry 59, 247 (2017).10.1134/S1066362217030067Search in Google Scholar

36. JCPDS – Int. Centre for Diffraction Data. PDF 03-065-5985, UN.Search in Google Scholar

37. JCPDS – Int. Centre for Diffraction Data. PDF 03-065-0285, UO2.Search in Google Scholar

38. JCPDS – Int. Centre for Diffraction Data. PDF 00-018-1429, ε-UO3.Search in Google Scholar

39. JCPDS – Int. Centre for Diffraction Data. PDF 00-027-0937, UO2(NO3)2·3H2O.Search in Google Scholar

40. Johnson, J. A., Rawn, C. J., Spencer, B. B., Meisner, R. A., Del Cul, G. D.: Oxidation kinetics for conversion of U3O8 to ε-UO3 with NO2. J. Nucl. Mater. 490, 211 (2017).10.1016/j.jnucmat.2017.03.048Search in Google Scholar

41. Hoekstra, H. R., Siegel, S.: The uranium-oxygen system: U3O8-UO3. J. Inorg. Nucl. Chem. 18, 154 (1961).10.1016/0022-1902(61)80383-7Search in Google Scholar

42. Kobec, L. V., Klavsut’, G. N., Umrejko, D. S.: Fiziko-himicheskoe issledovanie bezvodnogo uranilnitrata i trinitratouranilata nitrozoniya. Zh. Neorg. Khim. 173, 26 (1981).Search in Google Scholar

43. JCPDS – Int. Centre for Diffraction Data. PDF 00-010-0309, UO3·0.8H2O.Search in Google Scholar

44. JCPDS – Int. Centre for Diffraction Data. PDF 01-074-2101, α-U3O8.Search in Google Scholar

45. Ondrejcin, R. S., Garrett, T. P.: The thermal decomposition of anhydrous uranyl nitrate and uranyl nitrate dihydrate 1. J. Phys. Chem. 65, 470 (1961).10.1021/j100821a020Search in Google Scholar

46. Kac, D., Rabinovich, E.: Himiya urana. IL, Moscow (1954), p. 1.Search in Google Scholar

47. Lister, A. J., Richardson, R. J.: The preparation of uranium trioxide by thermal decomposition of uranyl nitrate. AERE C/R 1874 (1954).Search in Google Scholar

48. Galkin, N. P., Sudarikov, B. N., Veryatin, U. D., Shishkov, Y. D., Majorov, A. A.: Tekhnologiya urana. Atomizdat, Moscow (1964), p. 1.Search in Google Scholar

49. Schaal, G., Faron, R.: Process for obtaining uranium trioxide by thermal denitration of uranyl nitrate, Patent US 5,628,048 (1997).Search in Google Scholar

50. Seleev, I. N., Aksutin, A. N., Jabin, A. Y.: Termohimicheskaya obrabotka fragmentirovannogo OYaT okislitel’noj sistemoj na osnove dioksida azota In IX Russian Conference on Radiochemistry “Radiochemistry 2018”. 326, Sankt-Petersburg (2018).Search in Google Scholar

51. JCPDS – Int. Centre for Diffraction Data. PDF 01-073-1709, UC.Search in Google Scholar

52. JCPDS – Int. Centre for Diffraction Data. PDF 01-084-1344, UC2.Search in Google Scholar

53. JCPDS – Int. Centre for Diffraction Data. PDF 01-073-1714, UO.Search in Google Scholar

Received: 2019-02-19
Accepted: 2019-12-13
Published Online: 2020-01-17
Published in Print: 2020-07-28

©2020 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 7.2.2023 from
Scroll Up Arrow