Skip to content
Licensed Unlicensed Requires Authentication Published by Oldenbourg Wissenschaftsverlag February 24, 2020

Selective Cs-removal from highly acidic spent nuclear fuel solutions

Mu Lin, Ivan Kajan, Dorothea Schumann, Andreas Türler and Adelheid Fankhauser
From the journal Radiochimica Acta

Abstract

Thirty liters of highly acidic spent nuclear fuel solutions need to be disposed at the “Hot Laboratory (hotlab)” facility in Paul Scherrer Institut (PSI), Switzerland. In order to significantly reduce the γ dose rate before proper disposal treatment, 137Cs must be removed. In the here presented sub-project, the ion-exchange method was evaluated. Two promising sorbents, CLEVASOL® and AMP (ammonium molybdophosphate), and two derived products AMP_PAN (AMP immobilized in polyacrylonitrile) and AMP/SiO2 (AMP immobilized on silica gel) were tested by the batch method using model solutions of important high-yield fission products (Cs, Eu, Zr, Ru, Pd and Ag), as well as U and Pu. The results showed that AMP, AMP/SiO2 and AMP_PAN have higher selectivity for Cs than CLEVASOL® in 0.1–8 M (mol/L) HNO3 solutions. 4 M HNO3 solution was identified as the most suitable condition for Cs-removal with AMP, AMP_PAN and AMP/SiO2 due to the still sufficiently high separation factor of Cs from other metal ions and an acceptable volume increase factor after dilution. The follow-up kinetic studies on AMP, AMP_PAN and AMP/SiO2 indicated that although Cs exchange on AMP and AMP/SiO2 is faster than on AMP_PAN in the first 5 min, they all nearly reach equilibrium after 30 min of contacting time. The isotherm curves of Cs adsorption on AMP, AMP_PAN and AMP/SiO2 in 4 M HNO3 showed that the maximum sorption capacity of Cs is reached asymptotically. The results from Langmuir isotherm modeling agree with results from other publications.

Acknowledgements

This study was sponsored by Swiss nuclear project “Waste treatment and Isotope Reclamation (WIR)”. CLEVASOL® was kindly provided free of charge from ADePhine GmbH. Many help on the ICP-MS measurement was provided by Pia Reichel.

References

1. IAEA nuclear data section. Available at: https://www-nds.iaea.org/sgnucdat/c3.htm. Accessed 10 July 2019.Search in Google Scholar

2. Konovalova, N. A., Rumer, I. A., Kulyukhin, S. A.: Coprecipitation of 137Cs and 85Sr microquantities with complex compound [M(18-crown-6)]BPh4 (M=Na+, Cs+) from neutral and alkaline solutions. Radiochim. Acta. 97, 559 (2011).Search in Google Scholar

3. Dash, A., Ram, R., Pamale, Y. A., Deodhar, A. S., Venkatesh, M.: Recovery of 137Cs from laboratory waste using solvent extraction with sodium tetraphenylboron (TPB). Sep. Sci. Technol. 47, 81 (2011).Search in Google Scholar

4. Dozol, J. F., Dozol, M., Maclas, R. M.: Extraction of strontium and cesium by dicarbollides, crown ethers and functionalized calixarenes. J. Incl. Phenom. Macrocycl. Chem. 38, 1 (2000).Search in Google Scholar

5. Anthony, R. G., Dosch, R. G., Gu, D., Philip, C. V.: Use of silicotitanates for removing cesium and strontium from defense waste. Ind. Eng. Chem. Res. 32, 2702 (1994).Search in Google Scholar

6. Todd, T. A., Brewer, K. N., Wood, D. J., Tullock, P. A., Mann, N. R., Olson, L. G.: Evaluation and testing of inorganic ion exchange sorbents for the removal of cesium-137 from actual IDAHO Nuclear Technology and Engineering Center acidic tank waste. Sep. Sci. Technol. 36, 999 (2007).Search in Google Scholar

7. Mann, N. R., Todd, T. A.: Removal of cesium from acidic radioactive tank waste by using IONSIV IE-911. Sep. Sci. Technol. 39, 2351 (2005).Search in Google Scholar

8. Coetzee, C. J., Rohwer, E. F. C. H.: Cation exchange studies on ammonium-12-molybdophosphate. J. Inorg. Nucl. Chem. 32, 1711 (1970).Search in Google Scholar

9. Lin, M., Kajan, I., Schumann, D., Türler, A.: The concept for disposal of highly acidic spent nuclear fuel solutions at PSI. J. Radioanal. Nucl. Chem. 322, 1857 (2019).Search in Google Scholar

10. Available at: https://www.lemerpax.com/en/products/clevasol-en/. Accessed 10 July 2019.Search in Google Scholar

11. Wells, A. F.: Structural inorganic chemistry. 2nd edition. Clarendon Press, Oxford, 351 (1950).Search in Google Scholar

12. Van, J., Smit, R.: Ammonium salts of the heteropolyacids as cation exchangers. Nature 181, 1530 (1958).Search in Google Scholar

13. Buchwald, H., Thistlethwaite, W. P.: Some cation exchange properties of ammonium 12-molybdophosphate. J. Inorg. Nucl. Chem. 5, 341 (1957).Search in Google Scholar

14. Cannon, P.: A critical study of the precipitation of ammonium phospho-12-molybdate. Talanta 3, 219 (1960).Search in Google Scholar

15. Thistlethwaite, W. P., Watson, W. T.: The formation and composition of some metal 12-12-molybdophosphates. J. Inorg. Nucl. Chem. 24, 1559 (1962).Search in Google Scholar

16. Thistlethwaite, W. P., Watson, W. T.: The 12-molybdophosphates of Group II metals. J. Inorg. Nucl. Chem. 26, 1815 (1964).Search in Google Scholar

17. Thistlethwaite, W. P.: The “Normal” 12-molybdophosphates of the alkali metals and ammonium. J. Inorg. Nucl. Chem. 28, 2143 (1966).Search in Google Scholar

18. Dolezal, J., Stejskal, J., Tympl, M., Kourim, V.: Improved inorganic ion exchangers II. Ammonium molybdophosphate – silica gel system. J. Radioanal. Nucl. Chem. 21, 381 (1974).Search in Google Scholar

19. Rao, K. L. N., Mathew, C., Deshpande, R. S., Jadhav, A. V., Pande, B. M., Shukla, J. P.: Effects of electron beam irradiation on inorganic exchanger AMP. Radiat. Phys. Chem. 49, 85 (1997).Search in Google Scholar

20. Van, J., Smit, R.: Cation exchange properties of the ammonium heteropolyacid salts. J. Inorg. Nucl. Chem. 12, 95 (1959).Search in Google Scholar

21. Krtil, J.: Exchange properties of ammonium salts of 12-heteropolyacids-IV: Cs exchange on ammonium phosphotungstate and phosphomolybdate. J. Inorg. Nucl. Chem. 24, 1139 (1962).Search in Google Scholar

22. Chakravarty, R., Ram, R., Pillai, K. T., Pamale, Y., Kamat, R. V., Dash, A.: Ammonium molybdophosphate impregnated alumina microspheres as a new generation sorbent for chromatographic Cs-137/(Ba-137m) generator. J. Chromatogr. A 1220, 82 (2012).Search in Google Scholar

23. Murthy, G. S., Sivaiah, M. V., Kumar, S. S., Reddy, V. N., Krishna, R. M., Lakshminarayana, S.: Adsorption of cesium on a composite inorganic exchanger zirconium phosphate – ammonium molybdophosphate. J. Radioanal. Nucl. Chem. 260, 109 (2004).Search in Google Scholar

24. Sebesta, F., John, J., Motl, A., Stamberg, K.: Evaluation of polyacrylonitrile (PAN) as a binding polymer for absorbers used to treat liquid radioactive wastes. Contractor Report. Sandia National Laboratories. SAND95-2729 (1995).Search in Google Scholar

25. Sebesta, F., John, J., Motl, A.: Phase II report on the evaluation of polyacrylonitrile (PAN) as a binding polymer for absorbers used to treat liquid wastes. Contractor Report. Sandia National Laboratories. SAND96-1088 (1996).Search in Google Scholar

26. Ding, D., Zhang, Z., Chen, R., Cai, T.: Selective removal of cesium by ammonium molybdophosphate-polyacrylonitrile bead and membrane. J. Hazard. Mater. 324, 753 (2017).Search in Google Scholar

27. Pike, S. M., Buesseler, K. O., Breier, C. F., Dulaiova, H., Stastna, K., Sebesta, F.: Extraction of cesium in seawater off Japan using AMP-PAN resin and quantification via gamma spectrometry and inductively coupled mass spectrometry. J. Radioanal. Nucl. Chem. 296, 369 (2013).Search in Google Scholar

28. Park, Y., Lee, Y., Shin, W., Choi, S.: Removal of cobalt, strontium and cesium from radioactive laundry wastewater by ammonium molybdophosphate-polyacrylonitrile (AMP-PAN). Chem. Eng. J. 162, 685 (2010).Search in Google Scholar

29. Ingale, S. V., Ram, R., Sastry, P. U., Wagh, P. B., Kumar, R., Niranjan, R., Phapate, S. B., Tewari, R., Dash, A., Gupta, S. C.: Synthesis and characterization of ammonium molybdophophate-silica nano-composite (AMP-SiO2) as a prospective sorbent for the separation of 137Cs from nuclear waste. J. Radioanal. Nucl. Chem. 301, 409 (2014).Search in Google Scholar

30. Deng, H., Li, Y., Huang, Y., Ma, X., Wu, L., Cheng, T.: An efficient composite ion exchanger of silica matrix impregnated with ammonium molybdophosphate for cesium uptake from aqueous solution. Chem. Eng. J. 286, 25 (2016).Search in Google Scholar

31. Wu, Y., Zhang, X., Wie, Y., Mimura, H.: Development of adsorption and solidification process for decontamination of Cs-contaminated radioactive water in Fukushima through silica-based AMP hybrid adsorbent. Sep. Purif. Technol. 181, 76 (2017).Search in Google Scholar

32. Samuelson, O.: Recommendation on ion exchange nomenclature. Pure Appl. Chem. 29, 618 (1972).Search in Google Scholar

33. Clifford, A. A.: Multivariate error analysis: a handbook of error propagation and calculation in many-parameter systems. John Wiley & Sons. ISBN 978-0470160558 (1973).Search in Google Scholar

34. Todd, T. A., Mann, N. R., Tranter, T. J., Sebesta, F., John, J., Motl, A.: Cesium sorption from concentrated acidic tank wastes using ammonium molybdophosphate-polyacrylonitrile composite sorbents. J. Radioanal. Nucl. Chem. 254, 47 (2002).Search in Google Scholar

35. Rieman, W., Walton, H. F.: Ion-Exchange equilibrium. In: Ion exchange in analytical chemistry. Pergamon Press, Oxford, 36 (1970).Search in Google Scholar

36. Suss, M., Pfrepper, G.: Investigation of the sorption of cesium from acid solutions by various inorganic sorbents. Radiochim. Acta. 29, 33 (1981).Search in Google Scholar

37. Ganzerli Valentini, M. T., Maxia, V., Rollier, M. A., Barbaro Forleo, M.: Behavior of Uranyl ion in nitric acid solutions with ammonium molybdophosphate. J. Inorg. Nucl. Chem. 32, 671 (1970).Search in Google Scholar

38. Krtil, J., Chavko, M.: Ion-exchange properties of ammonium salts of heteropolyacids. J. Chromatogr. A. 29, 460 (1967).Search in Google Scholar

39. Boyd, G. E., Adamson, A. W., Myers Jr, L. S.: The exchange adsorption of ions from aqueous solutions by organic zeolites. II. Kinetics. J. Am. Chem. Soc. 69, 2849 (1947).Search in Google Scholar

40. Kadous, A., Didi, M. A., Villemin, D.: A new sorbent for uranium extraction: ethylenediamino tris(methylenephosphonic) acid grafted on polystyrene resin. J. Radioanal. Nucl. Chem. 284, 431 (2010).Search in Google Scholar

41. Liu, H., Cai, X., Wang, Y., Chen, J.: Adsorption mechanism-based screening of cyclodextrin polymers for adsorption and separation of pesticides from water. Water Res. 45, 3499 (2011).Search in Google Scholar

42. Tranter, T. J., Herbst, R. H., Todd, T. A., Olson, A. L., Eldredge, H. B.: Evaluation of ammonium molybdophosphate-polyacrylonitrile (AMP_PAN) as a cesium selective sorbent for the removal of 137Cs from acidic nuclear waste solutions. Adv. Environ. Res. 6, 107 (2002).Search in Google Scholar

43. Douglas LeVan, M., Carta, G., Yon, C. M.: Adsorption and Ion Exchange. In: Perry’s Chemical Engineer’s Handbook, 7th edition. McGraw-Hill, New York, 16-1 (1997).Search in Google Scholar

44. Hameed, B. H., Din, A. T. M., Ahmad, A. L.: Adsorption of methylene blue onto bamboo-based activated carbon: kinetics and equilibrium studies. J. Hazard. Mater. 141, 819 (2007).Search in Google Scholar

45. Malik, P. K.: Dye removal from wastewater using activated carbon developed from sawdust: adsorption equilibrium and kinetics. J. Hazard. Mater. 113, 81 (2004).Search in Google Scholar

46. Sun, C., Sun, L., Sun, X.: Graphical evaluation of the favorability of adsorption processes by using conditional Langmuir constant. Ind. Eng. Chem. Res. 52, 14251 (2013).Search in Google Scholar

47. McKay, G., Blair, H. S., Gardner, J. R.: Adsorption of dyes on chitin. J. Appl. Polym. Sci. 27, 3043 (1982).Search in Google Scholar

48. Voudrias, E., Fytianos, K., Bozani, E.: Sorption-description isotherms of dyes from aqueous solutions and waste waters with different sorbent materials. Global Nest J. 4, 75 (2002).Search in Google Scholar

49. Goldberg, S.: Equations and models describing adsorption processes in soils. in: Chemical processes in soils. Soil Science Society of America, 677 S. Segoe Road, Madison, WI 53711, USA, 489 (2005).Search in Google Scholar

Received: 2019-07-22
Accepted: 2020-01-21
Published Online: 2020-02-24
Published in Print: 2020-08-27

©2020 Walter de Gruyter GmbH, Berlin/Boston