Abstract
75Se (T1/2 = 120 d), 73gSe (T1/2 = 7.1 h) and 72Se (T1/2 = 8.4 d) are important radioisotopes of selenium, being used in tracer studies, PET investigations and as a generator parent, respectively. Cross section data for the formation of those radionuclides in proton and deuteron induced reactions on 75As were critically analyzed up to about 70 MeV. A well-developed evaluation methodology was applied to generate the statistically fitted cross sections, based on the critically analyzed literature experimental data and the theoretical cross section values of three nuclear model codes ALICE-IPPE, TAYLS 1.9, and EMPIRE 3.2. Using the fitted cross sections the integral yield of each radionuclide was calculated. For the estimation of impurities, the integral yield of each radionuclide was compared with the yields of the other two radionuclides over a given energy region, and therefrom the energy range was suggested for the high purity production of each of the radionuclides 75Se, 73Se and 72Se. For production of the very important non-standard positron emitter 73Se via the 75As(p,3n)73Se reaction, the optimum energy range was deduced to be Ep = 40 → 30 MeV, with a thick target yield of 1441 MBq/μAh and the 72,75Se impurity level of <0.1%.
Funding source: Higher Education Commission Pakistan
Award Identifier / Grant number: NRPU 9746
Acknowledgments
N. Amjed would like to thank the Higher Education Commission of Pakistan (HEC) for the financial assistance. The work was done in the frame of HEC; NRPU project No. 9746.
Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
Research funding: This work was funded by Higher Education Commission of Pakistan (HEC), NRPU project No. 9746.
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
References
1. Ekambaramgnanadesigan, B. K., Gnanagurudasan, E., Santhosh, K. N. A systematic review of selenium and its role in human reproductive system. Int. J. Pharma Bio Sci. 2013, 4, B1.Search in Google Scholar
2. Jereb, M. Radiation dose to the human body from intravenuously administered 75Se-sodium selenite. J. Nucl. Med. 1975, 16, 846–850.Search in Google Scholar
3. Paterson, A. H. G., McCready, V. R. Clinical and Experimental Studies of Selenium-75-Labeled Compounds is Compared and Contrasted with Tumour Imaging by Means of 67Ga-citrate; IAEA, 1976; pp. 63–67.Search in Google Scholar
4. Königs, U., Humpert, S., Spahn, I., Qaim, S. M., Neumaier, B. Isolation of high purity 73Se using solid phase extraction after selective 4,5-[73Se]benzopiazselenol formation with aminonaphthalene. Radiochim. Acta 2018, 106, 497–505. https://doi.org/10.1515/ract-2017-2864.Search in Google Scholar
5. Ermert, J., Blum, T., Hamacher, K., Coenen, H. H. Alternative syntheses of [73, 75Se]selenoethers exemplified for homocysteine [73, 75Se]selenolactone. Radiochim. Acta 2001, 89, 863. https://doi.org/10.1524/ract.2001.89.11-12.863.Search in Google Scholar
6. Helfer, A., Ermert, J., Humpert, S., Coenen, H. H. No-carrier-added labeling of the neuroprotective Ebselen with selenium-73 and selenium-75. J. Label. Compd. Radiopharm. 2015, 58, 141–151. https://doi.org/10.1002/jlcr.3274.Search in Google Scholar
7. Qaim, S. M. Development of novel positron emitters for medical applications: nuclear and radiochemical aspects. Radiochim. Acta 2011, 99, 611–625. https://doi.org/10.1524/ract.2011.1870.Search in Google Scholar
8. Qaim, S. M., Scholten, B., Spahn, I., Neumaier, B. Positron-emitting radionuclides for applications with special emphasis on their production methodologies for medical use. Radiochim. Acta 2019, 107, 1011–1026. https://doi.org/10.1515/ract-2019-3154.Search in Google Scholar
9. Al-Kouraishi, S. H., Boswell, G. G. J. An isotope generator for 72As. Int. J. Appl. Radiat. Isot. 1978, 29, 607–609. https://doi.org/10.1016/0020-708x(78)90093-5.Search in Google Scholar
10. Phillips, D. R., Hamilton, V. T., Nix, D. A., Taylor, W. A., Jamriska, D. J., Staroski, R. C., Lopez, R. A., Emran, A. M. Chemistry and concept for an automated 72Se/72As generator. In New Trends in Radiopharmaceutical Synthesis, Quality Assurance, and Regulatory Control; Springer: Boston, MA, 1991; pp. 173–182. https://doi.org/10.1007/978-1-4899-0626-7_18.Search in Google Scholar
11. Jennewein, M., Qaim, S. M., Kulkarni, P., Mason, R., Hermanne, A., Roesch, F. A no-carrier-added 72Se/72As radionuclide generator based on solid phase extraction. Radiochim. Acta 2005, 93, 579–583. https://doi.org/10.1524/ract.2005.93.9-10.579.Search in Google Scholar
12. Ballard, B., Wycoff, D., Birnbaum, E. R., John, K. D., Lenz, J. W., Jurisson, S. S., Cutler, C. S., Nortier, F. M., Taylor, W. A., Fassbender, M. E. Selenium-72 formation via natBr(p,x) induced by 100 MeV protons: steps towards a novel 72Se/72As generator system. Appl. Radiat. Isot. 2012, 70, 595–601. https://doi.org/10.1016/j.apradiso.2012.01.018.Search in Google Scholar
13. DeGraffenreid, A. J., Medvedev, D. G., Phelps, T. E., Gott, M. D., Smith, S. V., Jurisson, S. S., Cutler, C. S. Cross-section measurements and production of 72Se with medium to high energy protons using arsenic containing targets. Radiochim. Acta 2019, 107, 279–287. https://doi.org/10.1515/ract-2018-2931.Search in Google Scholar
14. NuDat 2.8. Data source National Nuclear Data Center, Brookhaven National Laboratory, based on ENSDF and the Nuclear Wallet Cards. http://www.nndc.bnl.gov/nudat2.Search in Google Scholar
15. Hara, T., Tilbury, R. S., Fareed, B. R. Production of 73Se in cyclotron and its uptake in tumors of mice. Int. J. Appl. Radiat. Isot. 1973, 24, 377–384. https://doi.org/10.1016/0020-708x(73)90017-3.Search in Google Scholar
16. Mushtaq, A., Qaim, S. M. Excitation functions of α-and 3He-particle induced nuclear reactions on natural germanium: evaluation of production routes for 73Se. Radiochim. Acta 1990, 50, 27–32. https://doi.org/10.1524/ract.1990.50.12.27.Search in Google Scholar
17. Blessing, G., Lavi, N., Qaim, S. M. Production of 73Se via the 70Ge (α,n)-process using high current target materials. Appl. Radiat. Isot. 1992, 43, 455–461. https://doi.org/10.1016/0883-2889(92)90121-t.Search in Google Scholar
18. Nozaki, T., Itoh, Y., Ogawa, K. Yield of 73Se for various reactions and its chemical processing. Int. J. Appl. Radiat. Isot. 1979, 30, 595–599. https://doi.org/10.1016/0020-708x(79)90076-0.Search in Google Scholar
19. Mushtaq, A., Qaim, S. M., Stöcklin, G. Production of 73Se via (p,3n) and (d,4n) reactions on arsenic. Appl. Radiat. Isot. 1988, 39, 1085–1091. https://doi.org/10.1016/0883-2889(88)90146-3.Search in Google Scholar
20. Plenevaux, A., Guillaume, M., Brihaye, C., Lemaire, C., Cantineau, R. Chemical processing for production of no-carrier-added selenium-73 from germanium and arsenic targets and synthesis of l-2-amino-4-([73Se]methylseleno) butyric acid (l-[73Se]selenomethionine). Appl. Radiat. Isot. 1990, 41, 829. https://doi.org/10.1016/0883-2889(90)90060-t.Search in Google Scholar
21. Blessing, G., Lavi, N., Hashimoto, K., Qaim, S. M. Thermochromatographic separation of radioselenium from irradiated Cu3As-target: production of no-carrier added 75Se. Radiochim. Acta 1994, 65, 93–98. https://doi.org/10.1524/ract.1994.65.2.93.Search in Google Scholar
22. Faßbender, M., de Villiers, D., Nortier, M. F., van der Walt, N. The natBr(p,x)73,75Se nuclear processes: a convenient route for the production of radioselenium tracers relevant to amino acid labelling. Appl. Radiat. Isot. 2001, 54, 905. https://doi.org/10.1016/s0969-8043(00)00359-6.Search in Google Scholar
23. Brodovitch, J. C., Hogan, J. J., Burns, K. I. The pre-equilibrium statistical model: comparison of calculation with two (p,xn) reactions. J. Inorg. Nucl. Chem. 1976, 38, 1581–1586. https://doi.org/10.1016/0022-1902(76)80639-2.Search in Google Scholar
24. Qaim, S. M., Mushtaq, A., Uhl, M. Isomeric cross-section ratio for the formation of 73 m,gSe in various nuclear processes. Phys. Rev. C Nucl. Phys. 1988, 38, 645. https://doi.org/10.1103/physrevc.38.645.Search in Google Scholar
25. Levkovskij, V. N. Activation Cross Section of Nuclides of Average Masses (A= 40-100) by Protons and Alpha-Particles with Average Energies (E= 10-50 MeV); Intervesi: Moscow, USSR, 1991.Search in Google Scholar
26. Albert, R. (p, n) cross section and proton optical-model parameters in the 4- to 5.5-MeV energy region. Phys. Rev. 1959, 115, 925–927. https://doi.org/10.1103/physrev.115.925.Search in Google Scholar
27. Delaunay-Olkowsky, J., Strohal, P., Cindro, N. Total reaction cross sections of proton induced reactions. Nucl. Phys. 1963, 47, 266–272. https://doi.org/10.1016/0029-5582(63)90872-1.Search in Google Scholar
28. Johnson, C. H., Trail, C. C., Galonsky, A. Thresholds for (p,n) reactions on 26 intermediate-weight nuclei. Phys. Rev. 1964, 136 B, 1719–1729.10.1103/PhysRev.136.B1719Search in Google Scholar
29. Johnson, C. H., Galonsky, A., Ulrich, J. P. Proton strength functions from (p,n) cross sections. Phys. Rev. 1958, 109, 1243. https://doi.org/10.1103/physrev.109.1243.Search in Google Scholar
30. Röhm, H. F., Münzel, H. Excitation functions for deuteron reactions with 75As. J. Inorg. Nucl. Chem. 1972, 34, 1773–1784. https://doi.org/10.1016/0022-1902(72)80523-2.Search in Google Scholar
31. Qaim, S. M. Nuclear data relevant to cyclotron produced short-lived medical radioisotopes. Radiochim. Acta 1982, 147–162.Search in Google Scholar
32. Qaim, S. M. Nuclear data for production and medical application of radionuclides: present status and future needs. Nucl. Med. Biol. 2017, 44, 31–49. https://doi.org/10.1016/j.nucmedbio.2016.08.016.Search in Google Scholar
33. Qaim, S. M., Spahn, I., Scholten, B., Neumaier, B. Uses of alpha particles, especially in nuclear reaction studies and medical radionuclide production. Radiochim. Acta 2016, 104, 601–624. https://doi.org/10.1515/ract-2015-2566.Search in Google Scholar
34. Qaim, S. M., Spahn, I. Development of novel radionuclides for medical applications. J. Label. Compd. Radiopharm. 2018, 61, 126–140. https://doi.org/10.1002/jlcr.3578.Search in Google Scholar
35. Tárkányi, F., Ignatyuk, A. V., Hermanne, A., Capote, R., Carlson, B. V., Engle, J. W., Verpelli, M., Kellett, M. A., Kibedi, T., Kim, G. N., Kondev, F. G., Hussain, M. Recommended nuclear data for medical radioisotope production: diagnostic positron emitters. Nucl. Chem. 2019, 319, 533–666. https://doi.org/10.1007/s10967-018-6380-5.Search in Google Scholar
36. Hermanne, A., Ignatyuk, A. V., Capote, R., Carlson, B. V., Engle, J. W., Kellett, M. A., Kibédi, T., Kim, G., Kondev, F. G., Hussain, M. Reference cross sections for charged-particle monitor reactions. Nucl. Data Sheets 2018, 148, 338–382. https://doi.org/10.1016/j.nds.2018.02.009.Search in Google Scholar
37. RIPL-3d. International Atomic Energy Agency, Vienna. www.nds-iaea.org/RIPL-3/.Search in Google Scholar
38. Amjed, N., Hussain, M., Aslam, M. N., Tárkányi, F., Qaim, S. M. Evaluation of nuclear reaction cross sections for optimization of production of the emerging diagnostic radionuclide 55Co. Appl. Radiat. Isot. 2016, 108, 38–48. https://doi.org/10.1016/j.apradiso.2015.11.058.Search in Google Scholar
39. Amjed, N., Wajid, A. M., Ahmad, N., Ishaq, M., Aslam, M. N., Hussain, M., Qaim, S. M. Evaluation of nuclear reaction cross sections for optimization of production of the important non-standard positron emitting radionuclide 89Zr using proton and deuteron induced reactions on 89Y target. Appl. Radiat. Isot. 2020, 165, 1–9. https://doi.org/10.1016/j.apradiso.2020.109338.Search in Google Scholar
40. Dityuk, A. I., Konobeyev, A. Y., Lunev, V. P., Shubin, Y. N. New Advanced Version of Computer Code ALICE-IPPE. IAEA: Vienna. Report. INDC(CCP)-410, 1998.Search in Google Scholar
41. Bojowald, J., Machner, H., Nann, H., Oelert, W., Rogge, M., Turek, P. Elastic deuteron scattering and optical model parameters at energies up to 100 MeV. Phys. Rev. C 1988, 38, 1153–1163. https://doi.org/10.1103/physrevc.38.1153.Search in Google Scholar
42. Morillon, B., Romain, P. Bound single-particle states and scattering of nucleons on spherical nuclei with a global optical model. Phys. Rev. C 2007, 76, 044601.10.1103/PhysRevC.76.044601Search in Google Scholar
43. Koning, A. J., Delaroche, J. P. Local and global nucleon optical models from 1 keV to 200 MeV. Nucl. Phys. A 2003, 713, 231–310. https://doi.org/10.1016/s0375-9474(02)01321-0.Search in Google Scholar
44. Koning, A. J., Rochman, D. Modern nuclear data evaluation with the TALYS code system. Nucl. Data Sheets 2012, 113, 2841–2934. https://doi.org/10.1016/j.nds.2012.11.002.Search in Google Scholar
45. Perey, C. M., Perey, F. G. Deuteron optical model analysis in the range of 11 to 27 MeV. Phys. Rev. 1963, 132, 755–773. https://doi.org/10.1103/physrev.132.755.Search in Google Scholar
46. Qaim, S. M., Sudár, S., Scholten, B., Koning, A. J., Coenen, H. H. Evaluation of excitation functions of 100Mo(p,d+pn)99Mo and 100Mo(p,2n)99mTc reactions: estimation of long-lived Tc-impurity and its implication on the specific activity of cyclotron-produced 99mTc 101-113. Appl. Radiat. Isot. 2014, 85, 101–113. https://doi.org/10.1016/j.apradiso.2013.10.004.Search in Google Scholar
47. Qaim, S. M. Nuclear data for medical applications: an overview. Radiochim. Acta 2001, 89, 189–196. https://doi.org/10.1524/ract.2001.89.4-5.189.Search in Google Scholar
48. Otuka, N., Takacs, S. Definitions of radioisotope thick target yields. Radiochim. Acta 2015, 103, 1–6. https://doi.org/10.1515/ract-2013-2234.Search in Google Scholar
49. Dmitriev, P. P. Radionuclide Yield in Reactions with Protons, Deuterons, Alpha Particles and Helium-3: Handbook. IAEA: Vienna. Report. INDC(CCP)-263, 1986.Search in Google Scholar
50. Rowshanfarzad, P., Jalilian, A. R., Sabet, M. Simultaneous production and quality control of 73Se and 75Se radioisotopes in a 30 MeV cyclotron. Iran. J. Radiat. Res. 2004, 2, 1–7.Search in Google Scholar
51. Qaim, S. M. Medical radionuclide production-science and technology. De Gruyter Berlin/Boston 2019. https://doi.org/10.1515/9783110604375.Search in Google Scholar
© 2021 Walter de Gruyter GmbH, Berlin/Boston