Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter (O) April 21, 2022

Nuclear reaction data for medical and industrial applications: recent contributions by Egyptian cyclotron group

  • Mogahed Al-Abyad EMAIL logo , H. Ebrahim Hassan , Gehan Y. Mohamed , Zeinab A. Saleh , M. Nassef H. Comsan and Ahmed Azzam
From the journal Radiochimica Acta


Measurement and evaluation of nuclear data of radioisotopes used as tracers are continuously underway in many laboratories to reach high accuracy for their use in production. We briefly mention some of the radionuclides useful for medical diagnostics and other industrial applications. The research group at the Egyptian cyclotron facility (EGCF) performed in collaboration with nuclear research centres and universities in many countries (Germany, Hungary, Finland, USA, Japan and Saudi Arabia) some measurements and evaluations of interesting nuclear reaction data. Nuclear reactions induced by p, d and α-particles on a wide variety of targets were extensively studied from threshold energy up to 50 MeV. Nuclear model code calculations, mainly using EMPIRE and TALYS, were performed for nuclear data validation. Proton and neutron activation of some industrially interesting samples were also studied as technological application of nuclear analytical techniques. Since the cyclotron facility is dedicated to development of the production routes of medical radioisotopes, this overview presents examples of optimization experiments to establish good production conditions.

Corresponding author: Mogahed Al-Abyad, Cyclotron Facility, Nuclear Physics Department, Nuclear Research Center, Egyptian Atomic Energy Authority, Cairo 13759, Egypt; and Nuclear Physics Department, Nuclear Research Center, Egyptian Atomic Energy Authority, Cairo 13759, Egypt, E-mail:


The research cooperation with the Research Center Jülich has been exceptionally successful. About 10 Egyptian researchers got specialized training there, five of whom completed partly or fully their doctoral dissertations under the guidance of Prof. S.M. Qaim. They are listed in references [12], [13], [14], [15], [16]. The research results were described in more than 10 full length papers in international journals, some of them are listed here [24, 26, 55]. Our group also has maintained a good cooperation with the Institute for Nuclear Research, Hungarian Academy of Science, Debrecen, Hungary (ATOMKI). Many papers have been published with them and two PhD theses have been approved through a bilateral supervision with Dr. Ferenc Ditrói. We take the opportunity of thanking all the organizations and individuals associated with this programme. The cyclotron Facility was initiated by Prof. Dr. M.N.H. Comsan and the subsequent programme co-ordinators were: Prof. Dr. A. Azzam (2001–2003), Prof. Dr. Shokry M. Saad (2003–2006), Prof. Dr. U.M. Seddik (2006–2014) and Prof. Dr. Mogahed Al-Abyad (2014 to date). Prof. Dr. Dr. h. c. mult. Syed M. Qaim, has been a constant strong proponent of the bilateral Egyptian/German cooperation.

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.


1. Qaim, S. M. Nuclear data for medical applications: an overview. Radiochim. Acta 2001, 89, 189–196; in Google Scholar

2. Qaim, S. M. Radiochemical determination of nuclear data for theory and applications. J. Radioanal. Nucl. Chem. 2010, 284, 489–505; in Google Scholar

3. Qaim, S. M. Nuclear data relevant to cyclotron produced short-lived medical radioisotopes. Radiochim. Acta 1982, 30, 147–162.Search in Google Scholar

4. Qaim, S. M. Therapeutic radionuclides and nuclear data. Radiochim. Acta 2001, 89, 297–302; in Google Scholar

5. Qaim, S. M. The present and future of medical radionuclide production. Radiochim. Acta 2012, 100, 635–651; in Google Scholar

6. Qaim, S. M., Hussain, M., Spahn, I., Neumaier, B. Continuing nuclear data research for production of accelerator-based novel radionuclides for medical use: a mini-review. Front. Phys. 2021, 9, 16; in Google Scholar

7. Stöcklin, G., Qaim, S. M., Rösch, F. The impact of radioactivity on medicine. Radiochim. Acta 1995, 70/71, 249–272.10.1524/ract.1995.7071.special-issue.249Search in Google Scholar

8. Qaim, S. M. Development of novel positron emitters for medical applications: nuclear and radiochemical aspects. Radiochim. Acta 2011, 99, 611–625; in Google Scholar

9. Lewis, J. S., Welch, M. J., Tang, L. Decay data and production yields of some non-standard positron emitters used in PET. Proceedings of the workshop on non-standard positron emitters, Aachen (2007), special issue of the  Quart. J. Nucl. Med. Mol. Imaging 2008, 52, 101–206.Search in Google Scholar

10. Qaim, S. M., Huclier-Markai, S. Innovative positron emitting radionuclides. Spec. Issue Radiochim. Acta 2011, 89, 607–678.Search in Google Scholar

11. Qaim, S. M. Nuclear data for production and medical application of radionuclides: present status and future needs. Nucl. Med. Biol. 2017, 44, 31–47; in Google Scholar PubMed

12. Al-Abyad, M. Excitation Functions of Nuclear Reactions Induced by Neutrons and Charged Particles Leading to Some Radioisotopes of Medical and Technological Relevance. PhD dissertation, Ain Shams University, Cairo, Egypt, 2006.Search in Google Scholar

13. Hassan, H. E. A Study of Some Selected Nuclear Reactions and their Technical Utilization for Radioisotopes Production Using Low Energy Accelerated Charged Particles. PhD dissertation, Ain Shams University, Cairo, Egypt, 2004.Search in Google Scholar

14. El-Azoney Khaled, M. Cyclotron Production of 123I for Preparation of Some Labeled Compounds. PhD dissertation, Ain Shams University, Cairo, Egypt, 2001.Search in Google Scholar

15. Hassan Khaled, F. Studies on Production, Separation and Quality Control of Iodine-124 via Novel Radiochemical Techniques. PhD dissertation, Mansoura University, Mansoura, Egypt, 2006.Search in Google Scholar

16. Kandil, S. A. Radiochemical Studies on Separation of Some Medically and Technologically Interesting Radionuclides from Targets Irradiated at a Cyclotron. PhD dissertation, Mansoura University, Mansoura, Egypt, 2007.Search in Google Scholar

17. Experimental Nuclear Reaction Data (EXFOR), Database Version of 2021-10-22; Network of Nuclear Reaction Data Centres (NRDC), IAEA, Vienna.Search in Google Scholar

18. Al-abyad, M., Gehan, M. Y., Hassan, H. E., Takács, S., Ditrói, F. Experimental measurements and theoretical calculations for proton, deuteron and α-particle induced nuclear reactions on calcium: special relevance to the production of 43,44Sc. J. Radioanal. Nucl. Chem. 2018, 316, 119–128; in Google Scholar

19. Zarie, K., Al-Hammad, N., Azzam, A. Excitation functions of (p,xn) reactions on natural tellurium at low energy cyclotron: relevance to the production of medical radioisotope 123I. J. Nucl. Radiat. Phys. 2006, 1, 93–105.Search in Google Scholar

20. Said, S. A., Hassan, H. E., Tolba, T. A., Saleh, Z. A. Measurement of excitation functions of proton-induced nuclear reactions on natural tellurium. Arab. J. Nucl. Sci. Appl. 2007, 90, 205.Search in Google Scholar

21. Ahmed, A. M., Hassan, H. E., Hassan, K. F., Khalaf, A. M., Saleh, Z. A. Experimental and theoretical validation of cross section data and thick target yields: possibility of radioiodine isotopes production by proton bombardment of natural tellurium. Radiochim. Acta 2011, 99, 317–323; in Google Scholar

22. Kandil, S. A., Al-abyad, M. Cross section measurements and theoretical calculations of proton induced nuclear reactions on natural tellurium. Radiochim. Acta 2013, 101, 1–5; in Google Scholar

23. Azzam, A., Mohamed, H. S., Seham, S. A., Gehan, M. Y., Al-abyad, M. Excitation functions for proton-induced reactions on Te and natTi targets: measurements and model calculations special relevant to the 128Te(p,n)128I reaction. Nucl. Phys. A 2020, 999, 121790; in Google Scholar

24. Hassan, H. E., Qaim, S. M., Shubin, Y., Azzam, A., Morsy, M., Coenen, H. H. Experimental studies and nuclear model calculations on proton-induced reactions on natSe, 76Se and 77Se with particular reference to the production of the medically interesting radionuclides 76Br and 77Br. Appl. Radiat. Isot. 2004, 60, 899; in Google Scholar PubMed

25. Showaimy, H., Solieman, A. H. M., Sayed, A., Khalaf, A., Saleh, Z. A. Proton induced reactions on natural Se and Ag targets for producing 76,77,82Br and 107Cd radioisotopes using low energy cyclotron. Arab. J. Nucl. Sci. Appl. 2020, 53, 121.Search in Google Scholar

26. Hassan, H. E., El-Azony, K. M., Azzam, A., Qaim, S. M. Investigation of selenium compounds as targets for 76,77Br production using protons of energies up to 34 MeV. Radiochim. Acta 2017, 105, 841; in Google Scholar

27. Al-Saleh, F. S., Al-Harbi, A. A., Azzam, A. Excitation functions of proton induced nuclear reactions on natural copper using a medium-sized cyclotron. Radiochim. Acta 2006, 94, 391; in Google Scholar

28. Zarie, K., Al-Hammad, N., Azzam, A. Experimental study of excitation functions for some proton induced reactions on natTi for monitoring purpose. Radiochim. Acta 2006, 94, 795; in Google Scholar

29. Doha, A., Gehan, M. Y., Zeinab, Y., Magda, A. E. W., Ditrói, F., Takács, S., Al-abyad, M. Experimental investigation and theoretical evaluation of proton induced nuclear reactions on nickel. Appl. Radiat. Isot. 2020, 159, 109094; in Google Scholar PubMed

30. Al-Saleh, F. S., Al-Mogren, K. S., Azzam, A. Excitation functions of (p,x) reactions on natural nickel between proton energies 2.7 and 27.5 MeV. Appl. Radiat. Isot. 2007, 65, 104; in Google Scholar PubMed

31. Al-Saleh, S., Al-Mogren, K. S., Azzam, A. Excitation function measurements and integral yields estimation for natZn(p,x) reactions at low energies. Appl. Radiat. Isot. 2007, 65, 1101; in Google Scholar PubMed

32. Challan, M. B., Comsan, M. N. H., Abou-Zeid, M. A. Thin target yields and EMPIRE-II predictions on the accelerator production of technetium-99m. J. Nucl. Radiat. Phys. 2007, 2, 1–12.Search in Google Scholar

33. Elbinawi, A., Al-abyad, M., Bashter, I., Seddik, U., Ditrói, F. Study of proton induced nuclear reactions on molybdenum: cross section measurements and theoretical calculations. Radiochim. Acta 2020, 108, 1–9.10.1515/ract-2018-3091Search in Google Scholar

34. Alharbi, A. A., Alzahrani, J., Azzam, A. Activation cross-section measurements of some proton induced reactions on Ni, Co and Mo targets; for proton activation analysis (PAA) purposes. Radiochim. Acta 2011, 99, 763–770; in Google Scholar

35. Showaimy, H., Solieman, A. H. M., Abdel Hamid, A. S., Khalaf, A. M., Saleh, Z. A. Measurements of activation cross sections for proton induced reactions on natural platinum targets leading to the formation of gold radioisotopes. Radiat. Phys. Chem. 2019, 157, 97–101; in Google Scholar

36. Elbinawi, A., Al-abyad, M., Abd-Elmageed, K. E., Hassan, K. F., Ditrói, F. Proton induced nuclear reactions on natural antimony up to 17 MeV. Radiochim. Acta 2016, 104, 221–226; in Google Scholar

37. Tárkányi, F., Ditrói, F., Takács, S., Hermanne, A., Al-Abyad, M., Yamazaki, H., Baba, M., Mohammadi, M. A. New activation cross section data on longer lived radionuclei produced in proton induced nuclear reactions on zirconium. Appl. Radiat. Isot. 2015, 97, 149–169.10.1016/j.apradiso.2014.12.029Search in Google Scholar

38. Elmaghraby, E. K., Mohamed, Y. Gehan., Al-abyad, M. Experimental investigation and nuclear model calculations for proton induced reactions on indium around thresholds. Nucl. Phys. A 2019, 984, 112–132; in Google Scholar

39. Elbinawi, A., Al-abyad, M., Bashter, I., Seddik, U., Ditrói, F. Excitation function of proton induced nuclear reaction on strontium: special relevance to the production of 88Y. Appl. Radiat. Isot. 2018, 140, 272–277; in Google Scholar

40. Azzam, A., Mohamed, Y. G., Al-abyad, M. Excitation functions and yield measurements for proton induced reactions, in stainless steel: special relevance to proton activation analysis. Appl. Radiat. Isot. 2019, 151, 166–170; in Google Scholar

41. Azzam, A., Al-abyad, M., Hassan, H. E., Mohamed, Y. G., Attallah, M. F., Ditrói, F. α-particle and deuteron induced reactions on 89Y: cross section measurements and theoretical investigation. Eur. Phys. J. Plus 2019, 134, 36; in Google Scholar

42. Takács, S., Sonck, M., Azzam, A., Hermanne, A., Tárkányi, F. Activation cross-section measurements of deuteron induced reactions on natNi with special reference to beam monitoring and production of 61Cu for medical purpose. Radiochem. Acta 1997, 76, 15–25.10.1524/ract.1997.76.12.15Search in Google Scholar

43. Takács, S., Azzam, A., Sonck, M., Szelecsényi, F., Kovacs, Z., Hermanne, A., Tárkányi, F. Excitation function of 122Te(d,n)123I nuclear reaction, Production of 123I at low energy cyclotron. Appl. Radiat. Isot. 1999, 50, 535–540.10.1016/S0969-8043(98)00059-1Search in Google Scholar

44. Al-Abyad, M., Gehan, M. Y., Ditrói, F., Takács, S., Tárkányi, F. Experimental study and nuclear models calculations of 3He-induced nuclear reactions on zinc. Eur. Phys. J. A 2017, 53, 107; in Google Scholar

45. Ali, B. M., Al-abyad, M., Seddik, U., El-Kameesy, S. U., Ditrói, F., Takács, S., Tárkányi, F. Measurement and theoretical analysis of the excitation functions for 3He induced reactions on natSn. Nucl. Instrum. Methods Phys. Res. B 2015, 362, 93–102; in Google Scholar

46. Solieman, A. H. M., Al-Abyad, M., Ditrói, F., Saleh, Z. A. Experimental and theoretical study for the production of 51Cr using p, d, 3He and 4He projectiles on V, Ti and Cr targets. Nucl. Instrum. Methods Phys. Res. B 2016, 366, 19–27; in Google Scholar

47. Sayed, A., Hassan, H. E., Said, S. A., Morsy, M., Saleh, Z. A. Experimental determination and nuclear model calculations for excitation function of 3He-induced reactions on natPt. Arab J. Nucl. Sci. Appl. 2009, 42, 159–169.Search in Google Scholar

48. Al-Abyad, M., Gehan, M. Y. Neutron capture cross section measurements and theoretical calculation for the 186W(n,γ)187W reaction. Radiochim. Acta 2017, 105, 347–357; in Google Scholar

49. Fisal, R., Hassan, H. E., Elsaadony, A. E., Nada, A., Saleh, Z. A. Neutron activation analysis of stainless steel samples and its application for monitoring thin layer wear and corrosion. Arab J. Nucl. Sci. Appl. 2013, 46, 159–168.Search in Google Scholar

50. Azzam, A., Said, S. A., Al-abyad, M. Evaluation of different production routes for the radio medical isotope 203Pb, using TALYS-1.4 and EMPIRE 3.1 code calculations. Appl. Radiat. Isot. 2014, 91, 109–113; in Google Scholar

51. Azzam, A., Al-abyad, M., Solieman, A. H. Comparative study for the production of the 68Ga from proton induced reaction on different targets: evaluation of experimental data and model calculations. Radiochim. Acta 2015, 103, 109–116; in Google Scholar

52. Azzam, A., Solieman, A. H. M., Al-abyad, M. Study of the different production routes of 68Ga positron emitting medical radioisotope through d, 3He and α-particle induced reactions on some Cu, Zn and Ge isotopes. J. Nucl. Radiat. Phys. 2016, 11, 1–13.Search in Google Scholar

53. Alharbi, A. A., Azzam, A. Theoretical calculations of the reaction, cross-sections for proton induced reactions on natural copper using the ALICE-IPPE code. Appl. Radiat. Isot. 2012, 70, 88–98; in Google Scholar

54. Hassan, H. E., Al-abyad, M., Mohamed, Y. G. Production of 44Ti → 44Sc generator in comparison with direct routes by cyclotrons: cross section evaluation using nuclear models codes. Arab J. Nucl. Sci. Appl. 2018, 51, 57–72.Search in Google Scholar

55. Hassan, H. E., Qaim, S. M. A critical survey of experimental cross section data, comparison with nuclear model calculations and estimation of production yields of 77Br and 77Kr in no-carrier-added form via various nuclear processes. Nucl. Instrum. Methods B 2011, 269, 1121–1129; in Google Scholar

56. Alharbi, A. A., Azzam, A., McCleskey, M., Roeder, B., Spiridon, A., Simmons, E., Goldberg, V. Z., Banu, A., Trache, L., Tribble, R. E. Medical Radioisotopes Production: A Comprehensive Cross-Section Study for the Production of Mo and Tc Radioisotopes via Proton Induced Nuclear Reactions on natMo. Radioisotopes Book edited by: Nirmal Singh; InTech, 2011.Search in Google Scholar

57. Al-Abyad, M., Comsan, M. N. H., Fayez-Hassan, M. Model calculations for proton induced nuclear reaction on zinc at low energy. Arab J. Nucl. Sci. Appl. 2013, 46, 134–141.Search in Google Scholar

58. Qaim, S. M., Scholten, B., Neumaier, B. New developments in the production of theranostic pairs of radionuclides. J. Radioanal. Nucl. Chem. 2018, 318, 1493–1509; in Google Scholar

59. Spellerberg, S., Reimer, P., Blessing, G., Coenen, H. H., Qaim, S. M. Production of 55Co and 57Co via proton induced reactions on highly enriched 58Ni. Appl. Radiat. Isot. 1998, 49, 1519–1522; in Google Scholar

60. Amjed, N., Hussain, M., Aslam, M. N., Tárkányi, F., Qaim, S. M. Evaluation of nuclear reaction cross sections for optimization of production of the emerging diagnostic radionuclide 55Co. Appl. Radiat. Isot. 2016, 108, 38–48; in Google Scholar

61. Dityuk, A. I., Konobeyev, A. Y., Lunev, V. P., Shubin, Y. N. New Advanced Version of Computer Code ALICE-IPPE, IAEA INDC(CCP)-410; IAEA: Vienna, Austria, 1998.Search in Google Scholar

62. Herman, M., Capote, R., Carlson, B. V., Obložinský, P., Sin, M., Trkov, A., Wienke, H., Zerkin, V. EMPIRE: nuclear reaction model code system for data evaluation. Nucl. Data Sheets 2007, 108, 2655; in Google Scholar

63. Koning, A. J., Hilaire, S., Duijvestijn, M. C. TALYS-1.0. In Proceedings of the International Conference on Nuclear Data for Science and Technology, April 22–27, 2007; Bersillon, O., Gunsing, F., Bauge, E., Jacqmin, R., Leray, S., Eds. EDP Sciences: Nice, France, 2008; pp. 211–214.10.1051/ndata:07767Search in Google Scholar

64. Tárkányi, F., Hermanne, A., Takács, S., Hilgers, K., Kovalev, S. F., Ignatyuk, A. V., Qaim, S. M. Study of the 192Os(d,2n) reaction for production of the therapeutic radionuclide 192Ir in no-carrier added form. Appl. Radiat. Isot. 2007, 65, 1215.10.1016/j.apradiso.2007.06.007Search in Google Scholar

65. Hermanne, A., Adam Rebeles, R., Tárkányi, F., Takács, S., Takács, M. P., Csikái, J., Ignatyuk, A. Cross sections of deuteron induced reactions on 45Sc up to 50 MeV: experiments and comparison with theoretical codes. Nucl. Instrum. Methods B 2012, 270, 106–115; in Google Scholar

66. Qaim, S. M. Theranostic radionuclides: recent advances in production methodologies. J. Radioanal. Nucl. Chem. 2019, 322, 1257–1266; in Google Scholar

67. Carzaniga, T. S., Auger, M., Braccini, S., Bunka, M., Ereditato, A., Nesteruk, K. P., Scampoli, P., Türler, A., Van Der Meulen, N. Measurement of 43Sc and 44Sc production cross section with an 18 MeV medical PET cyclotron. Appl. Radiat. Isot. 2017, 129, 96–102; in Google Scholar

68. Krajewskij, S., Cydzik, I., Abbas, K., Bulgheroni, A., Simonelli, F., Holzwarth, U., Bilewicz, A. Cyclotron production of 44Sc for clinical application. Radiochim. Acta 2013, 101, 333; in Google Scholar

69. Levkovskij, V. N. Activation Cross Section Nuclides of Average Masses (A = 40–100) by Protons and Alpha-Particles with Average Energies (E = 10–50 MeV); Intervesi: Moscow, 1991.Search in Google Scholar

70. Duchemin, C., Guertin, A., Haddad, F., Michel, N., Métivier, V. Production of scandium-44m and scandium-44g with deuterons on calcium-44: cross section measurements and production yield calculations. Phys. Med. Biol. 2015, 60, 6847; in Google Scholar

71. Scholten, B., Lambrecht, R. M., Cogneau, M., Ruiz, H. V., Qaim, S. M. Excitation functions for the cyclotron production of 99mTc and 99Mo. Appl. Radiat. Isot. 1999, 51, 69–80; in Google Scholar

72. Qaim, S. M., Sudár, S., Scholten, B., Koning, A. J., Coenen, H. H. Evaluation of excitation functions of 100Mo(p,d+pn)99Mo and 100Mo(p,2n)99mTc reactions: estimation of long-lived Tc-impurity and its implication on the specific activity of cyclotron-produced 99mTc. Appl. Radiat. Isot. 2014, 85, 101; in Google Scholar

73. Scholten, B., Kovács, Z., Tárkányi, F., Qaim, S. M. Excitation functions of 124Te(p,xn)124,123I reactions from 6 to 30 MeV with special reference to the production of 124I at a small cyclotron. Appl. Radiat. Isot. 1995, 46, 255; in Google Scholar

74. Scholten, B., Qaim, S. M., Stocklin, G. Excitation functions of proton induced nuclear reactions on natural tellurium and enriched Te-123-production of I-123 via the Te-123(p,n)I-123-process at a low-energy cyclotron. J. Appl. Radiat. Isot. 1989, 40, 127; in Google Scholar

75. Blaser, J. P., Boehm, F., Marmier, P., Scherrer, P. Excitation functions and cross sections of the (p,n) reaction (II). Helv. Phys. Acta 1951, 24, 441.Search in Google Scholar

76. Vasidov, A., Vakilova, G., Muhammedov, S. The excitation functions of nuclear reactions (p,n) on the isotopes Te, Cs, Ba. Izvestiya Akademii Nauk UzSSSR Ser. Fiz.-Mat. 1981, 3, 93.Search in Google Scholar

77. Szelecsényi, F., Blessing, G., Qaim, S. M. Excitation functions of proton induced nuclear reactions on enriched 61Ni and 64Ni: possibility of production of no-carrier-added 61Cu and 64Cu at a small cyclotron. Appl. Radiat. Isot. 1993, 44, 575.10.1016/0969-8043(93)90172-7Search in Google Scholar

78. Qaim, S. M., Bisinger, T., Hilgers, K., Nayak, D., Coenen, H. H. Positron emission intensities in the decay of 64Cu, 76Br and 124I. Radiochim. Acta 2007, 95, 67; in Google Scholar

79. Uddin, M. S., Chakraborty, A. K., Spellerberg, S., Shariff, M. A., Das, S., Rashid, M. A., Spahn, I., Qaim, S. M. Experimental determination of proton induced reaction cross sections on natNi near threshold energy. Radiochim. Acta 2016, 104, 305–314; in Google Scholar

80. Tárkányi, F., Hermanne, A., Takács, S., Ditrói, F., Dityuk, A. I., Shubin, Y. N. Excitation functions for production of radioisotopes of niobium, zirconium and yttrium by irradiation of zirconium with deuterons. Nucl. Instrum. Methods B 2004, 217, 373–383.10.1016/j.nimb.2003.11.084Search in Google Scholar

81. Bhattacharyya, S., Kurdziel, K., Wei, L., Riffle, L., Kaur, G., Hill, G. C., Jacobs, P. M., Tatum, J. L., Doroshow, J. H., Kalen, J. D. Zirconium-89 labeled panitumumab: a potential immuno-PET probe for HER1-expressing carcinomas. Nucl. Med. Biol. 2013, 40, 451; in Google Scholar PubMed PubMed Central

82. Chaubey, A. K., Rizvi, I. A. Non-equilibrium effects in alpha induced reactions in some natural elements. Indian J. Pure Appl. Phys. 1999, 37, 791.Search in Google Scholar

83. Mukherjee, S., Kumar, B. B., Rashid, M. H., Chintalapudi, S. N. α-Particle induced reactions on yttrium and terbium. Phys. Rev. Part C Nucl. Phys. 1997, 55, 2556; in Google Scholar

84. Shahid, M., Kim, K., Naik, H., Zaman, M., Kim, G., Yang, S. C., Song, T. Y. Measurement of excitation functions in alpha-induced reactions on yttrium. Nucl. Instrum. Methods B 2015, 342, 158; in Google Scholar

85. Uddin, M. S., Chowdhury, M. H., Hossain, S. M., Latif, Sk. A., Hafiz, M. A., Islam, M. A., Zakaria, A. K. M., Azharul Islam, S. M. Neutron capture cross section measurement for the 186W(n,γ)187W reaction at 0.0536 eV energy. Appl. Radiat. Isot. 2008, 66, 1235–1239; in Google Scholar PubMed

Received: 2021-10-30
Accepted: 2021-12-08
Published Online: 2022-04-21
Published in Print: 2022-06-27

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 31.3.2023 from
Scroll to top button