Abstract
Measurement and evaluation of nuclear data of radioisotopes used as tracers are continuously underway in many laboratories to reach high accuracy for their use in production. We briefly mention some of the radionuclides useful for medical diagnostics and other industrial applications. The research group at the Egyptian cyclotron facility (EGCF) performed in collaboration with nuclear research centres and universities in many countries (Germany, Hungary, Finland, USA, Japan and Saudi Arabia) some measurements and evaluations of interesting nuclear reaction data. Nuclear reactions induced by p, d and α-particles on a wide variety of targets were extensively studied from threshold energy up to 50 MeV. Nuclear model code calculations, mainly using EMPIRE and TALYS, were performed for nuclear data validation. Proton and neutron activation of some industrially interesting samples were also studied as technological application of nuclear analytical techniques. Since the cyclotron facility is dedicated to development of the production routes of medical radioisotopes, this overview presents examples of optimization experiments to establish good production conditions.
Acknowledgements
The research cooperation with the Research Center Jülich has been exceptionally successful. About 10 Egyptian researchers got specialized training there, five of whom completed partly or fully their doctoral dissertations under the guidance of Prof. S.M. Qaim. They are listed in references [12], [13], [14], [15], [16]. The research results were described in more than 10 full length papers in international journals, some of them are listed here [24, 26, 55]. Our group also has maintained a good cooperation with the Institute for Nuclear Research, Hungarian Academy of Science, Debrecen, Hungary (ATOMKI). Many papers have been published with them and two PhD theses have been approved through a bilateral supervision with Dr. Ferenc Ditrói. We take the opportunity of thanking all the organizations and individuals associated with this programme. The cyclotron Facility was initiated by Prof. Dr. M.N.H. Comsan and the subsequent programme co-ordinators were: Prof. Dr. A. Azzam (2001–2003), Prof. Dr. Shokry M. Saad (2003–2006), Prof. Dr. U.M. Seddik (2006–2014) and Prof. Dr. Mogahed Al-Abyad (2014 to date). Prof. Dr. Dr. h. c. mult. Syed M. Qaim, has been a constant strong proponent of the bilateral Egyptian/German cooperation.
-
Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
-
Research funding: None declared.
-
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
References
1. Qaim, S. M. Nuclear data for medical applications: an overview. Radiochim. Acta 2001, 89, 189–196; https://doi.org/10.1524/ract.2001.89.4-5.189.Search in Google Scholar
2. Qaim, S. M. Radiochemical determination of nuclear data for theory and applications. J. Radioanal. Nucl. Chem. 2010, 284, 489–505; https://doi.org/10.1007/s10967-010-0460-5.Search in Google Scholar
3. Qaim, S. M. Nuclear data relevant to cyclotron produced short-lived medical radioisotopes. Radiochim. Acta 1982, 30, 147–162.Search in Google Scholar
4. Qaim, S. M. Therapeutic radionuclides and nuclear data. Radiochim. Acta 2001, 89, 297–302; https://doi.org/10.1524/ract.2001.89.4-5.297.Search in Google Scholar
5. Qaim, S. M. The present and future of medical radionuclide production. Radiochim. Acta 2012, 100, 635–651; https://doi.org/10.1524/ract.2012.1966.Search in Google Scholar
6. Qaim, S. M., Hussain, M., Spahn, I., Neumaier, B. Continuing nuclear data research for production of accelerator-based novel radionuclides for medical use: a mini-review. Front. Phys. 2021, 9, 16; https://doi.org/10.3389/fphy.2021.639290.Search in Google Scholar
7. Stöcklin, G., Qaim, S. M., Rösch, F. The impact of radioactivity on medicine. Radiochim. Acta 1995, 70/71, 249–272.10.1524/ract.1995.7071.special-issue.249Search in Google Scholar
8. Qaim, S. M. Development of novel positron emitters for medical applications: nuclear and radiochemical aspects. Radiochim. Acta 2011, 99, 611–625; https://doi.org/10.1524/ract.2011.1870.Search in Google Scholar
9. Lewis, J. S., Welch, M. J., Tang, L. Decay data and production yields of some non-standard positron emitters used in PET. Proceedings of the workshop on non-standard positron emitters, Aachen (2007), special issue of the Quart. J. Nucl. Med. Mol. Imaging 2008, 52, 101–206.Search in Google Scholar
10. Qaim, S. M., Huclier-Markai, S. Innovative positron emitting radionuclides. Spec. Issue Radiochim. Acta 2011, 89, 607–678.Search in Google Scholar
11. Qaim, S. M. Nuclear data for production and medical application of radionuclides: present status and future needs. Nucl. Med. Biol. 2017, 44, 31–47; https://doi.org/10.1016/j.nucmedbio.2016.08.016.Search in Google Scholar PubMed
12. Al-Abyad, M. Excitation Functions of Nuclear Reactions Induced by Neutrons and Charged Particles Leading to Some Radioisotopes of Medical and Technological Relevance. PhD dissertation, Ain Shams University, Cairo, Egypt, 2006.Search in Google Scholar
13. Hassan, H. E. A Study of Some Selected Nuclear Reactions and their Technical Utilization for Radioisotopes Production Using Low Energy Accelerated Charged Particles. PhD dissertation, Ain Shams University, Cairo, Egypt, 2004.Search in Google Scholar
14. El-Azoney Khaled, M. Cyclotron Production of 123I for Preparation of Some Labeled Compounds. PhD dissertation, Ain Shams University, Cairo, Egypt, 2001.Search in Google Scholar
15. Hassan Khaled, F. Studies on Production, Separation and Quality Control of Iodine-124 via Novel Radiochemical Techniques. PhD dissertation, Mansoura University, Mansoura, Egypt, 2006.Search in Google Scholar
16. Kandil, S. A. Radiochemical Studies on Separation of Some Medically and Technologically Interesting Radionuclides from Targets Irradiated at a Cyclotron. PhD dissertation, Mansoura University, Mansoura, Egypt, 2007.Search in Google Scholar
17. Experimental Nuclear Reaction Data (EXFOR), Database Version of 2021-10-22; Network of Nuclear Reaction Data Centres (NRDC), IAEA, Vienna.Search in Google Scholar
18. Al-abyad, M., Gehan, M. Y., Hassan, H. E., Takács, S., Ditrói, F. Experimental measurements and theoretical calculations for proton, deuteron and α-particle induced nuclear reactions on calcium: special relevance to the production of 43,44Sc. J. Radioanal. Nucl. Chem. 2018, 316, 119–128; https://doi.org/10.1007/s10967-018-5733-4.Search in Google Scholar
19. Zarie, K., Al-Hammad, N., Azzam, A. Excitation functions of (p,xn) reactions on natural tellurium at low energy cyclotron: relevance to the production of medical radioisotope 123I. J. Nucl. Radiat. Phys. 2006, 1, 93–105.Search in Google Scholar
20. Said, S. A., Hassan, H. E., Tolba, T. A., Saleh, Z. A. Measurement of excitation functions of proton-induced nuclear reactions on natural tellurium. Arab. J. Nucl. Sci. Appl. 2007, 90, 205.Search in Google Scholar
21. Ahmed, A. M., Hassan, H. E., Hassan, K. F., Khalaf, A. M., Saleh, Z. A. Experimental and theoretical validation of cross section data and thick target yields: possibility of radioiodine isotopes production by proton bombardment of natural tellurium. Radiochim. Acta 2011, 99, 317–323; https://doi.org/10.1524/ract.2011.1845.Search in Google Scholar
22. Kandil, S. A., Al-abyad, M. Cross section measurements and theoretical calculations of proton induced nuclear reactions on natural tellurium. Radiochim. Acta 2013, 101, 1–5; https://doi.org/10.1524/ract.2013.2006.Search in Google Scholar
23. Azzam, A., Mohamed, H. S., Seham, S. A., Gehan, M. Y., Al-abyad, M. Excitation functions for proton-induced reactions on Te and natTi targets: measurements and model calculations special relevant to the 128Te(p,n)128I reaction. Nucl. Phys. A 2020, 999, 121790; https://doi.org/10.1016/j.nuclphysa.2020.121790.Search in Google Scholar
24. Hassan, H. E., Qaim, S. M., Shubin, Y., Azzam, A., Morsy, M., Coenen, H. H. Experimental studies and nuclear model calculations on proton-induced reactions on natSe, 76Se and 77Se with particular reference to the production of the medically interesting radionuclides 76Br and 77Br. Appl. Radiat. Isot. 2004, 60, 899; https://doi.org/10.1016/j.apradiso.2004.02.001.Search in Google Scholar PubMed
25. Showaimy, H., Solieman, A. H. M., Sayed, A., Khalaf, A., Saleh, Z. A. Proton induced reactions on natural Se and Ag targets for producing 76,77,82Br and 107Cd radioisotopes using low energy cyclotron. Arab. J. Nucl. Sci. Appl. 2020, 53, 121.Search in Google Scholar
26. Hassan, H. E., El-Azony, K. M., Azzam, A., Qaim, S. M. Investigation of selenium compounds as targets for 76,77Br production using protons of energies up to 34 MeV. Radiochim. Acta 2017, 105, 841; https://doi.org/10.1515/ract-2017-2770.Search in Google Scholar
27. Al-Saleh, F. S., Al-Harbi, A. A., Azzam, A. Excitation functions of proton induced nuclear reactions on natural copper using a medium-sized cyclotron. Radiochim. Acta 2006, 94, 391; https://doi.org/10.1524/ract.2006.94.8.391.Search in Google Scholar
28. Zarie, K., Al-Hammad, N., Azzam, A. Experimental study of excitation functions for some proton induced reactions on natTi for monitoring purpose. Radiochim. Acta 2006, 94, 795; https://doi.org/10.1524/ract.2006.94.12.795.Search in Google Scholar
29. Doha, A., Gehan, M. Y., Zeinab, Y., Magda, A. E. W., Ditrói, F., Takács, S., Al-abyad, M. Experimental investigation and theoretical evaluation of proton induced nuclear reactions on nickel. Appl. Radiat. Isot. 2020, 159, 109094; https://doi.org/10.1016/j.apradiso.2020.109094.Search in Google Scholar PubMed
30. Al-Saleh, F. S., Al-Mogren, K. S., Azzam, A. Excitation functions of (p,x) reactions on natural nickel between proton energies 2.7 and 27.5 MeV. Appl. Radiat. Isot. 2007, 65, 104; https://doi.org/10.1016/j.apradiso.2006.06.013.Search in Google Scholar PubMed
31. Al-Saleh, S., Al-Mogren, K. S., Azzam, A. Excitation function measurements and integral yields estimation for natZn(p,x) reactions at low energies. Appl. Radiat. Isot. 2007, 65, 1101; https://doi.org/10.1016/j.apradiso.2007.05.004.Search in Google Scholar PubMed
32. Challan, M. B., Comsan, M. N. H., Abou-Zeid, M. A. Thin target yields and EMPIRE-II predictions on the accelerator production of technetium-99m. J. Nucl. Radiat. Phys. 2007, 2, 1–12.Search in Google Scholar
33. Elbinawi, A., Al-abyad, M., Bashter, I., Seddik, U., Ditrói, F. Study of proton induced nuclear reactions on molybdenum: cross section measurements and theoretical calculations. Radiochim. Acta 2020, 108, 1–9.10.1515/ract-2018-3091Search in Google Scholar
34. Alharbi, A. A., Alzahrani, J., Azzam, A. Activation cross-section measurements of some proton induced reactions on Ni, Co and Mo targets; for proton activation analysis (PAA) purposes. Radiochim. Acta 2011, 99, 763–770; https://doi.org/10.1524/ract.2011.1885.Search in Google Scholar
35. Showaimy, H., Solieman, A. H. M., Abdel Hamid, A. S., Khalaf, A. M., Saleh, Z. A. Measurements of activation cross sections for proton induced reactions on natural platinum targets leading to the formation of gold radioisotopes. Radiat. Phys. Chem. 2019, 157, 97–101; https://doi.org/10.1016/j.radphyschem.2018.12.024.Search in Google Scholar
36. Elbinawi, A., Al-abyad, M., Abd-Elmageed, K. E., Hassan, K. F., Ditrói, F. Proton induced nuclear reactions on natural antimony up to 17 MeV. Radiochim. Acta 2016, 104, 221–226; https://doi.org/10.1515/ract-2015-2483.Search in Google Scholar
37. Tárkányi, F., Ditrói, F., Takács, S., Hermanne, A., Al-Abyad, M., Yamazaki, H., Baba, M., Mohammadi, M. A. New activation cross section data on longer lived radionuclei produced in proton induced nuclear reactions on zirconium. Appl. Radiat. Isot. 2015, 97, 149–169.10.1016/j.apradiso.2014.12.029Search in Google Scholar
38. Elmaghraby, E. K., Mohamed, Y. Gehan., Al-abyad, M. Experimental investigation and nuclear model calculations for proton induced reactions on indium around thresholds. Nucl. Phys. A 2019, 984, 112–132; https://doi.org/10.1016/j.nuclphysa.2019.01.009.Search in Google Scholar
39. Elbinawi, A., Al-abyad, M., Bashter, I., Seddik, U., Ditrói, F. Excitation function of proton induced nuclear reaction on strontium: special relevance to the production of 88Y. Appl. Radiat. Isot. 2018, 140, 272–277; https://doi.org/10.1016/j.apradiso.2018.07.031.Search in Google Scholar
40. Azzam, A., Mohamed, Y. G., Al-abyad, M. Excitation functions and yield measurements for proton induced reactions, in stainless steel: special relevance to proton activation analysis. Appl. Radiat. Isot. 2019, 151, 166–170; https://doi.org/10.1016/j.apradiso.2019.06.004.Search in Google Scholar
41. Azzam, A., Al-abyad, M., Hassan, H. E., Mohamed, Y. G., Attallah, M. F., Ditrói, F. α-particle and deuteron induced reactions on 89Y: cross section measurements and theoretical investigation. Eur. Phys. J. Plus 2019, 134, 36; https://doi.org/10.1140/epjp/i2019-12453-1.Search in Google Scholar
42. Takács, S., Sonck, M., Azzam, A., Hermanne, A., Tárkányi, F. Activation cross-section measurements of deuteron induced reactions on natNi with special reference to beam monitoring and production of 61Cu for medical purpose. Radiochem. Acta 1997, 76, 15–25.10.1524/ract.1997.76.12.15Search in Google Scholar
43. Takács, S., Azzam, A., Sonck, M., Szelecsényi, F., Kovacs, Z., Hermanne, A., Tárkányi, F. Excitation function of 122Te(d,n)123I nuclear reaction, Production of 123I at low energy cyclotron. Appl. Radiat. Isot. 1999, 50, 535–540.10.1016/S0969-8043(98)00059-1Search in Google Scholar
44. Al-Abyad, M., Gehan, M. Y., Ditrói, F., Takács, S., Tárkányi, F. Experimental study and nuclear models calculations of 3He-induced nuclear reactions on zinc. Eur. Phys. J. A 2017, 53, 107; https://doi.org/10.1140/epja/i2017-12296-3.Search in Google Scholar
45. Ali, B. M., Al-abyad, M., Seddik, U., El-Kameesy, S. U., Ditrói, F., Takács, S., Tárkányi, F. Measurement and theoretical analysis of the excitation functions for 3He induced reactions on natSn. Nucl. Instrum. Methods Phys. Res. B 2015, 362, 93–102; https://doi.org/10.1016/j.nimb.2015.08.095.Search in Google Scholar
46. Solieman, A. H. M., Al-Abyad, M., Ditrói, F., Saleh, Z. A. Experimental and theoretical study for the production of 51Cr using p, d, 3He and 4He projectiles on V, Ti and Cr targets. Nucl. Instrum. Methods Phys. Res. B 2016, 366, 19–27; https://doi.org/10.1016/j.nimb.2015.09.092.Search in Google Scholar
47. Sayed, A., Hassan, H. E., Said, S. A., Morsy, M., Saleh, Z. A. Experimental determination and nuclear model calculations for excitation function of 3He-induced reactions on natPt. Arab J. Nucl. Sci. Appl. 2009, 42, 159–169.Search in Google Scholar
48. Al-Abyad, M., Gehan, M. Y. Neutron capture cross section measurements and theoretical calculation for the 186W(n,γ)187W reaction. Radiochim. Acta 2017, 105, 347–357; https://doi.org/10.1515/ract-2016-2635.Search in Google Scholar
49. Fisal, R., Hassan, H. E., Elsaadony, A. E., Nada, A., Saleh, Z. A. Neutron activation analysis of stainless steel samples and its application for monitoring thin layer wear and corrosion. Arab J. Nucl. Sci. Appl. 2013, 46, 159–168.Search in Google Scholar
50. Azzam, A., Said, S. A., Al-abyad, M. Evaluation of different production routes for the radio medical isotope 203Pb, using TALYS-1.4 and EMPIRE 3.1 code calculations. Appl. Radiat. Isot. 2014, 91, 109–113; https://doi.org/10.1016/j.apradiso.2014.05.009.Search in Google Scholar
51. Azzam, A., Al-abyad, M., Solieman, A. H. Comparative study for the production of the 68Ga from proton induced reaction on different targets: evaluation of experimental data and model calculations. Radiochim. Acta 2015, 103, 109–116; https://doi.org/10.1515/ract-2013-2220.Search in Google Scholar
52. Azzam, A., Solieman, A. H. M., Al-abyad, M. Study of the different production routes of 68Ga positron emitting medical radioisotope through d, 3He and α-particle induced reactions on some Cu, Zn and Ge isotopes. J. Nucl. Radiat. Phys. 2016, 11, 1–13.Search in Google Scholar
53. Alharbi, A. A., Azzam, A. Theoretical calculations of the reaction, cross-sections for proton induced reactions on natural copper using the ALICE-IPPE code. Appl. Radiat. Isot. 2012, 70, 88–98; https://doi.org/10.1016/j.apradiso.2011.09.009.Search in Google Scholar
54. Hassan, H. E., Al-abyad, M., Mohamed, Y. G. Production of 44Ti → 44Sc generator in comparison with direct routes by cyclotrons: cross section evaluation using nuclear models codes. Arab J. Nucl. Sci. Appl. 2018, 51, 57–72.Search in Google Scholar
55. Hassan, H. E., Qaim, S. M. A critical survey of experimental cross section data, comparison with nuclear model calculations and estimation of production yields of 77Br and 77Kr in no-carrier-added form via various nuclear processes. Nucl. Instrum. Methods B 2011, 269, 1121–1129; https://doi.org/10.1016/j.nimb.2011.02.080.Search in Google Scholar
56. Alharbi, A. A., Azzam, A., McCleskey, M., Roeder, B., Spiridon, A., Simmons, E., Goldberg, V. Z., Banu, A., Trache, L., Tribble, R. E. Medical Radioisotopes Production: A Comprehensive Cross-Section Study for the Production of Mo and Tc Radioisotopes via Proton Induced Nuclear Reactions on natMo. Radioisotopes Book edited by: Nirmal Singh; InTech, 2011.Search in Google Scholar
57. Al-Abyad, M., Comsan, M. N. H., Fayez-Hassan, M. Model calculations for proton induced nuclear reaction on zinc at low energy. Arab J. Nucl. Sci. Appl. 2013, 46, 134–141.Search in Google Scholar
58. Qaim, S. M., Scholten, B., Neumaier, B. New developments in the production of theranostic pairs of radionuclides. J. Radioanal. Nucl. Chem. 2018, 318, 1493–1509; https://doi.org/10.1007/s10967-018-6238-x.Search in Google Scholar
59. Spellerberg, S., Reimer, P., Blessing, G., Coenen, H. H., Qaim, S. M. Production of 55Co and 57Co via proton induced reactions on highly enriched 58Ni. Appl. Radiat. Isot. 1998, 49, 1519–1522; https://doi.org/10.1016/s0969-8043(97)10119-1.Search in Google Scholar
60. Amjed, N., Hussain, M., Aslam, M. N., Tárkányi, F., Qaim, S. M. Evaluation of nuclear reaction cross sections for optimization of production of the emerging diagnostic radionuclide 55Co. Appl. Radiat. Isot. 2016, 108, 38–48; https://doi.org/10.1016/j.apradiso.2015.11.058.Search in Google Scholar
61. Dityuk, A. I., Konobeyev, A. Y., Lunev, V. P., Shubin, Y. N. New Advanced Version of Computer Code ALICE-IPPE, IAEA INDC(CCP)-410; IAEA: Vienna, Austria, 1998.Search in Google Scholar
62. Herman, M., Capote, R., Carlson, B. V., Obložinský, P., Sin, M., Trkov, A., Wienke, H., Zerkin, V. EMPIRE: nuclear reaction model code system for data evaluation. Nucl. Data Sheets 2007, 108, 2655; https://doi.org/10.1016/j.nds.2007.11.003.Search in Google Scholar
63. Koning, A. J., Hilaire, S., Duijvestijn, M. C. TALYS-1.0. In Proceedings of the International Conference on Nuclear Data for Science and Technology, April 22–27, 2007; Bersillon, O., Gunsing, F., Bauge, E., Jacqmin, R., Leray, S., Eds. EDP Sciences: Nice, France, 2008; pp. 211–214.10.1051/ndata:07767Search in Google Scholar
64. Tárkányi, F., Hermanne, A., Takács, S., Hilgers, K., Kovalev, S. F., Ignatyuk, A. V., Qaim, S. M. Study of the 192Os(d,2n) reaction for production of the therapeutic radionuclide 192Ir in no-carrier added form. Appl. Radiat. Isot. 2007, 65, 1215.10.1016/j.apradiso.2007.06.007Search in Google Scholar
65. Hermanne, A., Adam Rebeles, R., Tárkányi, F., Takács, S., Takács, M. P., Csikái, J., Ignatyuk, A. Cross sections of deuteron induced reactions on 45Sc up to 50 MeV: experiments and comparison with theoretical codes. Nucl. Instrum. Methods B 2012, 270, 106–115; https://doi.org/10.1016/j.nimb.2011.09.002.Search in Google Scholar
66. Qaim, S. M. Theranostic radionuclides: recent advances in production methodologies. J. Radioanal. Nucl. Chem. 2019, 322, 1257–1266; https://doi.org/10.1007/s10967-019-06797-y.Search in Google Scholar
67. Carzaniga, T. S., Auger, M., Braccini, S., Bunka, M., Ereditato, A., Nesteruk, K. P., Scampoli, P., Türler, A., Van Der Meulen, N. Measurement of 43Sc and 44Sc production cross section with an 18 MeV medical PET cyclotron. Appl. Radiat. Isot. 2017, 129, 96–102; https://doi.org/10.1016/j.apradiso.2017.08.013.Search in Google Scholar
68. Krajewskij, S., Cydzik, I., Abbas, K., Bulgheroni, A., Simonelli, F., Holzwarth, U., Bilewicz, A. Cyclotron production of 44Sc for clinical application. Radiochim. Acta 2013, 101, 333; https://doi.org/10.1524/ract.2013.2032.Search in Google Scholar
69. Levkovskij, V. N. Activation Cross Section Nuclides of Average Masses (A = 40–100) by Protons and Alpha-Particles with Average Energies (E = 10–50 MeV); Intervesi: Moscow, 1991.Search in Google Scholar
70. Duchemin, C., Guertin, A., Haddad, F., Michel, N., Métivier, V. Production of scandium-44m and scandium-44g with deuterons on calcium-44: cross section measurements and production yield calculations. Phys. Med. Biol. 2015, 60, 6847; https://doi.org/10.1088/0031-9155/60/17/6847.Search in Google Scholar
71. Scholten, B., Lambrecht, R. M., Cogneau, M., Ruiz, H. V., Qaim, S. M. Excitation functions for the cyclotron production of 99mTc and 99Mo. Appl. Radiat. Isot. 1999, 51, 69–80; https://doi.org/10.1016/s0969-8043(98)00153-5.Search in Google Scholar
72. Qaim, S. M., Sudár, S., Scholten, B., Koning, A. J., Coenen, H. H. Evaluation of excitation functions of 100Mo(p,d+pn)99Mo and 100Mo(p,2n)99mTc reactions: estimation of long-lived Tc-impurity and its implication on the specific activity of cyclotron-produced 99mTc. Appl. Radiat. Isot. 2014, 85, 101; https://doi.org/10.1016/j.apradiso.2013.10.004.Search in Google Scholar
73. Scholten, B., Kovács, Z., Tárkányi, F., Qaim, S. M. Excitation functions of 124Te(p,xn)124,123I reactions from 6 to 30 MeV with special reference to the production of 124I at a small cyclotron. Appl. Radiat. Isot. 1995, 46, 255; https://doi.org/10.1016/0969-8043(94)00145-p.Search in Google Scholar
74. Scholten, B., Qaim, S. M., Stocklin, G. Excitation functions of proton induced nuclear reactions on natural tellurium and enriched Te-123-production of I-123 via the Te-123(p,n)I-123-process at a low-energy cyclotron. J. Appl. Radiat. Isot. 1989, 40, 127; https://doi.org/10.1016/0883-2889(89)90187-1.Search in Google Scholar
75. Blaser, J. P., Boehm, F., Marmier, P., Scherrer, P. Excitation functions and cross sections of the (p,n) reaction (II). Helv. Phys. Acta 1951, 24, 441.Search in Google Scholar
76. Vasidov, A., Vakilova, G., Muhammedov, S. The excitation functions of nuclear reactions (p,n) on the isotopes Te, Cs, Ba. Izvestiya Akademii Nauk UzSSSR Ser. Fiz.-Mat. 1981, 3, 93.Search in Google Scholar
77. Szelecsényi, F., Blessing, G., Qaim, S. M. Excitation functions of proton induced nuclear reactions on enriched 61Ni and 64Ni: possibility of production of no-carrier-added 61Cu and 64Cu at a small cyclotron. Appl. Radiat. Isot. 1993, 44, 575.10.1016/0969-8043(93)90172-7Search in Google Scholar
78. Qaim, S. M., Bisinger, T., Hilgers, K., Nayak, D., Coenen, H. H. Positron emission intensities in the decay of 64Cu, 76Br and 124I. Radiochim. Acta 2007, 95, 67; https://doi.org/10.1524/ract.2007.95.2.67.Search in Google Scholar
79. Uddin, M. S., Chakraborty, A. K., Spellerberg, S., Shariff, M. A., Das, S., Rashid, M. A., Spahn, I., Qaim, S. M. Experimental determination of proton induced reaction cross sections on natNi near threshold energy. Radiochim. Acta 2016, 104, 305–314; https://doi.org/10.1515/ract-2015-2527.Search in Google Scholar
80. Tárkányi, F., Hermanne, A., Takács, S., Ditrói, F., Dityuk, A. I., Shubin, Y. N. Excitation functions for production of radioisotopes of niobium, zirconium and yttrium by irradiation of zirconium with deuterons. Nucl. Instrum. Methods B 2004, 217, 373–383.10.1016/j.nimb.2003.11.084Search in Google Scholar
81. Bhattacharyya, S., Kurdziel, K., Wei, L., Riffle, L., Kaur, G., Hill, G. C., Jacobs, P. M., Tatum, J. L., Doroshow, J. H., Kalen, J. D. Zirconium-89 labeled panitumumab: a potential immuno-PET probe for HER1-expressing carcinomas. Nucl. Med. Biol. 2013, 40, 451; https://doi.org/10.1016/j.nucmedbio.2013.01.007.Search in Google Scholar PubMed PubMed Central
82. Chaubey, A. K., Rizvi, I. A. Non-equilibrium effects in alpha induced reactions in some natural elements. Indian J. Pure Appl. Phys. 1999, 37, 791.Search in Google Scholar
83. Mukherjee, S., Kumar, B. B., Rashid, M. H., Chintalapudi, S. N. α-Particle induced reactions on yttrium and terbium. Phys. Rev. Part C Nucl. Phys. 1997, 55, 2556; https://doi.org/10.1103/physrevc.55.2556.Search in Google Scholar
84. Shahid, M., Kim, K., Naik, H., Zaman, M., Kim, G., Yang, S. C., Song, T. Y. Measurement of excitation functions in alpha-induced reactions on yttrium. Nucl. Instrum. Methods B 2015, 342, 158; https://doi.org/10.1016/j.nimb.2014.09.028.Search in Google Scholar
85. Uddin, M. S., Chowdhury, M. H., Hossain, S. M., Latif, Sk. A., Hafiz, M. A., Islam, M. A., Zakaria, A. K. M., Azharul Islam, S. M. Neutron capture cross section measurement for the 186W(n,γ)187W reaction at 0.0536 eV energy. Appl. Radiat. Isot. 2008, 66, 1235–1239; https://doi.org/10.1016/j.apradiso.2008.01.013.Search in Google Scholar PubMed
© 2021 Walter de Gruyter GmbH, Berlin/Boston