Abstract
In this study we investigated the production cross sections of natCu(p, x)63,65Zn, natTi(p, x)48V, natNi(p, x)55Co,61Cu and natCu(α, x)66,67,68Ga, natTi(α, x)49,51Cr, natNi(α, x)63,65Zn reactions in the low energy range using the foil activation technique. The samples were activated in vacuum at 5 MV tandem (Pelletron) accelerator installed at National Centre for Physics (NCP), Islamabad, Pakistan. The reaction products were identified with the help of off-line gamma ray spectroscopy system connected with Genie 2000 software. The data analysis revealed the production of different radioisotopes that have valuable importance in monitoring charged-particle beams and medical applications. The measured results were verified by comparing them with earlier evaluated data as well as with the theoretical values given in the TENDL-library based on TALYS-1.9 code calculations.
Acknowledgments
The authors feels grateful for the joint collaboration between Allama Iqbal Open University, (Physics Department) Islamabad, Pakistan and National Centre for Physics, (Experimental Physics Department) in the field of research. The dedicated support of the directors of both institutes and of other technical and supporting staff made it possible to successfully reach the first milestone. There are many others who supported in the activation of the samples, analysis and provision of resources; they also deserve thank and gratitude. The technical advice and strong editorial support of Prof. Dr. Syed M. Qaim from Germany is gratefully acknowledged.
-
Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
-
Research funding: None declared.
-
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
References
1. Clayton, D. D., Woosley, S. E. Thermonuclear astrophysics. Rev. Mod. Phys. 1974, 46, 755; https://doi.org/10.1103/revmodphys.46.755.Search in Google Scholar
2. Sauter, T., Käppeler, F. (p, γ) rate of 92Mo, 94Mo, 95Mo, 98Mo: towards an experimentally founded database for p-process studies. Phys. Rev. C 1997, 55, 3127; https://doi.org/10.1103/physrevc.55.3127.Search in Google Scholar
3. Uddin, M. S., Sudár, S., Spahn, I., Shariff, M. A., Qaim, S. M. Excitation function of the 60Ni(p, γ)61Cu reaction from threshold to 16 MeV. Phys. Rev. C 2016, 93, 044606.10.1103/PhysRevC.93.044606Search in Google Scholar
4. Basunia, M. S., Norman, E. B., Shugart, H. A., Smith, A. R., Dolinski, M. J., Quiter, B. J. Measurement of cross sections for the 63Cu(α, γ)67Ga reaction from 5.9 to 8.7 MeV. Phys. Rev. C 2005, 71, 035801.10.1063/1.1945258Search in Google Scholar
5. Quinn, S. J., Spyrou, A., Bravo, E., Rauscher, T., Simon, A., Battaglia, A., Bowers, M., Bucher, B., Casarella, C., Couder, M., DeYoung, P. A., Dombos, A. C., Görres, J., Kontos, A., Li, Q., Long, A., Moran, M., Paul, N., Pereira, J., Robertson, D., Smith, K., Smith, M. K., Stech, E., Talwar, R., Tan, W. P., Wiescher, M. Measurement of the 58Ni(α, γ)62Zn reaction and its astrophysical impact. Phys. Rev. C 2014, 89, 054611; https://doi.org/10.1103/physrevc.89.054611.Search in Google Scholar
6. Qaim, S. M. Nuclear data for medical applications: an overview. Radiochim. Acta 2001, 89, 189; https://doi.org/10.1524/ract.2001.89.4-5.189.Search in Google Scholar
7. Qaim, S. M. Radiochemical determination of nuclear data for theory and applications. J. Radioanal. Nucl. Chem. 2010, 284, 489; https://doi.org/10.1007/s10967-010-0460-5.Search in Google Scholar
8. Uddin, M. S., Scholten, B., Basunia, M. S., Sudár, S., Spellerberg, S., Voyles, A. S., Morrell, J. T., Zaneb, H., Rios, J. A., Spahn, I., Bernstein, L. A., Neumaier, B., Qaim, S. M. Accurate determination of production data of the non-standard positron emitter 86Y via the 86Sr(p, n) reaction. Radiochim. Acta 2020, 108, 747; https://doi.org/10.1515/ract-2020-0021.Search in Google Scholar
9. Stöcklin, G., Qaim, S. M., Rösch, F. The impact of radioactivity on medicine. Radiochim. Acta 1995, 70–71, 249.10.1524/ract.1995.7071.special-issue.249Search in Google Scholar
10. Qaim, S. M. Therapeutic radionuclides and nuclear data. Radiochim. Acta 2001, 89, 297; https://doi.org/10.1524/ract.2001.89.4-5.297.Search in Google Scholar
11. Qaim, S. M. Development of novel positron emitters for medical applications: nuclear and radiochemical aspects. Radiochim. Acta 2011, 99, 611; https://doi.org/10.1524/ract.2011.1870.Search in Google Scholar
12. Qaim, S. M. Nuclear data for medical radionuclides. J. Radioanal. Nucl. Chem. 2015, 305, 233.10.1007/s10967-014-3923-2Search in Google Scholar
13. Qaim, S. M. Nuclear data for production and medical application of radionuclides: present status and future needs. Nucl. Med. Biol. 2017, 44, 31; https://doi.org/10.1016/j.nucmedbio.2016.08.016.Search in Google Scholar PubMed
14. Tárkányi, F., Ditroi, F., Takács, S., Csikai, J., Hermanne, A., Uddin, M. S., Baba, M. Activation cross- sections of proton induced nuclear reactions on palladium up to 80 MeV. Appl. Radiat. Isot. 2016, 114, 128.10.1016/j.apradiso.2016.05.022Search in Google Scholar
15. Charged Particle Cross Section Database for Medical Radioisotope Production: Diagnostic Radioisotopes and Monitor Reactions, TECDOC-1211; International Atomic Energy Agency: Vienna, 2001.Search in Google Scholar
16. Hermanne, A., Ignatyuk, A. V., Capote, R., Carlson, B. V., Engle, J. W., Kellett, M. A., Verpelli, M. Reference cross sections for charged-particle monitor reactions. Nucl. Data Sheets 2018, 148, 382; https://doi.org/10.1016/j.nds.2018.02.009.Search in Google Scholar
17. Uddin, M. S., Chakraborty, A. K., Spellerberg, S., Shariff, M. A., Das, S., Rashid, M. A., Qaim, S. M. Experimental determination of proton induced reaction cross sections on natNi near threshold energy. Radiochim. Acta 2016, 104, 305; https://doi.org/10.1515/ract-2015-2527.Search in Google Scholar
18. Qaim, S. M., Hussain, M., Spahn, I., Neumaier, B. Continuing nuclear data research for production of accelerator-based novel radionuclides for medical use: mini-review. Front. Phys. 2021, 9, 639290; https://doi.org/10.3389/fphy.2021.639290.Search in Google Scholar
19. Ali, A., Javaid, H., Usman, M., Waheed, A., Kashif, S., Turab, A., Ishaq, A., Maaza, M. The charge state distribution of B, C, Si, Ni, Cu and Au ions on 5 MV pelletron accelerator. Nucl. Sci. Tech. 2017, 28, 64.10.1007/s41365-017-0211-1Search in Google Scholar
20. National Nuclear Data Center; Brookhaven National Laboratory, 2013. http://www.nndc.bnl.gov/.Search in Google Scholar
21. Los Alamos National Laboratory – Copper. http://periodic.lanl.gov/elements/29.html.Search in Google Scholar
22. Los Alamos National Laboratory – Nickel. http://periodic.lanl.gov/elements/28.html.Search in Google Scholar
23. Los Alamos National Laboratory – Titanium. https://periodic.lanl.gov/22.shtml.Search in Google Scholar
24. Sangsingkeow, P., Berry, K. D., Dumas, E. J., Raudorf, T. W., Underwood, T. A. Advances in germanium detector technology. Nucl. Instr. Meth. 2003, 505, 183; https://doi.org/10.1016/s0168-9002(03)01047-7.Search in Google Scholar
25. Sonzogni, A. NuDat 2.8; National Nuclear Data Center, Brookhaven National Laboratory. https://www.nndc.bnl.gov/nudat2/.Search in Google Scholar
26. Gilmore, G., Hemingway, J. D. Practical Gamma-Ray Spectrometry; John Wiley & Sons: England, 1995; p 17. Chapter 1.Search in Google Scholar
27. Ziegler, J. F. SRIM. Nucl. Instr. Meth. A. 2004, 219–220, 1027. http://www.srim.org/.10.1016/j.nimb.2004.01.208Search in Google Scholar
28. Koning, A. J., Rochman, D., Marck van der, S. C., Kopecky, J., Sublet, J. Ch., Pomp, S., Sjostrand, H., Forrest, R., Bauge, E., Henriksson, H., Cabellos, O., Goriely, S., Leppanen, J., Leeb, H., Plompen, A., Mills, R. TENDL-2017: TALYS-Based Evaluated Nuclear Data Library; Nuclear Research and Consultancy Group (NRG): Petten. https://tendl.web.psi.ch/tendl_2017/tendl2017.html.Search in Google Scholar
29. Barrandon, J. N., Debrun, J. L., Kohn, A., Spear, R. H. Étude du dosage de Ti, V, Cr, Fe, Ni, Cu et Zn par activation avec des protons d’énergie limitée a 20 MeV. Nucl. Instr. Meth. 1975, 127, 269; https://doi.org/10.1016/0029-554x(75)90499-1.Search in Google Scholar
30. Michel, R., Brinkmann, G. On the depth-dependent production of radionuclides (44≤ A≤ 59) by solar protons in extraterrestrial matter. J. Radioanal. Nucl. Chem. 1980, 59, 467; https://doi.org/10.1007/bf02517298.Search in Google Scholar
31. Tárkányi, F., Szelecsenyi, F., Kopecky, P. Excitation functions of proton induced nuclear reactions on natural nickel for monitoring beam energy and intensity. Appl. Radiat. Isot. 1991, 42, 513.10.1016/0883-2889(91)90154-SSearch in Google Scholar
32. Al Saleh, F. S., Al Mugren, K. S., Azzam, A. Excitation functions of (p,x) reactions on natural nickel between proton energies of 2.7 and 27.5 MeV. Appl. Radiat. Isot. 2007, 65, 104; https://doi.org/10.1016/j.apradiso.2006.06.013.Search in Google Scholar PubMed
33. Khandaker, M. U., Kim, K., Lee, M., Kim, K. S., Kim, G. Excitation functions of (p, x) reactions on natural nickel up to 40 MeV. Nucl. Instr. Meth. A. 2011, 269, 1140; https://doi.org/10.1016/j.nimb.2011.02.082.Search in Google Scholar
34. Amjed, N., Tárkányi, F., Hermanne, A., Ditroi, F., Takács, S., Hussain, M. Activation cross sections of proton induced reactions on natNi up to 65 MeV. Appl. Radiat. Isot. 2014, 92, 73; https://doi.org/10.1016/j.apradiso.2014.06.008.Search in Google Scholar PubMed
35. Hermanne, A., Adam, R. R., Tárkányi, F., Takács, S. Excitation functions of proton induced reactions on natOs up to 65 MeV: experiments and comparison with results from theoretical codes. Nucl. Instr. Meth. A 2015, 345, 58; https://doi.org/10.1016/j.nimb.2014.12.051.Search in Google Scholar
36. Adel, D., Mohamed, G. Y., Yousef, Z., Abd El Wahab, M., Ditroi, F., Takács, S., Al-Abyad, M. Experimental investigation and theoretical evaluation of proton induced nuclear reactions on nickel. Appl. Radiat. Isot. 2020, 159, 109094; https://doi.org/10.1016/j.apradiso.2020.109094.Search in Google Scholar PubMed
37. Tárkányi, F. T., Ignatyuk, A. V., Hermanne, A., Capote, R., Carlson, B. V., Engle, J. W., Kellett, M. A., Kibédi, T., Kim, G. N., Kondev, F. G., Hussain, M., Lebeda, O., Luca, A., Nagai, Y., Naik, H., Nichols, A. L., Nortier, F. M., Suryanarayana, S. V., Takács, S., Verpelli, M. Recommended nuclear data for medical radioisotope production: diagnostic positron emitters. J. Radioanal. Nucl. Chem. 2019, 319, 533.10.1007/s10967-018-6380-5Search in Google Scholar
38. Reimer, P., Qaim, S. M. Excitation functions of proton induced reactions on highly enriched 58Ni with special relevance to the production of 55Co and 57Co. Radiochim. Acta 1998, 80, 113; https://doi.org/10.1524/ract.1998.80.3.113.Search in Google Scholar
39. Badwar, S., Ghosh, R., Yerraguntla, S. S., Jyrwa, B. M., Lawriniang, B. M., Naik, H., Ganesan, S.: Measurements and uncertainty propagation for the natNi(p, x)61Cu reaction cross sections up to the proton energies of 20 MeV. Nucl. Phy. A. 2018, 977, 112; https://doi.org/10.1016/j.nuclphysa.2018.06.006.Search in Google Scholar
40. Aslam, M. N., Qaim, S. M. Nuclear model analysis of excitation functions of proton, deuteron and α-particle induced reactions on nickel isotopes for production of the medically interesting copper-61. Appl. Radiat. Isot. 2014, 89, 65; https://doi.org/10.1016/j.apradiso.2014.02.007.Search in Google Scholar PubMed
41. Bryant, E. A., Cochran, D. R. F., Knight, J. D. Excitation functions of reactions of 7 to 24-MeV He3 ions with Cu63 and Cu65. Phy. Rev. 1963, 130, 1512; https://doi.org/10.1103/physrev.130.1512.Search in Google Scholar
42. Stelson, P. H., McGowan, F. K. Cross sections for (α, n) reactions for medium-weight nuclei. Phy. Rev. 1964, 133, B911; https://doi.org/10.1103/physrev.133.b911.Search in Google Scholar
43. Bhardwaj, H. D., Gautam, A. K., Prasad, R. Measurement and analysis of excitation functions for alpha-induced reactions in copper. Pramana 1988, 31, 109; https://doi.org/10.1007/bf02846965.Search in Google Scholar
44. Bonesso, O., Ozafran, M. J., Mosca, H. O., Vazquez, M. E., Capurro, O. A., Nassiff, S. J. Study of pre-equilibrium effects on α-induced reactions on copper. J. Radioanal. Nucl. Chem. 1991, 15, 189; https://doi.org/10.1007/bf02042152.Search in Google Scholar
45. Levkovski, V. N. Cross Sections of Medium Mass Nuclide Activation (A=40-100) by Medium Energy Protons and Alpha Particles (E=10-50 MeV); Intervesy: Moscow, 1991.Search in Google Scholar
46. Singh, N. L., Patel, B. J., Somayajulu, D. R. S., Chintalapudi, S. N. Analysis of the excitation functions of (α, xnyp) reactions on natural copper. Pramana 1994, 42, 349; https://doi.org/10.1007/bf02847761.Search in Google Scholar
47. Szelecsényi, F., Kovács, Z., Nagatsu, K., Fukumura, K., Suzuki, K., Mukai, K. Investigation of direct production of 68Ga with low energy multiparticle accelerator. Radiochim. Acta 2012, 100, 5.10.1524/ract.2011.1896Search in Google Scholar
48. Hermanne, A., Rebeles, R. A., Tárkányi, F., Takács, S. Alpha particle induced reactions on natCr up to 39 MeV: experimental cross sections, comparison with theoretical calculations and thick target yields for medically relevant 52gFe production. Nucl. Instr. Meth. A. 2015, 356, 28; https://doi.org/10.1016/j.nimb.2015.04.025.Search in Google Scholar
49. Mann, W. B. Nuclear transformations produced in copper by alpha-particle bombardment. Phys. Rev. 1937, 52, 405; https://doi.org/10.1103/physrev.52.405.Search in Google Scholar
50. Porges, K. G. Alpha excitation functions of silver and copper. Phys. Rev. 1956, 101, 225; https://doi.org/10.1103/physrev.101.225.Search in Google Scholar
51. Aslam, M. T., Ali, W., Hussain, M. Nuclear model analysis of the 65Cu(α, n)68Ga reaction for the production of Ga up to 40 MeV. Appl. Radiat. Isot. 2021, 170, 109590; https://doi.org/10.1016/j.apradiso.2021.109590.68.Search in Google Scholar
52. Vlieks, A. E., Morgan, J. F., Blatt, S. L. Total cross sections for some (α, n) and (α, p) reactions in medium-weight nuclei. Nucl. Phys. A 1974, 224, 492; https://doi.org/10.1016/0375-9474(74)90551-x.Search in Google Scholar
53. Howard, A. J., Jensen, H. B., Rios, M., Fowler, W. A., Zimmerman, B. A. Measurement and theoretical analysis of some reaction rates of interest in silicon burning. Astrophys. J. 1974, 188, 131; https://doi.org/10.1086/152694.Search in Google Scholar
54. Usman, A. R., Khandaker, M. U., Haba, H., Otuka, N., Murakami, M. Excitation functions of alpha particles induced nuclear reactions on natural titanium in the energy range of 10.4–50.2 MeV. Nucl. Instr. Meth. A 2017, 399, 34; https://doi.org/10.1016/j.nimb.2017.03.120.Search in Google Scholar
55. Ghoshal, S. N. An experimental verification of the theory of compound nucleus. Phys. Rev. 1950, 80, 939; https://doi.org/10.1103/physrev.80.939.Search in Google Scholar
56. Cumming, J. B. Decay of Zn61. Phys. Rev. 1959, 114, 1600; https://doi.org/10.1103/physrev.114.1600.Search in Google Scholar
57. Tanaka, S. Reactions of nickel with alpha-particles. J. Phys. Soc. Jpn. 1960, 15, 2159; https://doi.org/10.1143/jpsj.15.2159.Search in Google Scholar
58. Stelson, P. H., McGowan, F. K. Cross sections for (α, n) reactions for medium-weight nuclei. Phys. Rev. 1964, 133, B911; https://doi.org/10.1103/physrev.133.b911.Search in Google Scholar
59. Muramatsu, H., Shirai, E., Nakahara, H., Murakami, Y. Alpha particle bombardment of natural nickel target for the production of 61Cu. Appl. Radiat. Isot. 1978, 29, 611; https://doi.org/10.1016/0020-708x(78)90094-7.Search in Google Scholar
60. Takács, S., Tárkányi, F., Kovacs, Z. Excitation functions of alpha-particle induced nuclear reactions on natural nickel. Nucl. Instr. Meth. 1996, 113, 424.10.1016/0168-583X(95)01349-0Search in Google Scholar
61. Uddin, M. S., Kim, K. S., Nadeem, M., Sudár, S., Kim, G. N. Excitation functions of alpha-particle-induced reactions on natNi from threshold to 44 MeV. Eur. Phy. J. A 2017, 53, 1; https://doi.org/10.1140/epja/i2017-12287-4.Search in Google Scholar
© 2022 Walter de Gruyter GmbH, Berlin/Boston