Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter (O) August 15, 2022

Membrane assisted transport of thorium (IV) across bulk liquid membrane containing DEHPA as ion carrier: kinetic, mechanism and thermodynamic studies

  • S. A. Milani , F. Zahakifar EMAIL logo and Mohammad Faryadi
From the journal Radiochimica Acta


Extraction and carrier mediated transport of thorium (IV) ions through bulk liquid membrane containing di-2-ethylhexyl phosphoric acid (DEHPA) in kerosene as metal ion carrier. The feed comprised of thorium (IV) ions solutions containing various concentrations of hydrochloric acid, while sulfuric acid solutions of different concentrations are used as a stripping agent. Various parameters about thorium (IV) ion extraction and transport were investigated: the feed solution acidity, initial metal ions aqueous solution concentration, carrier concentration and stripping agent concentration. More than 85% thorium (IV) is recovered in 960 min using 0.2 M DEHPA/kerosene as carrier and 1.5 M H2SO4 as stripping agent from the 0.0001 M HCl solution containing 50 mg L−1 thorium (IV) as feed. Assuming a consecutive, irreversible extraction and back-extraction (stripping) reactions a simple kinetic model was proposed for estimating the reaction rate constant or reaction rate coefficient under the investigated experimental conditions. The activation energy values of extraction and back-extraction reactions were calculated to be 29.94 kJ mol−1 and 20.55 kJ mol−1, respectively, which indicates that the extraction process was controlled by the mixed regime (both kinetic and diffusion), and the back-extraction process was mainly controlled by diffusion process.

Corresponding author: F. Zahakifar, Nuclear Fuel Cycle Research School, Nuclear Science and Technology Research Institute, AEOI, P.O. Box: 14893-836, Tehran, Iran, E-mail:

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.


1. Sharma, P., Tomar, R. Synthesis and application of an analogue of mesolite for the removal of uranium (VI), thorium (IV), and europium (III) from aqueous waste. Microporous Mesoporous Mater. 2008, 116, 641–652; in Google Scholar

2. Avivar, J., Ferrer, L., Casas, M., Cerda, V. Fully automated lab-on-valve-multisyringe flow injection analysis-ICP-MS system: an effective tool for fast, sensitive and selective determination of thorium and uranium at environmental levels exploiting solid phase extraction. J. Anal. At. Spectrom. 2012, 27, 327–334; in Google Scholar

3. Fang, Y., Li, C., Wu, L., Bai, B., Li, X., Jia, Y., Feng, W., Yuan, L. A non-symmetric pillar [5] arene based on triazole-linked 8-oxyquinolines as a sequential sensor for thorium (IV) followed by fluoride ions. Dalton Trans. 2015, 44, 14584–14588; in Google Scholar PubMed

4. Wen, J., Dong, L., Hu, S., Li, W., Li, S., Wang, X. Fluorogenic thorium sensors based on 2, 6-pyridinedicarboxylic acid-substituted tetraphenylethenes with aggregation‐induced emission characteristics. Chem.--Asian J. 2016, 11, 49–53; in Google Scholar PubMed

5. Ames, L. L., Rai, D. Radionuclide Interactions with Soil and Rock Media. Volume 1: Processes Influencing Radionuclide Mobility and Retention, Element Chemistry and Geochemistry, Conclusions and Evaluation. Final report; Battelle Pacific Northwest Labs.: Richland, WA (USA), 1978.Search in Google Scholar

6. Wen, J., Dong, L., Tian, J., Jiang, T., Yang, Y-Q., Huang, Z., Yu, X.-Q., Hu, C.-W., Hu, S., Yang, T.-Z. Fluorescent BINOL-based sensor for thorium recognition and a density functional theory investigation. J. Hazard Mater. 2013, 263, 638–642; in Google Scholar PubMed

7. Anirudhan, T., Sreekumari, S., Jalajamony, S. An investigation into the adsorption of thorium (IV) from aqueous solutions by a carboxylate-functionalised graft copolymer derived from titanium dioxide-densified cellulose. J. Environ. Radioact. 2013, 116, 141–147; in Google Scholar PubMed

8. Radchenko, V., Mastren, T., Meyer, C. A., Ivanov, A. S., Bryantsev, V. S., Copping, R. Radiometric evaluation of diglycolamide resins for the chromatographic separation of actinium from fission product lanthanides. Talanta 2017, 175, 318–324; in Google Scholar PubMed

9. Mastren, T., Radchenko, V., Owens, A., Copping, R., Boll, R., Griswold, J. R., Mirzadeh, S., Wyant, L. E., Brugh, M., Engle, J. W., Nortier, F. M., Birnbaum, E. R., John, K. D., Fassbender, M. E. Simultaneous separation of actinium and radium isotopes from a proton irradiated thorium matrix. Sci. Rep. 2017, 7, 1–7; in Google Scholar PubMed PubMed Central

10. Mastren, T., Radchenko, V., Engle, J. W., Weidner, J. W., Owens, A., Wyant, L. E., Copping, R., Brugh, M., Nortier, F. M., Birnbaum, E. R. Chromatographic separation of the theranostic radionuclide 111Ag from a proton irradiated thorium matrix. Anal. Chim. Acta 2018, 998, 75–82; in Google Scholar PubMed

11. Yuan, L-Y., Bai, Z-Q., Zhao, R., Liu, Y-L., Li, Z-J., Chu, S-Q., Zheng, L. R., Zhang, J., Zhao, Y. L., Chai, Z. F. Introduction of bifunctional groups into mesoporous silica for enhancing uptake of thorium (IV) from aqueous solution. ACS Appl. Mater. Interfaces 2014, 6, 4786–4796; in Google Scholar PubMed

12. Li, R., Zhao, H., Liu, C., He, S., Li, Z., Li, Q., Zhang, L. The recovery of uranium from irradiated thorium by extraction with di-1-methyl heptyl methylphosphonate (DMHMP)/n-dodecane. Separ. Purif. Technol. 2017, 188, 219–227; in Google Scholar

13. Li, L., Pan, N., Guo, X., Ding, J., Wu, R., Ding, S., Wang, R., Jin, Y., Huang, C., Xia, C. The novel extractants, bis-triamides: synthesis and selective extraction of thorium (IV) from nitric acid media. Separ. Purif. Technol. 2017, 188, 485–492; in Google Scholar

14. Hinwood, A. L., Stasinska, A., Callan, A., Heyworth, J., Ramalingam, M., Boyce, M., McCafferty, P., Odland, J. Maternal exposure to alkali, alkali earth, transition and other metals: concentrations and predictors of exposure. Environ. Pollut. 2015, 204, 256–263; in Google Scholar

15. Gehin, J. C., Powers, J. J. Liquid fuel molten salt reactors for thorium utilization. Nucl. Technol. 2016, 194, 152–161; in Google Scholar

16. Choppin, G. R. Actinide speciation in the environment. Radiochim. Acta 2003, 91, 645–650; in Google Scholar

17. James, D., Venkateswaran, G., Rao, T. P. Removal of uranium from mining industry feed simulant solutions using trapped amidoxime functionality within a mesoporous imprinted polymer material. Microporous Mesoporous Mater. 2009, 119, 165–170; in Google Scholar

18. Vijayalakshmi, R., Mishra, S., Singh, H., Gupta, C. Processing of xenotime concentrate by sulphuric acid digestion and selective thorium precipitation for separation of rare earths. Hydrometallurgy 2001, 61, 75–80; in Google Scholar

19. Kul, M., Topkaya, Y., Karakaya, İ. Rare earth double sulfates from pre-concentrated bastnasite. Hydrometallurgy 2008, 93, 129–135; in Google Scholar

20. Amer, T., Abdella, W., Wahab, G. A., El-Sheikh, E. A suggested alternative procedure for processing of monazite mineral concentrate. Int. J. Miner. Process. 2013, 125, 106–111; in Google Scholar

21. Xie, F., Zhang, T. A., Dreisinger, D., Doyle, F. A critical review on solvent extraction of rare earths from aqueous solutions. Miner. Eng. 2014, 56, 10–28; in Google Scholar

22. Huang, H., Ding, S., Su, D., Liu, N., Wang, J., Tan, M., Fei, J. High selective extraction for thorium (IV) with NTAamide in nitric acid solution: synthesis, solvent extraction and structure studies. Separ. Purif. Technol. 2014, 138, 65–70; in Google Scholar

23. Baybaş, D., Ulusoy, U. The use of polyacrylamide-aluminosilicate composites for thorium adsorption. Appl. Clay Sci. 2011, 51, 138–146; in Google Scholar

24. Kütahyalı, C., Eral, M. Sorption studies of uranium and thorium on activated carbon prepared from olive stones: kinetic and thermodynamic aspects. J. Nucl. Mater. 2010, 396, 251–256; in Google Scholar

25. Ngah, W. W., Teong, L., Hanafiah, M. M. Adsorption of dyes and heavy metal ions by chitosan composites: a review. Carbohydr. Polym. 2011, 83, 1446–1456; in Google Scholar

26. Hritcu, D., Humelnicu, D., Dodi, G., Popa, M. I. Magnetic chitosan composite particles: evaluation of thorium and uranyl ion adsorption from aqueous solutions. Carbohydr. Polym. 2012, 87, 1185–1191; in Google Scholar

27. Abbasizadeh, S., Keshtkar, A. R., Mousavian, M. A. Preparation of a novel electrospun polyvinyl alcohol/titanium oxide nanofiber adsorbent modified with mercapto groups for uranium (VI) and thorium (IV) removal from aqueous solution. Chem. Eng. J. 2013, 220, 161–171; in Google Scholar

28. Akkaya, R. Uranium and thorium adsorption from aqueous solution using a novel polyhydroxyethylmethacrylate-pumice composite. J. Environ. Radioact. 2013, 120, 58–63; in Google Scholar

29. Nilchi, A., Dehaghan, T. S., Garmarodi, S. R. Kinetics, isotherm and thermodynamics for uranium and thorium ions adsorption from aqueous solutions by crystalline tin oxide nanoparticles. Desalination 2013, 321, 67–71; in Google Scholar

30. San Román, M., Bringas, E., Ibanez, R., Ortiz, I. Liquid membrane technology: fundamentals and review of its applications. J. Chem. Technol. Biotechnol. 2010, 85, 2–10; in Google Scholar

31. Jönsson, J. A., Mathiasson, L. Supported liquid membrane techniques for sample preparation and enrichment in environmental and biological analysis. TrAC - Trends Anal. Chem. 1992, 11, 106–114.10.1016/0165-9936(92)85008-SSearch in Google Scholar

32. Noble, R. D., Way, J. D. Liquid Membranes: Theory and Applications; American Chemical Society: Washington, DC, 1987.10.1021/bk-1987-0347Search in Google Scholar

33. Araki, T., Tsukube, H. Liquid Membranes: Chemical Applications; CRC Press, 1990.Search in Google Scholar

34. Mori, A., Kubo, K., Takeshita, H. Synthesis and metallophilic properties of troponoid thiocrown ethers. Coord. Chem. Rev. 1996, 148, 71–96; in Google Scholar

35. Safavi, A., Shams, E. Selective and efficient transport of Hg (II) through bulk liquid membrane using methyl red as carrier. J. Membr. Sci. 1998, 144, 37–43; in Google Scholar

36. Pedersen, C. J. Cyclic polyethers and their complexes with metal salts. J. Am. Chem. Soc. 1967, 89, 7017–7036; in Google Scholar

37. Lamb, J., Izatt, R., Garrick, D., Bradshaw, J., Christensen, J. The influence of macrocyclic ligand structure on carrier-facilitated cation transport rates and selectivities through liquid membranes. J. Membr. Sci. 1981, 9, 83–107; in Google Scholar

38. RAMKUMAR, J., Maiti, B., Nayak, S., Mathur, P. Facilitated transport of alkali metal ions across bulk liquid membrane containing phenoxy compounds as carrier. Separ. Sci. Technol. 1999, 34, 2069–2077; in Google Scholar

39. Long, Z., Huang, X., Huang, W., Zhang, G. Ce4+ extraction mechanism from rare earth sulfate solution containing fluorine with DEHPA. J. Chin. Rare Earth Soc. 2000, 18, 18–20.Search in Google Scholar

40. Tedesco, P., De Rumi, V., Gonza, J. Extraction of tetravalent metals with di-(2-ethylhexyl) phosphoric acid—III: Cerium. J. Inorg. Nucl. Chem. 1967, 29, 2813–2817; in Google Scholar

41. Babakhani, A., Rashchi, F., Zakeri, A., Vahidi, E. Selective separation of nickel and cadmium from sulfate solutions of spent nickel–cadmium batteries using mixtures of D2EHPA and Cyanex 302. J. Power Sources 2014, 247, 127–133; in Google Scholar

42. Singh, R. K., Dhadke, P. M. Extraction and separation of titanium (IV) with D2EHPA and PC-88A from aqueous perchloric acid solutions. J. Serb. Chem. Soc. 2002, 67, 507–521; in Google Scholar

43. Islam, M. F., Biswas, R. K. The solvent extraction of Ti (IV), Fe (III) and Mn (II) from acidic sulphate-acetato medium with bis-(2-ethyl hexyl) phosphoric acid in benzene. J. Inorg. Nucl. Chem. 1981, 43, 1929–1933; in Google Scholar

44. Zhaowu, Z., Na, Z., Zhiqi, L., Dedong, L., Dali, C., Guocheng, Z. New envirnment-friendly approach for bastnasite metallurgic treatment (I): extraction of tetravalent cerium from sulphuric acid medium with di (2-ethylhexyl) phosphoric acid. J. Rare Earths 2005, 23, 178.Search in Google Scholar

45. Biswas, R., Zaman, M., Islam, M. Extraction of TiO2+ from 1 M (Na+, H+) SO42− by D2EHPA. Hydrometallurgy 2002, 63, 159–169; in Google Scholar

46. Mendoza-Reyes, L. G., Rodríguez de San Miguel, E., Sánchez-Guerrero, J. P., Pardo-Gaytán, D. Y., Gyves, Jd Novel D2EHPA-polysiloxane-based sorbent for titanium (IV) extraction and separation. J. Mexican Chem. Soc. 2011, 55, 72–78.Search in Google Scholar

47. Gao, L-K., Rao, B., Dai, H-X., Hong, Z., Xie, H-Y. Separation and extraction of scandium and titanium from a refractory anatase lixivium by solvent extraction with D2EHPA and primary amine N1923. J. Chem. Eng. Jpn. 2019, 52, 822–828; in Google Scholar

48. Noble, R. D., Koval, C. A., Pellegrino, J. Facilitated transport membrane systems. Chem. Eng. Prog. 1989, 85, 58–70.Search in Google Scholar

49. Doležal, J., Moreno, C., Hrdlička, A., Valiente, M. Selective transport of lanthanides through supported liquid membranes containing non-selective extractant, di-(2-ethylhexyl) phosphoric acid, as a carrier. J. Membr. Sci. 2000, 168, 175–181; in Google Scholar

50. Ma, M., He, D., Wang, Q., Xie, Q. Kinetics of europium (III) transport through a liquid membrane containing HEH (EHP) in kerosene. Talanta 2001, 55, 1109–1117; in Google Scholar

51. He, D., Ma, M. Kinetics of cadmium (II) transport through a liquid membrane containing tricapryl amine in xylene. Separ. Sci. Technol. 2000, 35, 1573–1585; in Google Scholar

52. He, D., Ma, M., Zhao, Z. Transport of cadmium ions through a liquid membrane containing amine extractants as carriers. J. Membr. Sci. 2000, 169, 53–59; in Google Scholar

53. Behrooz, M. S., Fasihi, J., Samadfam, M., Sepehrian, H., Ashtari, P., Mahani, M., Arabieh, M. Synergistic coupled transport of uranyl ion across bulk liquid membrane mediated by dioxa-diazamacrocycle and oleic acid. J. Radioanal. Nucl. Chem. 2018, 316, 9–16; in Google Scholar

54. Reddy, T. R., Ramkumar, J., Chandramouleeswaran, S., Reddy, A. Selective transport of copper across a bulk liquid membrane using 8-hydroxy quinoline as carrier. J. Membr. Sci. 2010, 351, 11–15; in Google Scholar

55. Nisbet, H., Migdisov, A., Xu, H., Guo, X., van Hinsberg, V., Williams-Jones, A. E., Boukhalfa, H., Roback, R. An experimental study of the solubility and speciation of thorium in chloride-bearing aqueous solutions at temperatures up to 250 C. Geochem. Cosmochim. Acta 2018, 239, 363–373; in Google Scholar

56. Sato, T. The extraction of thorium from hydrochloric acid solutions by di‐(2‐ethylhexyl)‐phosphoric acid. Z. Anorg. Allg. Chem. 1968, 358, 296–304; in Google Scholar

57. Nanda, D., Oak, M., Kumar, M. P., Maiti, B., Dutta, P. Facilitated transport of Th (IV) across bulk liquid membrane by di (2-ethylhexyl) phosphoric acid. Separ. Sci. Technol. 2001, 36, 2489–2497; in Google Scholar

58. Othman, N., Noah, N. F. M., Shu, L. Y., Ooi, Z-Y., Jusoh, N., Idroas, M., Goto, M. Easy removing of phenol from wastewater using vegetable oil-based organic solvent in emulsion liquid membrane process. Chin. J. Chem. Eng. 2017, 25, 45–52; in Google Scholar

59. Szpakowska, M., Nagy, O. B. Non-steady state vs. steady state kinetic analysis of coupled ion transport through binary liquid membranes. J. Membr. Sci. 1993, 76, 27–38; in Google Scholar

60. Zhao, J., Meng, S., Li, D. Coordination reactions in the extraction of cerium (IV) and fluorine (I) by DEHEHP from mixed nitric acid and hydrofluoric acid solutions. Solvent Extr. Ion Exch. 2004, 22, 813–831; in Google Scholar

61. He, D., Luo, X., Yang, C., Ma, M., Wan, Y. Study of transport and separation of Zn (II) by a combined supported liquid membrane/strip dispersion process containing D2EHPA in kerosene as the carrier. Desalination 2006, 194, 40–51; in Google Scholar

62. Wannachod, T., Leepipatpiboon, N., Pancharoen, U., Nootong, K. Separation and mass transport of Nd (III) from mixed rare earths via hollow fiber supported liquid membrane: experiment and modeling. Chem. Eng. J. 2014, 248, 158–167; in Google Scholar

63. Zebroski, E., Alter, H., Heumann, F. Thorium complexes with chloride, fluoride, nitrate, phosphate and sulfate1. J. Am. Chem. Soc. 1951, 73, 5646–5650; in Google Scholar

64. Sole, K. C., Hiskey, J. B. Solvent extraction of copper by Cyanex 272, Cyanex 302 and Cyanex 301. Hydrometallurgy 1995, 37, 129–147; in Google Scholar

65. Talebi, A., Cesaro, A., Marra, A., Belgiorno, V., Ismail, N. Base metal ion extraction and stripping from WEEE leachate by liquid-liquid extraction. J. Phys. Sci. 2018, 29, 15–28; in Google Scholar

66. Çoruh, S., Ergun, O. N. Ni2+ removal from aqueous solutions using conditioned clinoptilolites: kinetic and isotherm studies. Environ. Prog. Sustain. Energy 2009, 28, 162–172.10.1002/ep.10316Search in Google Scholar

67. Erdem, E., Karapinar, N., Donat, R. The removal of heavy metal cations by natural zeolites. J. Colloid Interface Sci. 2004, 280, 309–314; in Google Scholar PubMed

68. Wu, D., Sui, Y., He, S., Wang, X., Li, C., Kong, H. Removal of trivalent chromium from aqueous solution by zeolite synthesized from coal fly ash. J. Hazard Mater. 2008, 155, 415–423; in Google Scholar PubMed

69. Gupta, S. S., Bhattacharyya, K. G. Immobilization of Pb (II), Cd (II) and Ni (II) ions on kaolinite and montmorillonite surfaces from aqueous medium. J. Environ. Manag. 2008, 87, 46–58; in Google Scholar PubMed

70. Kebiche-Senhadji, O., Mansouri, L., Tingry, S., Seta, P., Benamor, M. Facilitated Cd (II) transport across CTA polymer inclusion membrane using anion (Aliquat 336) and cation (D2EHPA) metal carriers. J. Membr. Sci. 2008, 310, 438–445; in Google Scholar

71. Koekemoer, L. R., Badenhorst, M. J., Everson, R. C. Determination of viscosity and density of di-(2-ethylhexyl) phosphoric acid+ aliphatic kerosene. J. Chem. Eng. Data 2005, 50, 587–590; in Google Scholar

72. Rakesh, K. B., Suresh, A., Rao, P. V. Third phase formation in the extraction of Th (NO3) 4 by tri-n-butyl phosphate and tri-iso-amyl phosphate in n-dodecane and n-tetradecane from nitric acid media. Solvent Extr. Ion Exch. 2014, 32, 249–266; in Google Scholar

73. Rydberg, J., Cox, M., Musikas, C., Chappin, G. Solvent Extraction Principles and Practice, 2nd ed.; M. Dekker: New York, 2004.10.1201/9780203021460Search in Google Scholar

74. Rodden, C. J. Analysis of Essential Nuclear Reactor Materials; New Brunswick Lab. AEC, NJ (United States), 1964.Search in Google Scholar

75. Iqbal, M., Ejaz, M. Chemical separation of molybdenum from uranium and fission product nuclides. J. Radioanal. Chem. 1978, 47, 25–28; in Google Scholar

76. Blundy, P. The determination of chromium by a solvent-extraction method. Analyst 1958, 83, 555–558; in Google Scholar

77. Roberto Danesi, P., Chiarizia, R., Coleman, C. F. The kinetics of metal solvent extraction. Anal. Chem. 1980, 10, 1–126; in Google Scholar

78. Lazarova, Z., Boyadzhiev, L. Kinetic aspects of copper (II) transport across liquid membrane containing LIX-860 as a carrier. J. Membr. Sci. 1993, 78, 239–245; in Google Scholar

Received: 2021-12-25
Accepted: 2022-06-06
Published Online: 2022-08-15
Published in Print: 2022-10-26

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 5.12.2023 from
Scroll to top button