Abstract
Extraction and carrier mediated transport of thorium (IV) ions through bulk liquid membrane containing di-2-ethylhexyl phosphoric acid (DEHPA) in kerosene as metal ion carrier. The feed comprised of thorium (IV) ions solutions containing various concentrations of hydrochloric acid, while sulfuric acid solutions of different concentrations are used as a stripping agent. Various parameters about thorium (IV) ion extraction and transport were investigated: the feed solution acidity, initial metal ions aqueous solution concentration, carrier concentration and stripping agent concentration. More than 85% thorium (IV) is recovered in 960 min using 0.2 M DEHPA/kerosene as carrier and 1.5 M H2SO4 as stripping agent from the 0.0001 M HCl solution containing 50 mg L−1 thorium (IV) as feed. Assuming a consecutive, irreversible extraction and back-extraction (stripping) reactions a simple kinetic model was proposed for estimating the reaction rate constant or reaction rate coefficient under the investigated experimental conditions. The activation energy values of extraction and back-extraction reactions were calculated to be 29.94 kJ mol−1 and 20.55 kJ mol−1, respectively, which indicates that the extraction process was controlled by the mixed regime (both kinetic and diffusion), and the back-extraction process was mainly controlled by diffusion process.
-
Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
-
Research funding: None declared.
-
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
References
1. Sharma, P., Tomar, R. Synthesis and application of an analogue of mesolite for the removal of uranium (VI), thorium (IV), and europium (III) from aqueous waste. Microporous Mesoporous Mater. 2008, 116, 641–652; https://doi.org/10.1016/j.micromeso.2008.05.036.Search in Google Scholar
2. Avivar, J., Ferrer, L., Casas, M., Cerda, V. Fully automated lab-on-valve-multisyringe flow injection analysis-ICP-MS system: an effective tool for fast, sensitive and selective determination of thorium and uranium at environmental levels exploiting solid phase extraction. J. Anal. At. Spectrom. 2012, 27, 327–334; https://doi.org/10.1039/c2ja10304d.Search in Google Scholar
3. Fang, Y., Li, C., Wu, L., Bai, B., Li, X., Jia, Y., Feng, W., Yuan, L. A non-symmetric pillar [5] arene based on triazole-linked 8-oxyquinolines as a sequential sensor for thorium (IV) followed by fluoride ions. Dalton Trans. 2015, 44, 14584–14588; https://doi.org/10.1039/c5dt00089k.Search in Google Scholar PubMed
4. Wen, J., Dong, L., Hu, S., Li, W., Li, S., Wang, X. Fluorogenic thorium sensors based on 2, 6-pyridinedicarboxylic acid-substituted tetraphenylethenes with aggregation‐induced emission characteristics. Chem.--Asian J. 2016, 11, 49–53; https://doi.org/10.1002/asia.201500834.Search in Google Scholar PubMed
5. Ames, L. L., Rai, D. Radionuclide Interactions with Soil and Rock Media. Volume 1: Processes Influencing Radionuclide Mobility and Retention, Element Chemistry and Geochemistry, Conclusions and Evaluation. Final report; Battelle Pacific Northwest Labs.: Richland, WA (USA), 1978.Search in Google Scholar
6. Wen, J., Dong, L., Tian, J., Jiang, T., Yang, Y-Q., Huang, Z., Yu, X.-Q., Hu, C.-W., Hu, S., Yang, T.-Z. Fluorescent BINOL-based sensor for thorium recognition and a density functional theory investigation. J. Hazard Mater. 2013, 263, 638–642; https://doi.org/10.1016/j.jhazmat.2013.10.025.Search in Google Scholar PubMed
7. Anirudhan, T., Sreekumari, S., Jalajamony, S. An investigation into the adsorption of thorium (IV) from aqueous solutions by a carboxylate-functionalised graft copolymer derived from titanium dioxide-densified cellulose. J. Environ. Radioact. 2013, 116, 141–147; https://doi.org/10.1016/j.jenvrad.2012.10.001.Search in Google Scholar PubMed
8. Radchenko, V., Mastren, T., Meyer, C. A., Ivanov, A. S., Bryantsev, V. S., Copping, R. Radiometric evaluation of diglycolamide resins for the chromatographic separation of actinium from fission product lanthanides. Talanta 2017, 175, 318–324; https://doi.org/10.1016/j.talanta.2017.07.057.Search in Google Scholar PubMed
9. Mastren, T., Radchenko, V., Owens, A., Copping, R., Boll, R., Griswold, J. R., Mirzadeh, S., Wyant, L. E., Brugh, M., Engle, J. W., Nortier, F. M., Birnbaum, E. R., John, K. D., Fassbender, M. E. Simultaneous separation of actinium and radium isotopes from a proton irradiated thorium matrix. Sci. Rep. 2017, 7, 1–7; https://doi.org/10.1038/s41598-017-08506-9.Search in Google Scholar PubMed PubMed Central
10. Mastren, T., Radchenko, V., Engle, J. W., Weidner, J. W., Owens, A., Wyant, L. E., Copping, R., Brugh, M., Nortier, F. M., Birnbaum, E. R. Chromatographic separation of the theranostic radionuclide 111Ag from a proton irradiated thorium matrix. Anal. Chim. Acta 2018, 998, 75–82; https://doi.org/10.1016/j.aca.2017.10.020.Search in Google Scholar PubMed
11. Yuan, L-Y., Bai, Z-Q., Zhao, R., Liu, Y-L., Li, Z-J., Chu, S-Q., Zheng, L. R., Zhang, J., Zhao, Y. L., Chai, Z. F. Introduction of bifunctional groups into mesoporous silica for enhancing uptake of thorium (IV) from aqueous solution. ACS Appl. Mater. Interfaces 2014, 6, 4786–4796; https://doi.org/10.1021/am405584h.Search in Google Scholar PubMed
12. Li, R., Zhao, H., Liu, C., He, S., Li, Z., Li, Q., Zhang, L. The recovery of uranium from irradiated thorium by extraction with di-1-methyl heptyl methylphosphonate (DMHMP)/n-dodecane. Separ. Purif. Technol. 2017, 188, 219–227; https://doi.org/10.1016/j.seppur.2017.07.038.Search in Google Scholar
13. Li, L., Pan, N., Guo, X., Ding, J., Wu, R., Ding, S., Wang, R., Jin, Y., Huang, C., Xia, C. The novel extractants, bis-triamides: synthesis and selective extraction of thorium (IV) from nitric acid media. Separ. Purif. Technol. 2017, 188, 485–492; https://doi.org/10.1016/j.seppur.2017.07.003.Search in Google Scholar
14. Hinwood, A. L., Stasinska, A., Callan, A., Heyworth, J., Ramalingam, M., Boyce, M., McCafferty, P., Odland, J. Maternal exposure to alkali, alkali earth, transition and other metals: concentrations and predictors of exposure. Environ. Pollut. 2015, 204, 256–263; https://doi.org/10.1016/j.envpol.2015.04.024.Search in Google Scholar
15. Gehin, J. C., Powers, J. J. Liquid fuel molten salt reactors for thorium utilization. Nucl. Technol. 2016, 194, 152–161; https://doi.org/10.13182/nt15-124.Search in Google Scholar
16. Choppin, G. R. Actinide speciation in the environment. Radiochim. Acta 2003, 91, 645–650; https://doi.org/10.1524/ract.91.11.645.23469.Search in Google Scholar
17. James, D., Venkateswaran, G., Rao, T. P. Removal of uranium from mining industry feed simulant solutions using trapped amidoxime functionality within a mesoporous imprinted polymer material. Microporous Mesoporous Mater. 2009, 119, 165–170; https://doi.org/10.1016/j.micromeso.2008.10.011.Search in Google Scholar
18. Vijayalakshmi, R., Mishra, S., Singh, H., Gupta, C. Processing of xenotime concentrate by sulphuric acid digestion and selective thorium precipitation for separation of rare earths. Hydrometallurgy 2001, 61, 75–80; https://doi.org/10.1016/s0304-386x(00)00159-6.Search in Google Scholar
19. Kul, M., Topkaya, Y., Karakaya, İ. Rare earth double sulfates from pre-concentrated bastnasite. Hydrometallurgy 2008, 93, 129–135; https://doi.org/10.1016/j.hydromet.2007.11.008.Search in Google Scholar
20. Amer, T., Abdella, W., Wahab, G. A., El-Sheikh, E. A suggested alternative procedure for processing of monazite mineral concentrate. Int. J. Miner. Process. 2013, 125, 106–111; https://doi.org/10.1016/j.minpro.2013.10.004.Search in Google Scholar
21. Xie, F., Zhang, T. A., Dreisinger, D., Doyle, F. A critical review on solvent extraction of rare earths from aqueous solutions. Miner. Eng. 2014, 56, 10–28; https://doi.org/10.1016/j.mineng.2013.10.021.Search in Google Scholar
22. Huang, H., Ding, S., Su, D., Liu, N., Wang, J., Tan, M., Fei, J. High selective extraction for thorium (IV) with NTAamide in nitric acid solution: synthesis, solvent extraction and structure studies. Separ. Purif. Technol. 2014, 138, 65–70; https://doi.org/10.1016/j.seppur.2014.10.008.Search in Google Scholar
23. Baybaş, D., Ulusoy, U. The use of polyacrylamide-aluminosilicate composites for thorium adsorption. Appl. Clay Sci. 2011, 51, 138–146; https://doi.org/10.1016/j.clay.2010.11.020.Search in Google Scholar
24. Kütahyalı, C., Eral, M. Sorption studies of uranium and thorium on activated carbon prepared from olive stones: kinetic and thermodynamic aspects. J. Nucl. Mater. 2010, 396, 251–256; https://doi.org/10.1016/j.jnucmat.2009.11.018.Search in Google Scholar
25. Ngah, W. W., Teong, L., Hanafiah, M. M. Adsorption of dyes and heavy metal ions by chitosan composites: a review. Carbohydr. Polym. 2011, 83, 1446–1456; https://doi.org/10.1016/j.carbpol.2010.11.004.Search in Google Scholar
26. Hritcu, D., Humelnicu, D., Dodi, G., Popa, M. I. Magnetic chitosan composite particles: evaluation of thorium and uranyl ion adsorption from aqueous solutions. Carbohydr. Polym. 2012, 87, 1185–1191; https://doi.org/10.1016/j.carbpol.2011.08.095.Search in Google Scholar
27. Abbasizadeh, S., Keshtkar, A. R., Mousavian, M. A. Preparation of a novel electrospun polyvinyl alcohol/titanium oxide nanofiber adsorbent modified with mercapto groups for uranium (VI) and thorium (IV) removal from aqueous solution. Chem. Eng. J. 2013, 220, 161–171; https://doi.org/10.1016/j.cej.2013.01.029.Search in Google Scholar
28. Akkaya, R. Uranium and thorium adsorption from aqueous solution using a novel polyhydroxyethylmethacrylate-pumice composite. J. Environ. Radioact. 2013, 120, 58–63; https://doi.org/10.1016/j.jenvrad.2012.11.015.Search in Google Scholar
29. Nilchi, A., Dehaghan, T. S., Garmarodi, S. R. Kinetics, isotherm and thermodynamics for uranium and thorium ions adsorption from aqueous solutions by crystalline tin oxide nanoparticles. Desalination 2013, 321, 67–71; https://doi.org/10.1016/j.desal.2012.06.022.Search in Google Scholar
30. San Román, M., Bringas, E., Ibanez, R., Ortiz, I. Liquid membrane technology: fundamentals and review of its applications. J. Chem. Technol. Biotechnol. 2010, 85, 2–10; https://doi.org/10.1002/jctb.2252.Search in Google Scholar
31. Jönsson, J. A., Mathiasson, L. Supported liquid membrane techniques for sample preparation and enrichment in environmental and biological analysis. TrAC - Trends Anal. Chem. 1992, 11, 106–114.10.1016/0165-9936(92)85008-SSearch in Google Scholar
32. Noble, R. D., Way, J. D. Liquid Membranes: Theory and Applications; American Chemical Society: Washington, DC, 1987.10.1021/bk-1987-0347Search in Google Scholar
33. Araki, T., Tsukube, H. Liquid Membranes: Chemical Applications; CRC Press, 1990.Search in Google Scholar
34. Mori, A., Kubo, K., Takeshita, H. Synthesis and metallophilic properties of troponoid thiocrown ethers. Coord. Chem. Rev. 1996, 148, 71–96; https://doi.org/10.1016/0010-8545(95)01174-9.Search in Google Scholar
35. Safavi, A., Shams, E. Selective and efficient transport of Hg (II) through bulk liquid membrane using methyl red as carrier. J. Membr. Sci. 1998, 144, 37–43; https://doi.org/10.1016/s0376-7388(98)00029-5.Search in Google Scholar
36. Pedersen, C. J. Cyclic polyethers and their complexes with metal salts. J. Am. Chem. Soc. 1967, 89, 7017–7036; https://doi.org/10.1021/ja00986a052.Search in Google Scholar
37. Lamb, J., Izatt, R., Garrick, D., Bradshaw, J., Christensen, J. The influence of macrocyclic ligand structure on carrier-facilitated cation transport rates and selectivities through liquid membranes. J. Membr. Sci. 1981, 9, 83–107; https://doi.org/10.1016/s0376-7388(00)85119-4.Search in Google Scholar
38. RAMKUMAR, J., Maiti, B., Nayak, S., Mathur, P. Facilitated transport of alkali metal ions across bulk liquid membrane containing phenoxy compounds as carrier. Separ. Sci. Technol. 1999, 34, 2069–2077; https://doi.org/10.1081/ss-100100756.Search in Google Scholar
39. Long, Z., Huang, X., Huang, W., Zhang, G. Ce4+ extraction mechanism from rare earth sulfate solution containing fluorine with DEHPA. J. Chin. Rare Earth Soc. 2000, 18, 18–20.Search in Google Scholar
40. Tedesco, P., De Rumi, V., Gonza, J. Extraction of tetravalent metals with di-(2-ethylhexyl) phosphoric acid—III: Cerium. J. Inorg. Nucl. Chem. 1967, 29, 2813–2817; https://doi.org/10.1016/0022-1902(67)80021-6.Search in Google Scholar
41. Babakhani, A., Rashchi, F., Zakeri, A., Vahidi, E. Selective separation of nickel and cadmium from sulfate solutions of spent nickel–cadmium batteries using mixtures of D2EHPA and Cyanex 302. J. Power Sources 2014, 247, 127–133; https://doi.org/10.1016/j.jpowsour.2013.08.063.Search in Google Scholar
42. Singh, R. K., Dhadke, P. M. Extraction and separation of titanium (IV) with D2EHPA and PC-88A from aqueous perchloric acid solutions. J. Serb. Chem. Soc. 2002, 67, 507–521; https://doi.org/10.2298/jsc0207507s.Search in Google Scholar
43. Islam, M. F., Biswas, R. K. The solvent extraction of Ti (IV), Fe (III) and Mn (II) from acidic sulphate-acetato medium with bis-(2-ethyl hexyl) phosphoric acid in benzene. J. Inorg. Nucl. Chem. 1981, 43, 1929–1933; https://doi.org/10.1016/0022-1902(81)80413-7.Search in Google Scholar
44. Zhaowu, Z., Na, Z., Zhiqi, L., Dedong, L., Dali, C., Guocheng, Z. New envirnment-friendly approach for bastnasite metallurgic treatment (I): extraction of tetravalent cerium from sulphuric acid medium with di (2-ethylhexyl) phosphoric acid. J. Rare Earths 2005, 23, 178.Search in Google Scholar
45. Biswas, R., Zaman, M., Islam, M. Extraction of TiO2+ from 1 M (Na+, H+) SO42− by D2EHPA. Hydrometallurgy 2002, 63, 159–169; https://doi.org/10.1016/s0304-386x(01)00222-5.Search in Google Scholar
46. Mendoza-Reyes, L. G., Rodríguez de San Miguel, E., Sánchez-Guerrero, J. P., Pardo-Gaytán, D. Y., Gyves, Jd Novel D2EHPA-polysiloxane-based sorbent for titanium (IV) extraction and separation. J. Mexican Chem. Soc. 2011, 55, 72–78.Search in Google Scholar
47. Gao, L-K., Rao, B., Dai, H-X., Hong, Z., Xie, H-Y. Separation and extraction of scandium and titanium from a refractory anatase lixivium by solvent extraction with D2EHPA and primary amine N1923. J. Chem. Eng. Jpn. 2019, 52, 822–828; https://doi.org/10.1252/jcej.18we347.Search in Google Scholar
48. Noble, R. D., Koval, C. A., Pellegrino, J. Facilitated transport membrane systems. Chem. Eng. Prog. 1989, 85, 58–70.Search in Google Scholar
49. Doležal, J., Moreno, C., Hrdlička, A., Valiente, M. Selective transport of lanthanides through supported liquid membranes containing non-selective extractant, di-(2-ethylhexyl) phosphoric acid, as a carrier. J. Membr. Sci. 2000, 168, 175–181; https://doi.org/10.1016/s0376-7388(99)00311-7.Search in Google Scholar
50. Ma, M., He, D., Wang, Q., Xie, Q. Kinetics of europium (III) transport through a liquid membrane containing HEH (EHP) in kerosene. Talanta 2001, 55, 1109–1117; https://doi.org/10.1016/s0039-9140(01)00525-2.Search in Google Scholar
51. He, D., Ma, M. Kinetics of cadmium (II) transport through a liquid membrane containing tricapryl amine in xylene. Separ. Sci. Technol. 2000, 35, 1573–1585; https://doi.org/10.1081/ss-100100241.Search in Google Scholar
52. He, D., Ma, M., Zhao, Z. Transport of cadmium ions through a liquid membrane containing amine extractants as carriers. J. Membr. Sci. 2000, 169, 53–59; https://doi.org/10.1016/s0376-7388(99)00328-2.Search in Google Scholar
53. Behrooz, M. S., Fasihi, J., Samadfam, M., Sepehrian, H., Ashtari, P., Mahani, M., Arabieh, M. Synergistic coupled transport of uranyl ion across bulk liquid membrane mediated by dioxa-diazamacrocycle and oleic acid. J. Radioanal. Nucl. Chem. 2018, 316, 9–16; https://doi.org/10.1007/s10967-018-5732-5.Search in Google Scholar
54. Reddy, T. R., Ramkumar, J., Chandramouleeswaran, S., Reddy, A. Selective transport of copper across a bulk liquid membrane using 8-hydroxy quinoline as carrier. J. Membr. Sci. 2010, 351, 11–15; https://doi.org/10.1016/j.memsci.2010.01.021.Search in Google Scholar
55. Nisbet, H., Migdisov, A., Xu, H., Guo, X., van Hinsberg, V., Williams-Jones, A. E., Boukhalfa, H., Roback, R. An experimental study of the solubility and speciation of thorium in chloride-bearing aqueous solutions at temperatures up to 250 C. Geochem. Cosmochim. Acta 2018, 239, 363–373; https://doi.org/10.1016/j.gca.2018.08.001.Search in Google Scholar
56. Sato, T. The extraction of thorium from hydrochloric acid solutions by di‐(2‐ethylhexyl)‐phosphoric acid. Z. Anorg. Allg. Chem. 1968, 358, 296–304; https://doi.org/10.1002/zaac.19683580512.Search in Google Scholar
57. Nanda, D., Oak, M., Kumar, M. P., Maiti, B., Dutta, P. Facilitated transport of Th (IV) across bulk liquid membrane by di (2-ethylhexyl) phosphoric acid. Separ. Sci. Technol. 2001, 36, 2489–2497; https://doi.org/10.1081/ss-100106105.Search in Google Scholar
58. Othman, N., Noah, N. F. M., Shu, L. Y., Ooi, Z-Y., Jusoh, N., Idroas, M., Goto, M. Easy removing of phenol from wastewater using vegetable oil-based organic solvent in emulsion liquid membrane process. Chin. J. Chem. Eng. 2017, 25, 45–52; https://doi.org/10.1016/j.cjche.2016.06.002.Search in Google Scholar
59. Szpakowska, M., Nagy, O. B. Non-steady state vs. steady state kinetic analysis of coupled ion transport through binary liquid membranes. J. Membr. Sci. 1993, 76, 27–38; https://doi.org/10.1016/0376-7388(93)87002-s.Search in Google Scholar
60. Zhao, J., Meng, S., Li, D. Coordination reactions in the extraction of cerium (IV) and fluorine (I) by DEHEHP from mixed nitric acid and hydrofluoric acid solutions. Solvent Extr. Ion Exch. 2004, 22, 813–831; https://doi.org/10.1081/sei-200030288.Search in Google Scholar
61. He, D., Luo, X., Yang, C., Ma, M., Wan, Y. Study of transport and separation of Zn (II) by a combined supported liquid membrane/strip dispersion process containing D2EHPA in kerosene as the carrier. Desalination 2006, 194, 40–51; https://doi.org/10.1016/j.desal.2005.10.024.Search in Google Scholar
62. Wannachod, T., Leepipatpiboon, N., Pancharoen, U., Nootong, K. Separation and mass transport of Nd (III) from mixed rare earths via hollow fiber supported liquid membrane: experiment and modeling. Chem. Eng. J. 2014, 248, 158–167; https://doi.org/10.1016/j.cej.2014.03.024.Search in Google Scholar
63. Zebroski, E., Alter, H., Heumann, F. Thorium complexes with chloride, fluoride, nitrate, phosphate and sulfate1. J. Am. Chem. Soc. 1951, 73, 5646–5650; https://doi.org/10.1021/ja01156a044.Search in Google Scholar
64. Sole, K. C., Hiskey, J. B. Solvent extraction of copper by Cyanex 272, Cyanex 302 and Cyanex 301. Hydrometallurgy 1995, 37, 129–147; https://doi.org/10.1016/0304-386x(94)00023-v.Search in Google Scholar
65. Talebi, A., Cesaro, A., Marra, A., Belgiorno, V., Ismail, N. Base metal ion extraction and stripping from WEEE leachate by liquid-liquid extraction. J. Phys. Sci. 2018, 29, 15–28; https://doi.org/10.21315/jps2018.29.s3.3.Search in Google Scholar
66. Çoruh, S., Ergun, O. N. Ni2+ removal from aqueous solutions using conditioned clinoptilolites: kinetic and isotherm studies. Environ. Prog. Sustain. Energy 2009, 28, 162–172.10.1002/ep.10316Search in Google Scholar
67. Erdem, E., Karapinar, N., Donat, R. The removal of heavy metal cations by natural zeolites. J. Colloid Interface Sci. 2004, 280, 309–314; https://doi.org/10.1016/j.jcis.2004.08.028.Search in Google Scholar PubMed
68. Wu, D., Sui, Y., He, S., Wang, X., Li, C., Kong, H. Removal of trivalent chromium from aqueous solution by zeolite synthesized from coal fly ash. J. Hazard Mater. 2008, 155, 415–423; https://doi.org/10.1016/j.jhazmat.2007.11.082.Search in Google Scholar PubMed
69. Gupta, S. S., Bhattacharyya, K. G. Immobilization of Pb (II), Cd (II) and Ni (II) ions on kaolinite and montmorillonite surfaces from aqueous medium. J. Environ. Manag. 2008, 87, 46–58; https://doi.org/10.1016/j.jenvman.2007.01.048.Search in Google Scholar PubMed
70. Kebiche-Senhadji, O., Mansouri, L., Tingry, S., Seta, P., Benamor, M. Facilitated Cd (II) transport across CTA polymer inclusion membrane using anion (Aliquat 336) and cation (D2EHPA) metal carriers. J. Membr. Sci. 2008, 310, 438–445; https://doi.org/10.1016/j.memsci.2007.11.015.Search in Google Scholar
71. Koekemoer, L. R., Badenhorst, M. J., Everson, R. C. Determination of viscosity and density of di-(2-ethylhexyl) phosphoric acid+ aliphatic kerosene. J. Chem. Eng. Data 2005, 50, 587–590; https://doi.org/10.1021/je0496645.Search in Google Scholar
72. Rakesh, K. B., Suresh, A., Rao, P. V. Third phase formation in the extraction of Th (NO3) 4 by tri-n-butyl phosphate and tri-iso-amyl phosphate in n-dodecane and n-tetradecane from nitric acid media. Solvent Extr. Ion Exch. 2014, 32, 249–266; https://doi.org/10.1080/07366299.2013.838499.Search in Google Scholar
73. Rydberg, J., Cox, M., Musikas, C., Chappin, G. Solvent Extraction Principles and Practice, 2nd ed.; M. Dekker: New York, 2004.10.1201/9780203021460Search in Google Scholar
74. Rodden, C. J. Analysis of Essential Nuclear Reactor Materials; New Brunswick Lab. AEC, NJ (United States), 1964.Search in Google Scholar
75. Iqbal, M., Ejaz, M. Chemical separation of molybdenum from uranium and fission product nuclides. J. Radioanal. Chem. 1978, 47, 25–28; https://doi.org/10.1007/bf02517151.Search in Google Scholar
76. Blundy, P. The determination of chromium by a solvent-extraction method. Analyst 1958, 83, 555–558; https://doi.org/10.1039/an9588300555.Search in Google Scholar
77. Roberto Danesi, P., Chiarizia, R., Coleman, C. F. The kinetics of metal solvent extraction. Anal. Chem. 1980, 10, 1–126; https://doi.org/10.1080/10408348008542724.Search in Google Scholar
78. Lazarova, Z., Boyadzhiev, L. Kinetic aspects of copper (II) transport across liquid membrane containing LIX-860 as a carrier. J. Membr. Sci. 1993, 78, 239–245; https://doi.org/10.1016/0376-7388(93)80003-g.Search in Google Scholar
© 2022 Walter de Gruyter GmbH, Berlin/Boston