Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter (O) June 24, 2022

Nondestructive instrumental neutron activation analysis (INAA) of Tecoma stans (L) Juss. Ex Kunth flower samples collected from different sites in Egypt

  • Mohamed A. Ghamry , Fatma H. El-Sweify EMAIL logo and Fatma S. Abdou
From the journal Radiochimica Acta


Chemical and radiochemical studies have been carried out on flower samples of the plant Tecoma stans (L) Juss. Ex Kunth which is now increasingly cultivated all over Egypt because of its many useful properties. This plant is considered as an important source of many medicinal phytochemicals. The flower samples analyzed were collected from plants cultivated at different sites in some governorates in Egypt. Nondestructive instrumental neutron activation analysis (INAA) technique has been performed in order to determine the inorganic elemental contents of these flower samples. INAA has been carried out under chosen irradiation and decay time conditions. Thus, the irradiations have been for under short and long times. The analyzed elements were: Ag, Al, Au, Br, Ca, Ce, Cl, Co, Cr, Cs, Eu, Fe, Hf, K, La, Lu, Mg, Mn, Na, Sb, Sc, Se, Sm, Th, Ti, U, V, Yb, and Zn. Some elements were major or minor elements whereas others were trace elements. 17 elements were found in all analyzed samples where others were only found in some samples. The determined concentrations of some of the analyzed elements were much higher than those found in soil or earth crust, which may indicate that these elements are important. Generally, plants have high tendency to concentrate elements from sites. On the other hand, some other elements are considered toxic, e.g. Ag, Br, Co, Cr, and Sb. Three certified slandered reference materials have been used to assure the accuracy and precision of the INAA technique; these are IAEA soil-7, IAEA 140/TM (seaweed) and IAEA-155 (whey).

Corresponding author: Fatma H. El-Sweify, Hot Laboratories Center, Egyptian Atomic Energy Authority, P.O. Box 13759, Inshas, Cairo, Egypt, E-mail:

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.


1. Aguilar-Santamaría, L., Ramírez, G., Nicasio, P., Alegría-Reyes, C., Herrera-Arellano, A. Antidiabetic activities of Tecoma stans (L.) Juss. ex Kunth. J. Ethnopharmacol. 2009, 124, 284–288. ‏ in Google Scholar PubMed

2. Anburaj, G., Marimuthu, M., Sobiyana, P., Manikandan, R. A review on Tecoma stans. Int. J. Eng. Res. Mod. Educ. 2016, I. ISSN (Online): 43–49.Search in Google Scholar

3. Singh, A., Nagori, B. P., Mathur, K. Review article “Tecoma stan: an important medicinal Plant”. Int. J Pharm. Erud. 2013, 3, 13–21. ISSN 2249–3875.Search in Google Scholar

4. Costantino, L., Raimondib, L., Pirisinob, R., Brunettic, T., Pessottoc, P., Giannessic, F., Lins, A. P., Barloccod, D., Antolinie, L., El-Abady, S. A. Isolation and pharmacological activities of the Tecoma stans alkaloids. Il Farmaco 2003, 58, 781–785; in Google Scholar

5. Anand, M., Basavaraju, R. Antimicrobial efficacy of Tecoma stans (L). Juss ex Kunth. European J. Biotechnol. Biosci. 2019, 7, 27–30.Search in Google Scholar

6. Anburaj, G., Marimuthu, M., Rajasudha, V., Manikandan, R. In vitro anti-cancer activity Tecoma stans against human breast cancer yellow elder (Tecoma stans). J. Pharmacogn. Phytochem. 2016, 5, 331–334. E-ISSN: 2278–4136, P-ISSN: 2349–8234.Search in Google Scholar

7. Lakshmi Prasanna, V., Lakshman, K., Hegde, M. M., Bhat, V. Antinociceptive and anti-inflammatory activity of tecoma stans leaf extracts. Indian J. Res. Pharm. Biotechnol. 2013, 1, 156.Search in Google Scholar

8. Hariram, M., Vivekanandhan, S., Ganesan, V., Muthuramkumar, S., Rodriguez-Uribe, A., Mohanty, A. K., Misra, M. Tecoma stans flower extract assisted biogenic synthesis of functional Ag–Talc nanostructures for antimicrobial applications. Bioresour. Technol. Rep. 2019, 7, 100298. in Google Scholar

9. Ghamry, M. A., El-Sweify, F. H., Abdel-Fattah, A. A., Aly, S. M., El-Shahat, M. F. Instrumental neutron activation analysis of lanthanides and coexisting elements in monazite samples and group separation using synthesized inorganic ion exchangers. Radiochim. Acta 2020, 108, 901–912. in Google Scholar

10. El-Sweify, F. H., Abdel-Fattah, A. A., Ghamry, M. A., Aly, S. M., El-Shahat, M. F. Instrumental neutron activation analysis of Egyptian phosphate samples and adsorption studies of their elemental contents. Radiochemistry 2020, 62, 639–651; in Google Scholar

11. El-Sweify, F. H., El-Amir, M. A., Mostafa, M., Ramadan, H. E., Rashad, G. M. Simultaneous multi-element determination in different seed samples of dodonaea viscosa hopseed using instrumental neutron activation analysis. Radiochim. Acta 2016, 104, 211–220; in Google Scholar

12. Tadros, N. A., El-Sweify, F. H. Use of neutron activation analysis for determination of gold in some human scalp-hair samples. J. Radioanal. Nucl. Chem. 2011, 290, 253–259. in Google Scholar

13. Metwally, E., El-Sweify, A. H. H., Abd El-Khalik, H., El-Sweify, F. H. Use of instrumental neutron activation analysis for determination of some trace elements of biological importance in different jute (corchorus capsularis) seed samples. Arab, J. Nucl. Sci. Appl. 2004, 37, 53. OSTI ID:20452500.Search in Google Scholar

14. El-Shazly, E. A. A., Abo Zahra, Sh. F., El-Sweify, F. H., Kanias, G. G. Simultaneous multi-element determination in some cosmetic samples of different origin using neutron activation analysis. Radiochim. Acta 2004, 92, 111. in Google Scholar

15. El-Sweify, F. H., Metwally, E., Abdel-Khalik, H. Simultaneous multi-element analysis of some edible pulses using neutron activation analysis. J. Radioanal. Nucl. Chem. 2007, 273, 491–496. in Google Scholar

16. El-Sweify, F. H., El-Shazly, E. A. A., Abo-Zahra, Sh. F. Analysis of some human-daily used products for some elements using INAA and γ-spectroscopy. In Proc. 9th Int. Conf. “Chemistry and its Role in Development (ICCRD’9)”, Mansoura-Sharm El-Kheikh, April 16–19, 2007.Search in Google Scholar

17. El-Sweify, F. H., Metwally, E., Abdel-Khalik, H. Analysis of pencil graphite samples of various origins using instrumental neutron activation analysis. Radiochim. Acta 2008, 96, 63; in Google Scholar

18. El-Sweify, F. H., El-Sweify, A. H. H., Abd El-Razek, A. M. Multielements determination in samples of some organs of flax, field soil and irrigation water using neutron activation analysis. Arab J. Nucl. Sci. App. 1997, 30, 199.Search in Google Scholar

19. Gharib, A. G., Fatemi, K., Madadi, M., Rafiee, H., Darali- zadeh, S. h. The importance of nuclear analytical techniques in the determination of mineral micronutrients in Iranian daily diets part 1. J. Radioanal. Nucl. Chem. 2001, 249, 551.10.1023/A:1013285912914Search in Google Scholar

20. Abdel-Halim, A., Metwally, E., El-Dessouky, M. Environmental pollution study around a large industrial area near Cairo, Egypt. J. Radioanal. Nucl. Chem. 2003, 257, 123–124; in Google Scholar

21. Akhter, P., Orfi, S. D., Mohammad, D., Kawamura, H., Iaraki, I., Ahmed, N. Analytical procedure for the determination of thorium, zinc and potassium in diet samples. J. Radioanal. Nucl. Chem. 2002, 253, 317; in Google Scholar

22. Serfor-Armah, Y., Akaho, E. H. K., Nyarko, B. J. B., Kyere, A. W. K. Application of instrumental neutron activation analysis to plant medicines in Ghana: a review. J. Radioanal. Nucl. Chem. 2003, 257, 125; in Google Scholar

23. Hall, G. E. M., Bohham-Carter, G. F., Maclaurin, A. I., Ballantyne, S. B. Comparison of instrumental neutron activation analysis of geological materials with other multielement techniques. Talanta 1990, 37, 135; in Google Scholar

24. Attallah, M. F., Abdou, F. S., Aly, H. F. Microanalysis and signature of rare earth elements in geochemical samples using neutron activation analysis. Radiochim. Acta 2021, 109, 225–232; in Google Scholar

25. Soliman, M., Mohamed, N. M. A., Gahen, M., Saad, E. A., Yousef, S. K., Sohsah, M. A. Implementation of k0-standardization method of the INAA at ETRR-2 research reactor. J. Radioanal. Nucl. Chem. 2011, 287, 629–634; in Google Scholar

26. De Corte, F., Simonits, A., Hoste, J., De Wispelaere, A. Accuracy and applicability of the k0-standardization method. J. Radioanal. Chem. 1987, 113, 145–161; in Google Scholar

27. Moens, L., De Corte, F., De Wispelaere, A., Hoste, J., Simonits, A., Elek, A., Szabo, E. k0-measurements and related nuclear data compilation for (n, γ) reactor neutron activation analysis, part II. J. Radioanal. Nucl. Chem. 1984, 82, 385–452; in Google Scholar

28. De Corte, F. The standardization of standardless NAA. J. Radioanal. Nucl. Chem. 2001, 248, 13–20. in Google Scholar

29. Seelmann-Eggebert, W., Pfennig, G., Münzel, H., Klewe-Nebenius, H.. Chart of the Nuclides; Kernforschungszentrum Karlsruhe (KfK); Gersbach & Sohn Verlag: Karlsruhe, Germany, 1981.Search in Google Scholar

30. Adriano, D. C. Trace elements in terrestrial environments; Springer: Aitken, SC, USA, 1992.Search in Google Scholar

31. Pohanish Richard, P., Greene Stanley, A. McGraw-Hill’s Hazardous Chemistry Safety Guide for the Plastics Industry; MCGraw - Hill Companies: New York, 2000.Search in Google Scholar

32. Greenwood, N. N., Earnshaw, A. Chemistry of the Elements; Butterworth: London, 1997.Search in Google Scholar

33. Hathaway, B. J., Wilkinson, G., Gillard, R. D., Cleverty, J. A. Comprehensive Coordination Chemistry, Vol. 5; Pergamon Press R.J: Lancachire, 1987; pp. 775–859. Silver Chap. 54.Search in Google Scholar

Received: 2022-03-02
Accepted: 2022-05-09
Published Online: 2022-06-24
Published in Print: 2022-10-26

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 3.12.2023 from
Scroll to top button