Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter (O) August 9, 2022

Study of activation cross sections of proton induced reactions on natBa and natCe near their threshold energy regions

  • Mohamed Sobhi Abdelshafy , Bahaa Mohamed Ali , Karima Elsayed Abd Elmageed , Hassan Omar Nafie , H. Ebrahim Hassan and Mogahed Al-Abyad EMAIL logo
From the journal Radiochimica Acta


Activation cross-sections of the nuclear reactions natBa(p,x)135,132gLa, 135mBa and natCe(p,x)142,139,138mPr, 141,139,137mCe have been measured experimentally at the MGC-20 cyclotron, Cairo, Egypt, from their respective threshold energies up to about 14.7 MeV. Stacked foil irradiation technique and high-resolution gamma-ray spectroscopy were used. A comparison between the experimental and theoretical data derived from the nuclear model codes EMPIRE and TALYS (in the form of the TENDL library) was performed. The agreement in the low-energy region is fairly good. Integral yields of the produced radioisotopes were estimated from the present cross-section data and the results are discussed in terms of their production possibilities.

Corresponding author: Mogahed Al-Abyad, Experimental Nuclear Physics Department, Cyclotron Facility, Nuclear Research Centre, Egyptian Atomic Energy Authority, Cairo 13759, Egypt, E-mail:

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.


1. Qaim, S. M., Hussain, M., Spahn, I., Neumaier, B. Continuing nuclear data research for production of accelerator-based novel radionuclides for medical use: a mini-review. Front. Phys. 2021, 9, 16; in Google Scholar

2. Qaim, S. M. Medical Radionuclide Production-Science and Technology; De Gruyter: Berlin Boston, 2019.10.1515/9783110604375Search in Google Scholar

3. Qaim, S. M., Scholten, B., Spahn, I., Neumaier, B. Positron-emitting radionuclides for applications, with special emphasis on their production methodologies for medical use. Radiochim. Acta 2019, 107, 1011; in Google Scholar

4. Hilaire, S., Bauge, E., Huu-Tai, P. C., Dupuis, M., Péru, S., Roig, O., Romain, P., Goriely, S. Potential sources of uncertainties in nuclear reaction modeling. EPJ. Nucl. Sci. Technol. 2018, 4, 1; in Google Scholar

5. Al-Abyad, M., Hassan, H. E., Mohamed, G. Y., Saleh, Z. A., Comsan, M. N. H., Azzam, A. Nuclear reaction data for medical and industrial applications: recent contributions by Egyptian cyclotron group. Radiochim. Acta 2022, 110, 675; in Google Scholar

6. Qaim, S. M. Nuclear data for production and medical application of radionuclides: present status and future needs. Nucl. Med. Biol. 2017, 44, 31; in Google Scholar PubMed

7. Stöcklin, G., Qaim, S. M., Rösch, F. The impact of radioactivity on medicine. Radiochim. Acta 1995, 70, 249; in Google Scholar

8. Herzog, H., Rösch, F., Stöcklin, G., Lueders, C., Qaim, S. M., Feinendegen, L. E. Measurement of pharmacokinetics of yttrium-86 radiopharmaceuticals with PET and radiation dose calculation of analogous yttrium-90 radiotherapeutics. J. Nucl. Med. 1993, 34, 2222.Search in Google Scholar

9. Rösch, F., Herzog, H., Qaim, S. M. The beginning and development of the theranostic approach in nuclear medicine, as exemplified by the radionuclide pair 86Y and 90Y. Pharmaceuticals 2017, 10, 56; in Google Scholar PubMed PubMed Central

10. Qaim, S. M. Theranostic radionuclides: recent advances in production methodologies. J. Radioanal. Nucl. Chem. 2019, 322, 1257; in Google Scholar

11. Qaim, S. M., Scholten, B., Neumaier, B. New developments in the production of theranostic pairs. J. Radioanal. Nucl. Chem. 2018, 318, 1493; in Google Scholar

12. Velikyan, I. Molecular imaging and radiotherapy: theranostics for personalized patient management. Theranostics 2012, 2, 424; in Google Scholar PubMed PubMed Central

13. Aluicio-Sarduy, E., Thiele, N. A., Martin, K. E., Vaughn, B. A., Devaraj, J., Olson, A. P., Barnhart, T. E., Wilson, J. J., Boros, E., Engle, J. W. Establishing radiolanthanum chemistry for targeted nuclear medicine applications. Chem. Eur. J. 2020, 26, 1238; in Google Scholar

14. Fonslet, J., Lee, B. Q., Tran, T. A., Siragusa, M., Jensen, M., Kibédi, T., Stuchbery, A. E., Severin, G. W. 135La as an Auger-electron emitter for targeted internal radiotherapy. Phys. Med. Biol. 2018, 63, 015026; in Google Scholar PubMed

15. Aluicio-Sarduy, E., Hernandez, R., Olson, A. P., Barnhart, T. E., Cai, W., Ellison, P. A., Engle, J. W. Production and in vivo PET/CT imaging of the theranostic pair 132/135La. Sci. Rep. 2019, 9, 10658; in Google Scholar PubMed PubMed Central

16. Bakht, M. K., Sadeghi, M. Internal radiotherapy techniques using radiolanthanide praseodymium-142: a review of production routes, brachytherapy, unsealed source therapy. Ann. Nucl. Med. 2011, 25, 529; in Google Scholar PubMed

17. Neves, M., Kling, A., Oliveira, A. Radionuclides used for therapy and suggestion for new candidates. J. Radioanal. Nucl. Chem. 2005, 266, 377; in Google Scholar

18. Steyn, G. F., Vermeulen, C., Nortier, F. M., Szelecsényi, F., Kovács, Z., Qaim, S. M. Production of no-carrier-added 139Pr via precursor decay in the proton bombardment of natPr. Nucl. Instrum. Methods B 2006, 252, 149; in Google Scholar

19. Nelson, B. J. B., Ferguson, S., Wuest, M., Wilson, J., Duke, M. J. M., Richter, S., Jans, H. S., Andersson, J. D., Juengling, F., Wuest, F. First in vivo and phantom imaging of cyclotron produced 133La as a theranostic radionuclide for 225Ac and 135La. J. Nucl. Med. 2022, 63, 584; in Google Scholar PubMed PubMed Central

20. Nelson, B. J. B., Wilson, J., Andersson, J. D., Wuest, F. High yield cyclotron production of a novel 133/135La theranostic pair for nuclear medicine. Sci. Rep. 2020, 10, 22203; in Google Scholar PubMed PubMed Central

21. Bakht, M. K., Sadeghi, M., Tenreiro, C. A novel technique for simultaneous diagnosis and radioprotection by radioactive cerium oxide nanoparticles: study of cyclotron production of Ce-137m. J. Radioanal. Nucl. Chem. 2012, 292, 53; in Google Scholar

22. Zielhuis, S. W., Seppenwoolde, J. H., Mateus, V. A., Bakker, C. J., Krijger, G. C., Storm, G., Zonnenberg, B. A., van het Schip, A. D., Koning, G. A., Nijsen, J. F. Lanthanide-loaded liposomes for multimodality imaging and therapy. Cancer Biother. Radiopharm. 2006, 21, 520; in Google Scholar

23. Du Raan, H., Du Toit, P. D., van Aswegen, A., Lötter, M. G., Herbst, C. P., van der Walt, T. N., Otto, A. C. Implementation of a Tc-99m and Ce-139 scanning line source for attenuation correction in SPECT using a dual opposing detector scintillation camera. Med. Phys. 2000, 27, 1523; in Google Scholar

24. Prescher, K., Peiffer, F., Stueck, R., Michel, R., Bodemann, R., Rao, M. N., Mathew, K. J. Thin-target cross sections of proton-induced reactions on barium and solar cosmic ray production rates of xenon-isotopes in lunar surface materials. Nucl. Instrum. Meth .B 1991, 53, 105 in Google Scholar

25. Michel, R., Bodemann, R., Busemann, H., Daunke, R., Gloris, M., Lange, H. J., Klug, B., Krins, A., Leya, I., Lüpke, M., Neumann, S., Reinhardt, H., Schnatz-Büttgen, M., Herpers, U., Schiekel, Th., Sudbrock, F., Holmqvist, B., Condé, H., Malmborg, P., Suter, M., Dittrich-Hannen, B., Kubik, P. W., Synal, H. A., Filges, D. Cross sections for the production of residual nuclides by low- and medium-energy protons from the target elements C, N, O, Mg, Al, Si, Ca, Ti, V, Mn, Fe, Co, Ni, Cu, Sr, Y, Zr, Nb, Ba and Au. Nucl. Instrum. Methods B 1997, 129, 153; in Google Scholar

26. Tárkányi, F., Ditrói, F., Kiraly, B., Takács, S., Hermanne, A., Yamazaki, H., Baba, M., Mohammadi, A., Ignatyuk, A. V. Study of activation cross sections of proton induced reactions on barium: production of 131Ba→131Cs. Appl. Radiat. Isot. 2010, 68, 1869; in Google Scholar

27. Tárkányi, F., Hermanne, A., Ditrói, F., Takács, S., Spahn, I., Spellerberg, S. Activation cross-section measurement of proton induced reactions on cerium. Nucl. Instrum. Methods B 2017, 412, 46; in Google Scholar

28. Verdieck, E. V., Miller, J. M. Radiative capture and neutron emission in La139+α and Ce142+p. Phys. Rev. 1967, 153, 1253; in Google Scholar

29. Furukawa, M. Excitation functions for proton-induced reactions of 140Ce and 142Ce up to Ep = 15 MeV. Nucl. Phys. A 1967, 90, 253; in Google Scholar

30. Blosser, H. G., Handley, T. H. Survey of (p,n) reactions at 12 MeV. Phys. Rev. 1955, 100, 1340; in Google Scholar

31. Zeisler, S. K., Becker, D. W. A pellet method for the measurement of excitation functions: cross-sections for 140Ce(p,2n)139Pr and 140Ce(p,3n)138mPr. Nucl. Instrum. Methods B 2000, 160, 216; in Google Scholar

32. Rösch, F., Qaim, S. M., Stocklin, G. Nuclear data relevant to the production of the positron emitting radioisotope 86Y via the 86Sr(p, n) and natRb(3He, xn)-processes. Radiochim. Acta 1993, 61, 1; in Google Scholar

33. Hassan, H. E., Qaim, S. M., Shubin, Yu., Azzam, A., Morsy, M., Coenen, H. H. Experimental studies and nuclear model calculations on proton-induced reactions on natSe, 76Se and 77Se with particular reference to the production of the medically interesting radionuclides 76Br and 77Br. Appl. Radiat. Isot. 2004, 60, 899; in Google Scholar PubMed

34. Hamed, A. S., Ali, I. A., El Ghazaly, M., Hassan, H. E., Al-Abyad, M. Multifunctional radioactive ZnO/NiFe2O4 nanocomposite for theranostic applications. Eur. Phys. J. Plus 2021, 136, 1118; in Google Scholar

35. Tárkányi, F., Takács, S., Gul, K., Hermanne, A., Mustafa, M. G., Nortier, M., Oblozinsky, P., Qaim, S. M., Scholten, B., Shubin, Yu. N., Youxiang, Z. Charged particle cross-section database for medical radioisotope production: diagnostic radioisotopes and monitor reactions. IAEA-TECDOC 2001, 1211, 49.Search in Google Scholar

36. Andersen, H. H., Ziegler, J. F. Hydrogen Stopping Powers and Ranges in All Elements. The Stopping and Ranges of Ions in Matter; Pergamon Press, 1977.Search in Google Scholar

37. Ziegler, J. F., Ziegler, M. D., Biersack, J. P. SRIM 2013 code. in Google Scholar

38. Canberra, Genie 2000 Spectroscopy Software Operations User’s Manual, V3.4; Canberra Industries. Inc.: Meriden, CT, 2015.Search in Google Scholar

39. NuDat 3.0 database. Data source: NNDC, Brookhaven National Laboratory, based on ENSDF and the nuclear Wallet Cards. in Google Scholar

40. Livechart of Nuclides. IAEA decay data retrieval code. in Google Scholar

41. Duchemin, C., Guertin, A., Haddad, F., Michel, N., Métivier, V. 232Th(d,4n)230Pa cross-section measurements at ARRONAX facility for the production of 230U. Nucl. Med. Biol. 2014, 41, 19; in Google Scholar PubMed

42. Pritychenko, B., Sonzogni, A. Q-Calc, Q-Value Calculator; NNDC, Brookhaven National Laboratory: Upton, NY, USA, 2022. in Google Scholar

43. Herman, M., Capote, R., Carlson, B. V., Oblozinsky, P., Sin, M., Trkov, A., Wienke, H., Zerkin, V. EMPIRE: nuclear reaction model code system for data evaluation. Nucl. Data Sheets 2007, 108, 2655; in Google Scholar

44. Capote, R., Herman, M., Obložinský, P., Young, P. G., Goriely, S., Belgya, T., Ignatyuk, A. V., Koning, A. J., Hilaire, S., Plujko, V. A., Avrigeanu, M., Bersillon, O., Chadwick, M. B., Fukahori, T., Ge, Z., Han, Y., Kailas, S., Kopecky, J., Maslov, V. M., Reffo, G., Sin, M., Soukhovitskii, E. Sh., Talou, P. RIPL – reference input parameter library for calculation of nuclear reactions and nuclear data evaluations. Nucl. Data Sheets 2009, 110, 3107; in Google Scholar

45. Koning, A. J., Rochman, D., Sublet, J., Dzysiuk, N., Fleming, M., van der Marck, S. TENDL: complete nuclear data library for innovative nuclear science and technology. Nucl. Data Sheets 2019, 155, 1; in Google Scholar

Received: 2022-05-13
Accepted: 2022-07-13
Published Online: 2022-08-09
Published in Print: 2022-11-25

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 29.9.2023 from
Scroll to top button