Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter (O) November 29, 2022

Cross sections and calculated yields of some radionuclides of yttrium, strontium and rubidium formed in proton-induced reactions on enriched strontium-86: possibility of production of 85gSr, 83Rb and 82mRb in no-carrier-added form

  • M. Shuza Uddin EMAIL logo , M. Shamsuzzoha Basunia , Ingo Spahn , Stefan Spellerberg , Rahat Khan , M. Mezbah Uddin , Lee A. Bernstein , Bernd Neumaier and Syed M. Qaim
From the journal Radiochimica Acta

Abstract

Cross sections of the 86Sr(p,3n)84mY, 86Sr(p,αn)82mRb, and 86Sr(p,x)85gSr reactions were measured from their respective thresholds up to 16.2 MeV and from 23.0 to 44.1 MeV at FZJ, and from 14.3 to 24.5 MeV at LBNL, using 96.4% enriched 86SrCO3 as target material. Thin targets prepared by sedimentation were irradiated with protons in a stacked-form, and the induced radioactivity was measured by high-resolution γ-ray spectrometry. Nuclear model calculations based on the code TALYS reproduced our experimental cross section data well. From the excitation functions, the integral yields of the above three radionuclides were calculated. The yield of 85gSr via the natSr(n,γ) process was also measured using the TRIGA Mark-II reactor at AERE, Savar. A comparison of the reactor and cyclotron production of carrier-added 85gSr is given. The production possibilities of the three investigated radionuclides in no-carrier-added forms at a 30 MeV cyclotron via new routes are discussed.


Corresponding author: M. Shuza Uddin, Institut für Neurowissenschaften und Medizin, INM-5: Nuklearchemie, Forschungszentrum Jülich, D-52425 Jülich, Germany; and Institute of Nuclear Science and Technology, Atomic Energy Research Establishment, Savar, Dhaka, Bangladesh, E-mail:

Acknowledgments

M.S. Uddin thanks the Alexander von Humboldt (AvH) Foundation in Germany for financial support and the authorities of Bangladesh Atomic Energy Commission and Ministry of Science and Technology, Dhaka, Bangladesh, for granting leave of absence to conduct these experiments abroad at FZJ. The LBNL component of this research was supported by the U.S. Department of Energy Isotope Program, managed by the Office of Science for Isotope R&D and Production under contract DE-AC02-05CH11231. We all thank the operation crews of the three cyclotrons (88-Inch at LBNL; BC1710 and JULIC at FZJ) and of the TRIGA reactor at AERE, Savar, for experimental assistance.

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Qaim, S. M. Medical Radionuclide Production–Science and Technology; De Gruyter: Berlin/Boston, 2020; pp. 1–288.10.1515/9783110604375Search in Google Scholar

2. Radioisotopes in Medicine; World Nuclear Association: Tower House, London, UK. world-nuclear.org/Information-Library/Non-power-nuclear-applications/Radioisotopes-Research/Radioisotopes-in-Medicine.aspx (accessed Apr, 2022).Search in Google Scholar

3. Qaim, S. M., Scholten, B., Neumaier, B. New developments in the production of theranostic pairs of radionuclides. J. Radioanal. Nucl. Chem. 2018, 318, 1493–1509; https://doi.org/10.1007/s10967-018-6238-x.Search in Google Scholar

4. Rösch, F., Herzog, H., Qaim, S. M. The beginning and development of the theranostic approach in nuclear medicine, as exemplified by the radionuclide pair 86Y and 90Y. Pharmaceuticals 2017, 10, 56; https://doi.org/10.3390/ph10020056.Search in Google Scholar PubMed PubMed Central

5. Uddin, M. S., Scholten, B., Basunia, M. S., Sudár, S., Spellerberg, S., Voyles, A. S., Morrell, J. T., Zaneb, H., Rios, J. A., Spahn, I., Bernstein, L. A., Qaim, S. M., Neumaier, B. Accurate determination of production data of the non-standard positron emitter 86Y via the 86Sr(p,n)-reaction. Radiochim. Acta 2020, 108, 747–756; https://doi.org/10.1515/ract-2020-0021.Search in Google Scholar

6. Uddin, M. S., Basunia, M. S., Sudár, S., Scholten, B., Spellerberg, S., Voyles, A. S., Morrell, J. T., Fox, M. B., Spahn, I., Felden, O., Gebel, R., Bernstein, L. A., Neumaier, B., Qaim, S. M. Excitation functions of proton-induced nuclear reactions on 86Sr, with particular emphasis on the formation of isomeric states in 86Y and 85Y. Eur. Phys. J. A 2022, 58, 67; https://doi.org/10.1140/epja/s10050-022-00714-w.Search in Google Scholar

7. NuDat 3.0. https://www.nndc.bnl.gov/nudat3/.Search in Google Scholar

8. Kastleiner, S., Qaim, S. M., Nortier, F. M., Blessing, G., van der Walt, T. N., Coenen, H. H. Excitation functions of 85Rb(p,xn)85m,g,83,82,81Sr reactions up to 100 MeV: integral tests of cross sections data, comparison of production routes of 83Sr and thick target yield of 82Sr. Appl. Radiat. Isot. 2002, 56, 685–695; https://doi.org/10.1016/s0969-8043(01)00267-6.Search in Google Scholar PubMed

9. Ido, T., Hermanne, A., Ditrói, F., Szűcs, Z., Mahunka, I., Tárkányi, F. Excitation functions of proton induced nuclear reactions on natRb from 30 to 70 MeV. Implication for the production of 82Sr and other medically important Rb and Sr radioisotopes. Nucl. Instrum. Methods Phys. Res., Sect. B 2002, 194, 369–388; https://doi.org/10.1016/s0168-583x(02)00958-8.Search in Google Scholar

10. Qaim, S. M., Steyn, G. F., Spahn, I., Spellerberg, S., van der Walt, T. N., Coenen, H. H. Yield and purity of 82Sr produced via the natRb(p,xn)82Sr process. Appl. Radiat. Isot. 2007, 65, 247–252; https://doi.org/10.1016/j.apradiso.2006.08.001.Search in Google Scholar PubMed

11. Kovács, Z., Tárkányi, F., Qaim, S. M., Stöcklin, G. Excitation functions for the formation of some radioisotopes of rubidium in proton induced nuclear reactions on natKr, 82Kr and 83Kr with special reference to the production of 81Rb(81mKr) generator radionuclide. Appl. Radiat. Isot. 1991, 42, 329–335; https://doi.org/10.1016/0883-2889(91)90134-m.Search in Google Scholar

12. Kovács, Z., Tárkányi, F., Qaim, S. M., Stöcklin, G. Production of 6.5 h 82mRb via the 82Kr(p,n)-process at a low-energy cyclotron—a potential substitute for 82Rb. Appl. Radiat. Isot. 1991, 42, 831–834; https://doi.org/10.1016/0883-2889(91)90220-u.Search in Google Scholar PubMed

13. Hermanne, A., Ignatyuk, A. V., Capote, R., Carlson, B. V., Engle, J. W., Kellett, M. A., Kibedi, T., Kim, G., Kondev, F. G., Hussain, M., Lebeda, O., Luca, A., Nagai, Y., Naik, H., Nichols, A. L., Nortier, F. M., Suryanarayana, S. V., Takács, S., Tárkányi, F., Verpelli, M. Reference cross sections for charged-particle monitor reactions. Nucl. Data Sheets 2018, 148, 338–382; https://doi.org/10.1016/j.nds.2018.02.009.Search in Google Scholar

14. Uddin, M. S., Sudár, S., Hossain, S. M., Khan, R., Zulquarnain, M. A., Qaim, S. M. Fast neutron spectrum unfolding of a TRIGA Mark II reactor and measurement of spectrum-averaged cross sections: integral tests of differential cross sections of neutron threshold reactions. Radiochim. Acta 2013, 101, 613–620; https://doi.org/10.1524/ract.2013.2073.Search in Google Scholar

15. Fitzgerald, J. JF Computing Services, 17 Chapel Road, Stanford in the Vale, Oxfordshire, SN7 8LE. Copyright © Jim Fitzgerald 1991–2016 (accessed Oct 8, 2016).Search in Google Scholar

16. Uddin, M. S., Qaim, S. M., Scholten, B., Basunia, M. S., Bernstein, L. A., Spahn, I., Neumaier, B. Positron emission intensity in the decay of 86gY for use in dosimetry studies. Molecules 2022, 27, 768; https://doi.org/10.3390/molecules27030768.Search in Google Scholar PubMed PubMed Central

17. Calamand, A. Cross sections for fission neutron spectrum induced reactions. In Handbook on Nuclear Activation Cross Sections. Technical Report No. 156, IAEA: Vienna, 1974; pp. 273.Search in Google Scholar

18. Koning, A. J., Hilaire, S., Duijvestijn, M. C. TALYS-1.0. In Proc. International Conference on Nuclear Data for Science and Technology, April 22–27, 2007; Bersillon, O., Gunsing, F., Bauge, E., Jacqmin, R., Leray, S., Eds. EDP Sciences: Nice, France, 2008; pp. 211–214.10.1051/ndata:07767Search in Google Scholar

19. Koning, A. J., Rochman, D., van der Marck, S. C., Kopecky, J., Sublet, J. Ch., Pomp, S., Sjostrand, H., Forrest, R., Bauge, E., Henriksson, H., Cabellos, O., Goriely, S., Leppanen, I., Leeb, H., Plompen, A., Mills, R. TENDL-2019: TALYS-Based Evaluated Nuclear Data Library; IAEA: Vienna, 2019.Search in Google Scholar

20. Capote, R., Herman, M., Oblozinsky, P., Young, P., Goriely, S., Belgya, T., Ignatyuk, A., Koning, A. J., Hilaire, S., Plujko, V., Avrigeanu, M., Chadwick, O. B. M., Fukahori, T., Kailas, S., Kopecky, J., Maslov, V., Reffo, G., Sin, M., Soukhovitskii, E., Talou, P., Yinlu, H., Zhigang, G. RIPL 3: reference input parameter library for calculation of nuclear reactions and nuclear data evaluations. Nucl. Data Sheets 2009, 110, 3107; https://doi.org/10.1016/j.nds.2009.10.004.Search in Google Scholar

21. Sudár, S., Qaim, S. M. Mass number and excitation energy dependence of the Θeff/Θrig parameter of the spin cut-off factor in the formation of an isomeric pair. Nucl. Phys. 2018, 979, 113–142; https://doi.org/10.1016/j.nuclphysa.2018.09.039.Search in Google Scholar

22. Levkovskii, V. N. Activation cross sections for nuclides of average masses (A=40–100) by protons and alpha-particles with average energies (E=10–50 MeV). In Experiment and Systematics; Inter-Vesy: Moscow, 1992.Search in Google Scholar

23. Qaim, S. M., Sudár, S., Scholten, B., Koning, A. J., Coenen, H. H. Evaluation of excitation functions of 100Mo(p,d+pn)99Mo and 100Mo (p,2n)99mTc reactions: estimation of long-lived Tc-impurity and its implication on the specific activity of cyclotron-produced 99mTc. Appl. Radiat. Isot. 2014, 85, 101–113; https://doi.org/10.1016/j.apradiso.2013.10.004.Search in Google Scholar PubMed

24. Krane, K. S. Cross sections and isomer ratios in the Rb(n,γ) and Sr(n,γ) reactions. Eur. Phys. J. A 2021, 57, 19; https://doi.org/10.1140/epja/s10050-020-00299-2.Search in Google Scholar

25. Farina Arbocco, F., Vermaercke, P., Smits, K., Sneyers, L., Strijckmans, K. Experimental determination of k0, Q0 factors, effective resonance energies and neutron cross-sections for 37 isotopes of interest in NAA. J. Radioanal. Nucl. Chem. 2014, 302, 655; https://doi.org/10.1007/s10967-014-3281-0.Search in Google Scholar

26. Heft, R. E. A consistent set of nuclear-parameter values for absolute instrumental neutron activation analysis. In Conf. on Computers in Activation Analysis and Gamma-ray Spectroscopy; Department of Energy: Washington, DC, 1978; pp. 495–510.Search in Google Scholar

27. Van der Linden, R., De Corte, F., Van Den Winkel, P., Hoste, J. A compilation of infinite dilution resonance integrals. J. Radioanal. Chem. 1972, 11, 133; https://doi.org/10.1007/bf02518625.Search in Google Scholar

28. ENDF/B-VIII.0, 2018; National Nuclear Data Center, Brookhaven National Laboratory: USA. Database version of 20 December 2018. https://www.nndc.bnl.gov/endf/.Search in Google Scholar

29. Breunig, K. Radiochemische untersuchungen zur abtrennung von trägerarmem radioyttrium aus bestrahlten strontiumtargets mittels festphasenextraktion. M.Sc. thesis, Köln University, FZJ, 2011.Search in Google Scholar

30. Rösch, F., Qaim, S. M., Stöcklin, G. Production of the positron emitting radioisotope 86Y for nuclear medical application. Appl. Radiat. Isot. 1993, 44, 677–681; https://doi.org/10.1016/0969-8043(93)90131-s.Search in Google Scholar

31. Kettern, K., Linse, K.-H., Spellerberg, S., Coenen, H. H., Qaim, S. M. Radiochemical studies relevant to the production of 86Y and 88Y at a small-sized cyclotron. Radiochim. Acta 2002, 90, 845–849; https://doi.org/10.1524/ract.2002.90.12_2002.845.Search in Google Scholar

Received: 2022-08-31
Accepted: 2022-11-09
Published Online: 2022-11-29
Published in Print: 2023-02-23

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 30.11.2023 from https://www.degruyter.com/document/doi/10.1515/ract-2022-0086/html
Scroll to top button