Skip to content
BY-NC-ND 4.0 license Open Access Published by De Gruyter Open Access March 28, 2019

Evolution of Dirac Cone in Disclinated Graphene

  • M.A. Rozhkov , A.L. Kolesnikova , I. Hussainova , M.A. Kaliteevskii , T.S. Orlova , Yu.Yu. Smirnov , I.S. Yasnikov , L.V. Zhigilei , V.E. Bougrov and A.E. Romanov EMAIL logo

Abstract

Graphene crystals, containing arrays of disclination defects, are modeled and their energies are calculated using molecular dynamics (MD) simulation technique. Two cases are analyzed in details: (i) pseudo-graphenes, which contain the alternating sign disclination ensembles and (ii) graphene with periodic distribution of disclination quadrupoles. Electronic band structures of disclinated graphene crystals are calculated in the framework of density functional theory (DFT) approach. The evolution of the Dirac cone and magnitude of band gap in the band structure reveal a dependence on the density of disclination quadrupoles and alternating sign disclinations. The electronic properties of graphene with disclination ensembles are discussed.

References

[1] S. Stankovich, D.A. Dikin, G.H. Dommett, K.M. Kohlhaas, E.J. Zimney, E.A. Stach, R.D. Piner, S.T. Nguyen and R.S. Ruoff // Nature 442 (2006) 282.Search in Google Scholar

[2] A.A. Balandin // Nature Materials 10 (2011) 569.Search in Google Scholar PubMed

[3] I.W. Frank, D.M. Tanenbaum,A.M. van der Zande and P.L. McEuen // J. Vac. Sci Technol. B 25 (2007) 2558.10.1116/1.2789446Search in Google Scholar

[4] J. Wang, Sh. Deng, Zh. Liu and Zh. Liu // Natl. Sci. Rev. 2(1) (2015) 22.Search in Google Scholar

[5] K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, M.I. Katsnelson, I.V. Grigorieva, S.V. Dubonos andA.A. Firsov // Nature 438(7065) (2005) 197.10.1038/nature04233Search in Google Scholar PubMed

[6] Y.B. Zhang, Y.W. Tan, H.L. Stormer and P. Kim // Nature 438(7065) (2005) 201.10.1038/nature04235Search in Google Scholar PubMed

[7] Zh.H. Ni, T.Yu, Y.H. Lu, Y.Y. Wang, Y.P. Feng and Z.X. Shen // ACS Nano 2 (2008) 2301.10.1021/nn800459eSearch in Google Scholar PubMed

[8] F. Hao, D. Fang and Z. Xu // Appl. Phys. Lett. 99 (2011) 041901.10.1063/1.3615290Search in Google Scholar

[9] R. Grantab, V.B. Shenoy and R.S. Ruoff // Science 330(6006) (2010) 946.10.1126/science.1196893Search in Google Scholar PubMed

[10] J. Lahiri, Y. Lin, P. Bozkurt, I.I. Oleynik and M. Batzill // Nature Nanotechnology 5 (2010) 326.10.1038/nnano.2010.53Search in Google Scholar PubMed

[11] A. Bagri, S.-P. Kim, R.S. Ruoff and V.B. Shenoy // Nano Letters 11 (2011) 3917.10.1021/nl202118dSearch in Google Scholar PubMed

[12] F. Banhart, J. Kotakoski and A.V. Krasheninnikov // ACS Nano 5 (2010) 26.10.1021/nn102598mSearch in Google Scholar PubMed

[13] L. Liu, M. Qing, Y. Wang and S. Chen // J. Mater. Sci. Technol. 31(6) (2015) 599.10.1016/j.jmst.2014.11.019Search in Google Scholar

[14] J. Kotakoski, A. V Krasheninnikov, U. Kaiser and J. C. Meyer // Phys. Rev. Lett. 106(10) (2011) 105505.10.1103/PhysRevLett.106.105505Search in Google Scholar PubMed

[15] K. Kim, Z. Lee, W. Regan, C. Kisielowski, M. F. Crommie and A. Zettl // ACS Nano 5(3) (2011) 2142.10.1021/nn1033423Search in Google Scholar PubMed

[16] W.F. Harris // Scientific American 237(6) (1977) 130.10.1038/scientificamerican1277-130Search in Google Scholar

[17] M.A. Rozhkov, A.L. Kolesnikova, I.S. Yasnikov andA.E. Romanov // Low Temperature Physics 44(9) (2018) 918.10.1063/1.5052677Search in Google Scholar

[18] A.E. Romanov, M.A. Rozhkov andA.L. Kolesnikova // Letters onMaterials 8(4)(2018) 384.10.22226/2410-3535-2018-4-384-400Search in Google Scholar

[19]A.E. Romanov and V.I. Vladimirov, Disclinations in Crystalline Solids, In: Dislocations in Solids, ed. by F.R.N. Nabarro. North-Holland,Amsterdam, 1992.Search in Google Scholar

[20]A.E. Romanov,A.L. Kolesnikova, T.S. Orlova, I. Hussainova, V.E. Bougrov and R.Z. Valiev // Carbon 81(1) (2015) 223.10.1016/j.carbon.2014.09.053Search in Google Scholar

[21] A.L. Kolesnikova, M.A. Rozhkov, I. Hussainova, T.S. Orlova, I.S. Yasnikov, L.V. Zhigilei andA.E. Romanov // Rev. Adv. Mater. Sci. 52(1/2) (2017) 91.Search in Google Scholar

[22] Z.Wang, X. F. Zhou, X. Zhang, Q. Zhu, H. Dong, M. Zhao andA.R. Oganov // Nano Letters 15(9) (2015) 6182.10.1021/acs.nanolett.5b02512Search in Google Scholar PubMed

[23] C.P. Tang and S.J. Xiong // AIP Advances 2(4) (2012) 042147.10.1063/1.4768669Search in Google Scholar

[24] http:// lammps.sandia.govSearch in Google Scholar

[25] D.W. Brenner, O.A. Shenderova, J.A. Harrison, S.J. Stuart, B. Ni and S.B. Sinnott // J. Physics: Condensed Matter 14(4) (2002) 783.10.1088/0953-8984/14/4/312Search in Google Scholar

[26] E. Polak, Computational Methods in Optimization: A Unified Approach, In: Mathematics in Science and Engineering Ser.: Vol 77 (Academic press, 1971).Search in Google Scholar

[27] http://www.castep.orgSearch in Google Scholar

[28] J.P. Perdew, K. Burke and M. Ernzerhof // Phys. Rev. Lett. 77(18) (1996) 3865.10.1103/PhysRevLett.77.3865Search in Google Scholar PubMed

Received: 2018-05-05
Published Online: 2019-03-28
Published in Print: 2018-07-01

© 2019 M.A. Rozhkov, et al., published by Sciendo

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

Downloaded on 3.3.2024 from https://www.degruyter.com/document/doi/10.1515/rams-2018-0057/html
Scroll to top button