Skip to content
BY 4.0 license Open Access Published by De Gruyter Open Access November 4, 2020

Smart textiles and wearable technologies – opportunities offered in the fight against pandemics in relation to current COVID-19 state

  • Aleksandra Ivanoska-Dacikj and Urszula Stachewicz EMAIL logo


Recent outbreak of the COVID-19 pandemic has changed the world dramatically, posing profound challenges to our healthcare infrastructure, economic systems, social and cultural life but also to our freedom. What this pandemic made us realize so far, is that, despite the tremendous advances in medicine and pharmacy, in the initial moments, which are crucial in the containment of spreading of any pandemic, the key role is played by the non-pharmaceutical measures. These measures are the ones that bridge the time between pandemic outbreaks and the development of drugs or vaccines and are crucial for the number of human lives spared. Smart textiles and novel materials as part of the personal protective equipment (PPE) and telemedicine are crucial factors in the healthcare system. Here, we present an overview on the use of textiles in the fight against pandemics, in the past and current COVID-19, we analyze the morphology of the commonly used face masks, made of cotton and typically used polypropylene (PP). We also present the perspective that smart textiles, wearable technologies and novel materials are offering in the fight against future pandemics, mainly as part of the personal protective equipment and telemedicine.


[1] World Health Organization (WHO). Naming the coronavirus disease (COVID-19) and the virus that causes it.In, Archived from the original on 28 February 2020. Retrieved 28 February 2020.Search in Google Scholar

[2] Velavan, T. P., and C. G. Meyer. The COVID-19 epidemic. Tropical Medicine & International Health, Vol. 25, No. 3, 2020, pp. 278-280.10.1111/tmi.13383Search in Google Scholar

[3] World Health Organization (WHO). Statement on the second meeting of the International Health Regulations (2005) Emergency Committee regarding the outbreak of novel coronavirus (2019-nCoV). Archived from the original on 30 January 2020, 2020.Search in Google Scholar

[4] World Health Organization (WHO). Director-General’s opening remarks at the media briefing on COVID-19. Archived from the original on 11 March 2020.Search in Google Scholar

[5] Coronavirus COVID-19 global cases by the center for systems science and engineering (CSSE) at Johns Hopkins University (JHU), ArcGIS. Johns Hopkins CSSE. Accessed 14 May 2020.Search in Google Scholar

[6] Neto, M. L. R., R. I. de Souza, R. M. M. Quezado, E. C. S. Mendonca, T. I. de Araujo, D. Luz, et al. When basic supplies are missing, what to do? Specific demands of the local street population in times of coronavirus - a concern of social psychiatry. Psychiatry Research, Vol. 288, 2020, id. 112939.10.1016/j.psychres.2020.112939Search in Google Scholar

[7] Lippi, G., B. M. Henry, C. Bovo, and F. Sanchis-Gomar. Health risks and potential remedies during prolonged lockdowns for coronavirus disease 2019 (COVID-19). Diagnosis, Vol. 7, No. 2, 2020, pp. 85-90.10.1515/dx-2020-0041Search in Google Scholar

[8] Bayham, J., and E. P. Fenichel. Impact of school closures for COVID-19 on the US health-care workforce and net mortality: a modeling study. The Lancet Public Health, Vol. 5, No. 5, 2020, pp. E271-E278.10.1016/S2468-2667(20)30082-7Search in Google Scholar

[9] Schröder, I. COVID-19: A risk assessment perspective. ACS Chemical Health & Safety, Vol. 27, No. 3, 2020, pp. 160-169.10.1021/acs.chas.0c00035Search in Google Scholar

[10] Morawska, L. Droplet fate in indoor environments, or can we prevent the spread of infection? Indoor Air, Vol. 16, 2006, pp. 335-347.10.1111/j.1600-0668.2006.00432.xSearch in Google Scholar PubMed

[11] Mittal, R., R. Ni, and J. H. Seo. The flow physics of COVID-19. Journal of Fluid Mechanics, Vol. 894, 2020, id. F2. DOI:10.1017/jfm.2020.330.10.1017/jfm.2020.330Search in Google Scholar

[12] Yang, P., and X. Wang. COVID-19: a new challenge for human beings. Cellular & Molecular Immunology, Vol. 17, No. 5, 2020, pp. 555-557.10.1038/s41423-020-0407-xSearch in Google Scholar PubMed PubMed Central

[13] Lauer, S. A., K. H. Grantz, Q. Bi, F. K. Jones, Q. Zheng, H. R. Meredith, A. S. Azman, et al. The incubation period of coronavirus disease 2019 (COVID-19) from publicly reported confirmed cases: Estimation and application. Annals of Internal Medicine, Vol. 172, No. 9, 2020, pp. 577-582.10.7326/M20-0504Search in Google Scholar PubMed PubMed Central

[14] World Health Organization (WHO). Draft landscape of COVID-19 candidate vaccines. 18 June 2020, 2020. 6 p.Search in Google Scholar

[15] Weiss, C., M. Carriere, L. Fusco, I. Capua, J. A. Regla-Nava, M. Pasquali, et al. Toward nanotechnology-enabled approaches against the COVID-19 pandemic. ACS Nano, Vol. 14, No. 6 2020, pp. 6383–6406.10.1021/acsnano.0c03697Search in Google Scholar PubMed PubMed Central

[16] Udugama, B., P. Kadhiresan, H. N. Kozlowski, A. Malekjahani, M. Osborne, V. Y. C. Li, et al. Diagnosing COVID-19: The disease and tools for detection. ACS Nano, Vol. 14, No. 4, 2020, pp. 3822-3835.10.1021/acsnano.0c02624Search in Google Scholar PubMed PubMed Central

[17] Wan, D. Y., X. Y. Luo, W. Dong, and Z. W. Zhang. Current practice and potential strategy in diagnosing COVID-19. European Review for Medical and Pharmacological Sciences, Vol. 24, No. 8, 2020, pp. 4548-4553.Search in Google Scholar

[18] Research to better diagnose COVID-19. British Columbia Medical Journal, Vol. 62, No. 5, 2020, pp. 178-179.Search in Google Scholar

[19] García de Abajo, F. J., R. J. Hernández, I. Kaminer, A. Meyerhans, J. Rosell-Llompart, and T. Sanchez-Elsner. Back to Normal: An old physics route to reduce SARS-CoV-2 transmission in indoor spaces. ACS Nano, Vol. 14, No. 7 2020, pp. 7704-7713.10.1021/acsnano.0c04596Search in Google Scholar PubMed PubMed Central

[20] Liu, C., Q. Zhou, Y. Li, L. V. Garner, S. P. Watkins, L. J. Carter, et al. Research and development on therapeutic agents and vaccines for COVID-19 and related human coronavirus diseases. ACS Central Science, Vol. 6, No. 3, 2020, pp. 315–331.10.1021/acscentsci.0c00272Search in Google Scholar PubMed PubMed Central

[21] Ahmed, S. F., A. A. Quadeer, and M. R. McKay. Preliminary identification of potential vaccine targets for the COVID-19 coronavirus (SARS-CoV-2) based on SARS-CoV immunological studies. Viruses-Basel, Vol. 12, No. 3, 2020, id. 254.10.3390/v12030254Search in Google Scholar PubMed PubMed Central

[22] Shoenfeld, Y. Corona (COVID-19) time musings: Our involvement in COVID-19 pathogenesis, diagnosis, treatment and vaccine planning. Autoimmunity Reviews, Vol. 19, No. 6, 2020, id. 102538.10.1016/j.autrev.2020.102538Search in Google Scholar PubMed PubMed Central

[23] Wu, S. C. Progress and concept for COVID-19 vaccine development. Biotechnology Journal, Vol. 15, 2020, id. 2000147.10.1002/biot.202000147Search in Google Scholar PubMed PubMed Central

[24] ’t Hoen, E. Protect against market exclusivity in the fight against COVID-19. Nature Medicine, Vol. 26, No. 6, 2020, id. 813. DOI:10.1038/s41591-020-0876-6. PMID: 32382151.10.1038/s41591-020-0876-6Search in Google Scholar PubMed

[25] Huang, H., C. Fan, M. Li, H.-L. Nie, F.-B.Wang, H.Wang, et al. COVID-19: A call for physical scientists and engineers. ACS Nano, Vol. 14, No. 4, 2020, pp. 3747-3754.10.1021/acsnano.0c02618Search in Google Scholar PubMed PubMed Central

[26] The textile and clothing industry supplies protective equipment in the fight against corona, Nonwovens Trends. Available from: Accessed 3 April 2020Search in Google Scholar

[27] WHO. Home care for patients with COVID-19 presenting with mild symptoms and management of their contacts. Available from: Accessed 13th August 2020.Search in Google Scholar

[28] Anandjiwala, R. D. Role of advanced textile materials in health-care. Medical Textiles and Biomaterials for Healthcare, Wood-head Publishing Series in Textiles, 2006. pp. 90-98.10.1533/9781845694104.2.90Search in Google Scholar

[29] Goel, S., S. Hawi, G. Goel, V. K. Thakur, O. Pearce, C. Hoskins, et al. Resilient and agile engineering solutions to address societal challenges such as coronavirus pandemic. Materials Today Chemistry, Vol. 17, 2020, id. 100300.10.1016/j.mtchem.2020.100300Search in Google Scholar PubMed PubMed Central

[30] Price-Smith, A. T. Contagion and chaos: Disease, ecology, and national security in the era of globalization. The MIT Press; Illustrated Edition, 2008, 281 p.10.7551/mitpress/7390.001.0001Search in Google Scholar

[31] Patterson, K. D., and G. F. Pyle. The geography and mortality of the 1918 influenza pandemic. Bulletin of the History of Medicine, Vol. 65, No. 1, 1991, pp. 4-21.Search in Google Scholar

[32] Barry, J. M. Chapter 1: The Story of influenza: 1918 revisited: Lessons and suggestions for further inquiry. In The threat of pandemic influenza: Are we ready? Workshop Summary The National Academies Washington, D.C., 2005. pp. 60-61.Search in Google Scholar

[33] Potter, C. W. A history of influenza. Journal of Applied Microbiology, Vol. 91, No. 4, 2001, pp. 572-579.10.1046/j.1365-2672.2001.01492.xSearch in Google Scholar PubMed

[34] The French View Of International Scientific Relations After The War. The British Medical Journal, Vol. 2, No. 3018, 1918, pp. 492-492.10.1136/bmj.2.3018.492Search in Google Scholar

[35] Wang, M. W., M. Y. Zhou, G. H. Ji, L. Ye, Y. R. Cheng, Z. H. Feng, et al. Mask crisis during the COVID-19 outbreak. European Review for Medical and Pharmacological Sciences, Vol. 24, No. 6, 2020, pp. 3397-3399.Search in Google Scholar

[36] Annual reports of the Navy Department. Report of the Secretary of the Navy. Miscellaneous reports. 1919, Washington Government Printing Oflce, 1920.Search in Google Scholar

[37] Cowling, B. J., Y. Zhou, D. K. M. Ip, G. M. Leung, and A. E. Aiello. Face masks to prevent transmission of influenza virus: a systematic review. Epidemiology and Infection, Vol. 138, No. 4, 2010, pp. 449-456.10.1017/S0950268809991658Search in Google Scholar PubMed

[38] Chughtai, A. A., H. Seale, and C. R. MacIntyre. Use of cloth masks in the practice of infection control - evidence and policy gaps. International Journal of Infection Control, Vol. 9, No. 3, 2013. pp. 1-12. DOI: in Google Scholar

[39] Willsher, K., O. Holmes, B. McKernan, and L. Tondo. US hijacking mask shipments in rush for coronavirus protection. The Guardian. Guardian News & Media Limited London, April 3, 2020.Search in Google Scholar

[40] World Health Organization (WHO). Rational use of personal protective equipment for coronavirus disease (COVID-19): interim guidance, 27 February 2020. World Health Organization, Geneva, April 6, 2020. Available from: in Google Scholar

[41] Barbieri, P., A. Boffelli, S. Elia, L. Fratocchi, M. Kalchschmidt, and D. Samson. What can we learn about reshoring after Covid-19? Operations Management Research, Vol. 13, 2020, pp. 131–136.10.1007/s12063-020-00160-1Search in Google Scholar

[42] Maclntyre, C. R., and A. A. Chughtai. Facemasks for the prevention of infection in healthcare and community settings. BMJ British Medical Journal, Vol. 350, 2015, id. h694.10.1136/bmj.h694Search in Google Scholar PubMed

[43] Huang, J. T., and V. J. Huang. Evaluation of the eflciency of medical masks and the creation of new medical masks. Journal of International Medical Research, Vol. 35, No. 2, 2007, pp. 213-223.10.1177/147323000703500205Search in Google Scholar PubMed

[44] Majchrzycka, K. Evaluation of a new bioactive nonwoven fabric for respiratory protection. Fibres & Textiles in Eastern Europe, Vol. 22, No. 1, 2014, pp. 81-88.Search in Google Scholar

[45] ThomasNet. How Surgical masks are made, tested and used. Available from: Accessed 18 April 2020.Search in Google Scholar

[46] Skaria, S. D., and G. C. Smaldone. Respiratory source control using surgical masks with nanofiber media. Annals of Occupational Hygiene, Vol. 58, No. 6, 2014, pp. 771-781.Search in Google Scholar

[47] Li, Y., T. Wong, J. Chung, Y. P. Guo, J. Y. Hu, Y. T. Guan, et al. In vivo protective performance of N95 respirator and surgical facemask. American Journal of Industrial Medicine, Vol. 49, No. 12, 2006, pp. 1056-1065.10.1002/ajim.20395Search in Google Scholar PubMed

[48] World Health Organization. Infection prevention and control during health care when COVID-19 is suspected: interim guidance. World Health Organization, Geneva, 19 March 2020. Available from: in Google Scholar

[49] Feng, E. COVID-19 has caused a shortage of face masks. But they’re surprisingly hard to make. NPR. Available from: Accessed 16 March 2020.Search in Google Scholar

[50] Qian, Y., K. Willeke, S. A. Grinshpun, J. Donnelly, and C. C. Coffey. Performance of N95 respirators: filtration eflciency for airborne microbial and inert particles. American Industrial Hygiene Association Journal, Vol. 59, No. 2, 1998, pp. 128-132.10.1080/15428119891010389Search in Google Scholar PubMed

[51] Pleil, J. D., J. D. Beauchamp, T. H. Risby, and R. A. Dweik. The scientific rationale for the use of simple masks or improvised facial coverings to trap exhaled aerosols and possibly reduce the breathborne spread of COVID-19. Journal of Breath Research, Vol. 14, No. 3, 2020, id. 030201.10.1088/1752-7163/ab8a55Search in Google Scholar PubMed PubMed Central

[52] Sunjaya, A. P., and C. Jenkins. Rationale for universal face masks in public against COVID-19. Respirology, Vol. 25, No. 7, 2020, pp. 678-679.10.1111/resp.13834Search in Google Scholar PubMed PubMed Central

[53] Cazon-Martin, A., L. Matey-Munoz, M. I. Rodriguez-Ferradas, P. Morer-Camo, and I. Gonzalez-Zuazo. Direct digital manufacturing for sports and medical sciences: three practical cases. Dyna, Vol. 90, No. 6, 2015, pp. 622-628.10.6036/7690Search in Google Scholar

[54] Stojkovski, B. Balkan Tech Enthusiasts Deploy 3D Printers against COVID-19. Balkan Insight, April 1 2020. Available from in Google Scholar

[55] Yao, M. S., L. Zhang, J. X. Ma, and L. Zhou. On airborne transmission and control of SARS-Cov-2. Science of the Total Environment, Vol. 731, 2020, id. 139178.10.1016/j.scitotenv.2020.139178Search in Google Scholar PubMed PubMed Central

[56] Coronavirus: How to make your own face mask. Available from Accessed 20th June 2020.Search in Google Scholar

[57] Tebyetekerwa, M., Z. Xu, S. Yang, and S. Ramakrishna. Electro-spun nanofibers-based face masks. Advanced Fiber Materials, Vol. 2, No. 3, 2020, pp. 161-166.10.1007/s42765-020-00049-5Search in Google Scholar

[58] Akduman, C., and E. P. Akçakoca Kumbasar. Nanofibers in face masks and respirators to provide better protection. IOP Conference Series: Materials Science and Engineering, Vol. 460, 2018, id. 012013.10.1088/1757-899X/460/1/012013Search in Google Scholar

[59] Darlenski, R., and N. Tsankov. COVID-19 pandemic and the skin: What should dermatologists know? Clinics in Dermatology, (in press) DOI: in Google Scholar PubMed PubMed Central

[60] Yan, Y., H. Chen, L. Chen, B. Cheng, P. Diao, L. Dong, et al. Consensus of Chinese experts on protection of skin and mucous membrane barrier for health-care workers fighting against coronavirus disease 2019. Dermatologic Therapy, Vol. 33, No. 4, 2020, id. e13310.10.1111/dth.13310Search in Google Scholar PubMed PubMed Central

[61] Rockwell, K. L., and A. S. Gilroy. Incorporating telemedicine as part of COVID-19 outbreak response systems. American Journal of Managed Care, Vol. 26, No. 4, 2020, pp. 147-148.10.37765/ajmc.2020.42784Search in Google Scholar PubMed

[62] Over 20 thousand medical face shields assembled at AGH UST. AGH University, Cracow, Poland. Available from Accessed 20 June 2020.Search in Google Scholar

[63] Ong, J. J. Y., C. Bharatendu, Y. Goh, J. Z. Y. Tang, K. W. X. Sooi, Y. L. Tan, et al. Headaches associated with personal protective equipment – A cross-sectional study among frontline health care workers during COVID-19. Headache: The Journal of Head and Face Pain, Vol. 60, No. 5, 2020, pp. 864-877.10.1111/head.13811Search in Google Scholar PubMed

[64] Rutala, W. A., and D. J. Weber. A review of single-use and reusable gowns and drapes in health care. Infection Control and Hospital Epidemiology, Vol. 22, No. 4, 2001, pp. 248-257.10.1086/501895Search in Google Scholar PubMed

[65] Baji, A., K. Agarwal, and S. V. Oopath. Emerging developments in the use of electrospun fibers and membranes for protective clothing applications. Polymers, Vol. 12, No. 2, 2020, id. 492.10.3390/polym12020492Search in Google Scholar PubMed PubMed Central

[66] Szewczyk, P. K., D. P. Ura, S. Metwally, J. Knapczyk-Korczak, M. Gajek, M. M. Marzec, et al. Roughness and fiber fraction dominated wetting of electrospun fiber-based porous meshes. Polymers, Vol. 11, No. 1, 2019, id. 34.10.3390/polym11010034Search in Google Scholar PubMed PubMed Central

[67] Yang, F. F., Y. Li, X. Yu, G. N. Wu, X. Yin, J. Y. Yu, and B. Ding. Hydrophobic polyvinylidene fluoride fibrous membranes with simultaneously water/windproof and breathable performance. RSC Advances, Vol. 6, No. 90, 2016, pp. 87820-87827.10.1039/C6RA17565ASearch in Google Scholar

[68] Szewczyk, P. K., J. Knapczyk-Korczak, D. P. Ura, S. Metwally, A. Gruszczynski, and U. Stachewicz. Biomimicking wetting properties of spider web from Linothele megatheloides with electro-spun fibers. Materials Letters, Vol. 233, 2018, pp. 211-214.10.1016/j.matlet.2018.09.007Search in Google Scholar

[69] Muthiah, P., S.-H. Hsu, and W. Sigmund. Coaxially electrospun PVDF-teflon AF and teflon AF-PVDF core-sheath nanofiber mats with superhydrophobic properties. Langmuir, Vol. 26, No. 15, 2010, pp. 12483-12487.10.1021/la100748gSearch in Google Scholar PubMed

[70] Saghafi, H., T. Brugo, G. Minak, and A. Zucchelli. The effect of PVDF nanofibers on mode-I fracture toughness of composite materials. Composites Part B: Engineering, Vol. 72, 2015, pp. 213-216.10.1016/j.compositesb.2014.12.015Search in Google Scholar

[71] Yang, Y., A. Centrone, L. Chen, F. Simeon, T. A. Hatton, and G. C. Rutledge. Highly porous electrospun polyvinylidene fluoride (PVDF)-based carbon fiber. Carbon, Vol. 49, No. 11, 2011, pp. 3395-3403.10.1016/j.carbon.2011.04.015Search in Google Scholar

[72] Li, Y., F. F. Yang, J. Y. Yu, and B. Ding. Hydrophobic fibrous membranes with tunable porous structure for equilibrium of breathable and waterproof performance. Advanced Materials Interfaces, Vol. 3, No. 19, 2016, id. 1600516.10.1002/admi.201600516Search in Google Scholar

[73] Liu, C., Z. J. Dai, R. Zhou, Q. F. Ke, and C. Huang. Fabrication of polypropylene-g-(diallylamino triazine) bifunctional nonwovens with antibacterial and air filtration activities by reactive extrusion and melt-blown technology. Journal of Chemistry, Vol. 2019, 2019, id. 3435095.Search in Google Scholar

[74] Xue, J., T. Wu, Y. Dai, and Y. Xia. Electrospinning and electrospun nanofibers: Methods, materials, and applications. Chemical Reviews, Vol. 119, No. 8, 2019, pp. 5298-5415.10.1021/acs.chemrev.8b00593Search in Google Scholar PubMed PubMed Central

[75] Mirjalili, M., and S. Zohoori. Review for application of electrospinning and electrospun nanofibers technology in textile industry. Journal of Nanostructure in Chemistry, Vol. 6, No. 3, 2016, pp. 207-213.10.1007/s40097-016-0189-ySearch in Google Scholar

[76] Bhardwaj, N., and S. C. Kundu. Electrospinning: A fascinating fiber fabrication technique. Biotechnology Advances, Vol. 28, No. 3, 2010, pp. 325-347.10.1016/j.biotechadv.2010.01.004Search in Google Scholar PubMed

[77] Rajesh, K. P., and T. S. Natarajan. Electrospun polymer nanofibrous membrane for filtration. Journal of Nanoscience and Nanotechnology, Vol. 9, No. 9, 2009, pp. 5402-5405.10.1166/jnn.2009.1155Search in Google Scholar PubMed

[78] Heikkila, P., A. Taipale, M. Lehtimaki, and A. Harlin. Electrospinning of polyamides with different chain compositions for filtration application. Polymer Engineering and Science, Vol. 48, No. 6, 2008, pp. 1168-1176.10.1002/pen.21070Search in Google Scholar

[79] Petropoulou, A., S. Kralj, X. Karagiorgis, I. Savva, E. Loizides, M. Panagi, et al. Multifunctional gas and pH fluorescent sensors based on cellulose acetate electrospun fibers decorated with rhodamine B-functionalised core-shell ferrous nanoparticles. Scientific Reports, Vol. 10, No. 1, 2020, id. 367.10.1038/s41598-019-57291-0Search in Google Scholar PubMed PubMed Central

[80] Jaworek, A., A. Krupa, M. Lackowski, A. T. Sobczyk, T. Czech, S. Ramakrishna, S. Sundarrajan, and D. Pliszka. Electrospinning and electrospraying techniques for nanocomposite non-woven fabric production. Fibres & Textiles in Eastern Europe, Vol. 17, No. 4, 2009, pp. 77-81.Search in Google Scholar

[81] Stachewicz, U., C. U. Yurteri, J. F. Dijksman, and J. C. M. Marijnissen. Single event electrospraying of water. Journal of Aerosol Science, Vol. 41, No. 10, 2010, pp. 963-973.10.1016/j.jaerosci.2010.06.004Search in Google Scholar

[82] Arnanthigo, Y., C. U. Yurteri, G. Biskos, J. C. M. Marijnissen, and A. Schmidt-Ott. Out-scaling electrohydrodynamic atomization systems for the production of well-defined droplets. Powder Technology, Vol. 214, No. 3, 2011, pp. 382-387.10.1016/j.powtec.2011.08.036Search in Google Scholar

[83] Theron, S. A., E. Zussman, and A. L. Yarin. Experimental investigation of the governing parameters in the electrospinning of polymer solutions. Polymer, Vol. 45, No. 6, 2004, pp. 2017-2030.10.1016/j.polymer.2004.01.024Search in Google Scholar

[84] Bhattacharjee, P. K., T. M. Schneider, M. P. Brenner, G. H. McKinley, and G. C. Rutledge. On the measured current in electro-spinning. Journal of Applied Physics, Vol. 107, No. 4, 2010, id. 044306.10.1063/1.3277018Search in Google Scholar

[85] Rutledge, G. C., and S. V. Fridrikh. Formation of fibers by electro-spinning. Advanced Drug Delivery Reviews, Vol. 59, No. 14, 2007, pp. 1384-1391.10.1016/j.addr.2007.04.020Search in Google Scholar PubMed

[86] Delamora, J. F., and I. G. Loscertales. The current emitted by highly conducting Taylor cones. Journal of Fluid Mechanics, Vol. 260, 1994, pp. 155-184.10.1017/S0022112094003472Search in Google Scholar

[87] Vitchuli, N., Q. Shi, J. Nowak, M. McCord, M. Bourham, and X. W. Zhang. Electrospun ultrathin nylon fibers for protective applications. Journal of Applied Polymer Science, Vol. 116, No. 4, 2009, pp. 2181-2187.10.1002/app.31825Search in Google Scholar

[88] Stachewicz, U., R. J. Bailey, H. Zhang, C. A. Stone, C. R. Willis, and A. H. Barber. Wetting hierarchy in oleophobic 3D electrospun nanofiber networks. ACS Applied Materials & Interfaces, Vol. 7, No. 30, 2015, pp. 16645-16652.10.1021/acsami.5b04272Search in Google Scholar PubMed

[89] Stachewicz, U., P. K. Szewczyk, A. Kruk, A. H. Barber, and A. Czyrska-Filemonowicz. Pore shape and size dependence on cel growth into electrospun fiber scaffolds for tissue engineering: 2D and 3D analyses using SEM and FIB-SEM tomography. Materials Science & Engineering C-Materials for Biological Applications, Vol. 95, 2019, pp. 397-408.10.1016/j.msec.2017.08.076Search in Google Scholar PubMed

[90] Simonet, M., O. D. Schneider, P. Neuenschwander, and W. J. Stark. Ultraporous 3D polymer meshes by low-temperature electrospinning: Use of ice crystals as a removable void template. Polymer Engineering and Science, Vol. 47, No. 12, 2007, pp. 2020-2026.10.1002/pen.20914Search in Google Scholar

[91] Yao, T., H. Chen, P. Samal, S. Giselbrecht, M. B. Baker, and L. Moroni. Self-assembly of electrospun nanofibers into gradient honeycomb structures. Materials & Design, Vol. 168, 2019, id. 107614.10.1016/j.matdes.2019.107614Search in Google Scholar

[92] Nedjari, S., G. Schlatter, and A. Hébraud. Thick electrospun honeycomb scaffolds with controlled pore size. Materials Letters, Vol. 142, 2015, pp. 180-183.10.1016/j.matlet.2014.11.118Search in Google Scholar

[93] Ahirwal, D., A. Hebraud, R. Kadar, M. Wilhelm, and G. Schlatter. From self-assembly of electrospun nanofibers to 3D cm thick hierarchical foams. Soft Matter, Vol. 9, No. 11, 2013, pp. 3164-3172.10.1039/c2sm27543kSearch in Google Scholar

[94] Stachewicz, U., C. A. Stone, C. R. Willis, and A. H. Barber. Charge assisted tailoring of chemical functionality at electro-spun nanofiber surfaces. Journal of Materials Chemistry, Vol. 22, No. 43, 2012, pp. 22935-22941.10.1039/c2jm33807fSearch in Google Scholar

[95] Yarin, A. L., and E. Zussman. Upward needleless electrospinning of multiple nanofibers. Polymer, Vol. 45, No. 9, 2004, pp. 2977-2980.10.1016/j.polymer.2004.02.066Search in Google Scholar

[96] Teo, W.-E., R. Inai, and S. Ramakrishna. Technological advances in electrospinning of nanofibers. Science and Technology of Advanced Materials, Vol. 12, No. 1, 2010, id. 013002.10.1088/1468-6996/12/1/013002Search in Google Scholar

[97] Kostakova, E., L. Meszaros, and J. Gregr. Composite nanofibers produced by modified needleless electrospinning. Materials Letters, Vol. 63, No. 28, 2009, pp. 2419-2422.10.1016/j.matlet.2009.08.014Search in Google Scholar

[98] Forward, K. M., and G. C. Rutledge. Free surface electrospinning from a wire electrode. Chemical Engineering Journal, Vol. 183, 2012, pp. 492-503.10.1016/j.cej.2011.12.045Search in Google Scholar

[99] Brettmann, B. K., S. Tsang, K. M. Forward, G. C. Rutledge, A. S. Myerson, and B. L. Trout. Free surface electrospinning of fibers containing microparticles. Langmuir, Vol. 28, No. 25, 2012, pp. 9714-9721.10.1021/la301422xSearch in Google Scholar PubMed

[100] Niu, H. T., T. Lin, and X. G. Wang. Needleless electrospinning. I. A comparison of cylinder and disk nozzles. Journal of Applied Polymer Science, Vol. 114, No. 6, 2009, pp. 3524-3530.10.1002/app.30891Search in Google Scholar

[101] Ali, U., H. Niu, M. F. Khurshid, A. Abbas, and T. Lin. Electrospinning behavior of needleless spinneret with a popular mace shape. Journal of the Textile Institute, Vol. 110, No. 3, 2019, pp. 349-357.10.1080/00405000.2018.1480456Search in Google Scholar

[102] Chen, R. X., Y. Q. Wan, W. W. Wu, C. Yang, J. H. He, J. H. Cheng, et al. A lotus effect-inspired flexible and breathable membrane with hierarchical electrospinning micro/nanofibers and ZnO nanowires. Materials & Design, Vol. 162, 2019, pp. 246-248.10.1016/j.matdes.2018.11.041Search in Google Scholar

[103] Crossley, S., and S. Kar-Narayan. Energy harvesting performance of piezoelectric ceramic and polymer nanowires. Nanotechnology, Vol. 26, No. 34, 2015, id. 344001.10.1088/0957-4484/26/34/344001Search in Google Scholar PubMed

[104] Crossley, S., R. A. Whiter, and S. Kar-Narayan. Polymer-based nanopiezoelectric generators for energy harvesting applications. Materials Science and Technology, Vol. 30, No. 13A, 2014, pp. 1613-1624.10.1179/1743284714Y.0000000605Search in Google Scholar

[105] Szewczyk, P. K., S. Metwally, J. E. Karbowniczek, M. M. Marzec, E. Stodolak-Zych, A. Gruszczynski, et al. Surface-potential-controlled cell proliferation and collagen mineralization on electrospun polyvinylidene fluoride (PVDF) fiber scaffolds for bone regeneration. ACS Biomaterials Science & Engineering, Vol. 5, No. 2, 2019, pp. 582-593.10.1021/acsbiomaterials.8b01108Search in Google Scholar PubMed

[106] Szewczyk, P. K., S. Metwally, Z. J. Krysiak, L. Kaniuk, J. E. Karbowniczek, and U. Stachewicz. Enhanced osteoblasts adhesion and collagen formation on biomimetic polyvinylidene fluoride (PVDF) films for bone regeneration. Biomedical Materials, Vol. 14, No. 6, 2019, id. 065006.10.1088/1748-605X/ab3c20Search in Google Scholar PubMed

[107] Tonazzini, I., E. Bystrenova, B. Chelli, P. Greco, D. De Leeuw, and F. Biscarini. Human neuronal SHSY5Y cells on PVDF: PTrFE copolymer thin films. Advanced Engineering Materials, Vol. 17, No. 7, 2015, pp. 1051-1056.10.1002/adem.201400441Search in Google Scholar

[108] Mota, C., M. Labardi, L. Trombi, L. Astolfi, M. D’Acunto, D. Puppi, et al. Design, fabrication and characterization of composite piezoelectric ultrafine fibers for cochlear stimulation. Materials & Design, Vol. 122, 2017, pp. 206-219.10.1016/j.matdes.2017.03.013Search in Google Scholar

[109] Huang, F. L., Q. Q. Wang, Q. F. Wei, W. D. Gao, H. Y. Shou, and S. D. Jiang. Dynamic wettability and contact angles of poly(vinylidene fluoride) nanofiber membranes grafted with acrylic acid. Express Polymer Letters, Vol. 4, No. 9, 2010, pp. 551-558.10.3144/expresspolymlett.2010.69Search in Google Scholar

[110] Naik, R., and T. S. Rao. Self-powered flexible piezoelectric nano-generator made of poly (vinylidene fluoride)/Zirconium oxide nanocomposite. Materials Research Express, Vol. 6, No. 11, 2019, id. 115330.10.1088/2053-1591/ab49b3Search in Google Scholar

[111] Chen, J. J., Y. Li, X. M. Zheng, F. A. He, and K. H. Lam. Enhancement in electroactive crystalline phase and dielectric performance of novel PEG-graphene/PVDF composites. Applied Surface Science, Vol. 448, 2018, pp. 320-330.10.1016/j.apsusc.2018.04.144Search in Google Scholar

[112] Szewczyk, P. K., A. Gradys, S. K. Kim, L. Persano, M. Marzec, A. Kryshtal, et al. Enhanced piezoelectricity of electrospun polyvinylidene fluoride fibers for energy harvesting. ACS Applied Materials & Interfaces, Vol. 12, No. 11, 2020, pp. 13575-13583.10.1021/acsami.0c02578Search in Google Scholar PubMed PubMed Central

[113] Parangusan, H., D. Ponnamma, and M. A. Al-Maadeed. Stretchable electrospun PVDF-HFP/Co-ZnO nanofibers as piezoelectric nanogenerators. Scientific Reports, Vol. 8, 2018, 8, id. 754.10.1038/s41598-017-19082-3Search in Google Scholar PubMed PubMed Central

[114] Pan, C. T., C. C. Chang, Y. S. Yang, C. K. Yen, Y. H. Kao, and Y. L. Shiue. Development of MMG sensors using PVDF piezoelectric electrospinning for lower limb rehabilitation exoskeleton. Sensors and Actuators A: Physical, Vol. 301, 2020, id. 111708.10.1016/j.sna.2019.111708Search in Google Scholar

[115] Wang, W. Y., Y. D. Zheng, X. Jin, Y. Sun, B. B. Lu, H. X. Wang, et al. Unexpectedly high piezoelectricity of electrospun polyacrylonitrile nanofiber membranes. Nano Energy, Vol. 56, 2019, pp. 588-594.10.1016/j.nanoen.2018.11.082Search in Google Scholar

[116] Liu, G., J. Nie, C. Han, T. Jiang, Z. Yang, Y. Pang, et al. Self-Powered electrostatic adsorption face mask based on a tribo-electric nanogenerator. ACS Applied Materials & Interfaces, Vol. 10, No. 8, 2018, pp. 7126-7133.10.1021/acsami.7b18732Search in Google Scholar PubMed

[117] Lee, B. Y., K. Behler, M. E. Kurtoglu, M. A. Wynosky-Dolfi, R. F. Rest, and Y. Gogotsi. Titanium dioxide-coated nanofibers for advanced filters. Journal of Nanoparticle Research, Vol. 12, 2010, pp. 2511–2519.10.1007/s11051-009-9820-xSearch in Google Scholar

[118] Kim, H. E., H. J. Lee, M. S. Kim, T. Kim, H. Lee, H. H. Kim, et al. Differential microbicidal effects of bimetallic iron-copper nanoparticles on escherichia coli and MS2 coliphage. Environmental Science & Technology, Vol. 53, No. 5, 2019, pp. 2679–2687.10.1021/acs.est.8b06077Search in Google Scholar PubMed

[119] Han, n., L. Chen, S. M. Duan, Q. X. Yang, M. Yang, C. Gao, et al. Efficient and quick Inactivation of SARS coronavirus and other microbes exposed to the surfaces of some metal catalysts. Biomedical and Environmental Sciences, Vol. 18, No. 3, pp. 176-180.Search in Google Scholar

[120] Joe, Y. H., D. H. Park, and J. Hwang. Evaluation of Ag nanoparticle coated air filter against aerosolized virus: Anti-viral eflciency with dust loading. Journal of Hazardous Materials, Vol. 301, 2016, pp. 547-553.10.1016/j.jhazmat.2015.09.017Search in Google Scholar PubMed PubMed Central

[121] Stylios, G. K. Novel smart textiles. Materials, Vol. 13, 2020, id. 950.10.3390/ma13040950Search in Google Scholar PubMed PubMed Central

[122] Koncar, V. 1 - Introduction to smart textiles and their applications. In Smart Textiles and their Applications, Woodhead Publishing Series in Textiles, Oxford, 2016. pp. 1-8. DOI: in Google Scholar

[123] Di, J. T., X. H. Zhang, Z. Z. Yong, Y. Y. Zhang, D. Li, R. Li, et al. Carbon-nanotube fibers for wearable devices and smart textiles. Advanced Materials, Vol. 28, No. 47, 2016, pp. 10529-10538.10.1002/adma.201601186Search in Google Scholar PubMed

[124] Schneegass, S., and O. Amft. Smart textiles - fundamentals, design, and interaction. Springer, Cham, Cham, Switzerland, 2017.10.1007/978-3-319-50124-6Search in Google Scholar

[125] Torres Alonso, E., D. P. Rodrigues, M. Khetani, D.-W. Shin, A. De Sanctis, H. Joulie, et al. Graphene electronic fibers with touch-sensing and light-emitting functionalities for smart textiles. npj Flexible Electronics, Vol. 2, No. 1, 2018, id. 25.10.1038/s41528-018-0040-2Search in Google Scholar

[126] Chen, G. R., Y. Z. Li, M. Bick, and J. Chen. Smart textiles for electricity generation. Chemical Reviews, Vol. 120, No. 8, 2020, pp. 3668-3720.10.1021/acs.chemrev.9b00821Search in Google Scholar PubMed

[127] Wagner, M. 16 – Automotive applications of smart textiles. In Multidisciplinary Know-How for Smart-Textiles Developers, Woodhead Publishing Series in Textiles, 2013. pp. 444-467.10.1533/9780857093530.3.444Search in Google Scholar

[128] Haroglu, D., N. Powell, and A. F. M. Seyam. The response of polymer optical fiber (POF) to cyclic loading for the application of a POF sensor for automotive seat occupancy sensing. Journal of the Textile Institute, Vol. 108, No. 1, 2017, pp. 42-48.10.1080/00405000.2015.1133755Search in Google Scholar

[129] Vagott, J., and R. Parachuru. An overview of recent developments in the field of wearable smart textiles. Journal of Textile Science & Engineering, Vol. 8, No. 4, 2018, id. 1000368.Search in Google Scholar

[130] Chittenden, T. Skin in the game: the use of sensing smart fabrics in tennis costume as a means of analyzing performance. Fashion and Textiles, Vol. 4, No. 1, 2017, id. 22.10.1186/s40691-017-0107-zSearch in Google Scholar

[131] Heinzel, T. Reactive architecture, augmented textiles, domotics and soft architecture fabrication: On electronic and reactive textiles in domestic contexts. TEXTILE, Vol. 16, No. 1, 2018, pp. 34-61.10.1080/14759756.2017.1332907Search in Google Scholar

[132] Ritter, A. 18 - Smart coatings for textiles in architecture. In Active coatings for smart textiles, 1st edn, Hu, J., Woodhead Publishing, 2016. pp. 429-453.10.1016/B978-0-08-100263-6.00018-6Search in Google Scholar

[133] Casanova, L. M., S. Jeon, W. A. Rutala, D. J. Weber, and M. D. Sobsey. Effects of air temperature and relative humidity on coronavirus survival on surfaces. Applied and Environmental Micro-biology, Vol. 76, No. 9, 2010, pp. 2712–2717.10.1128/AEM.02291-09Search in Google Scholar

[134] Angelova, R. A., and R. Velichkova. Thermophysiological comfort of surgeons and patient in an operating room based on PMVPPD and PHS indexes. Applied Sciences-Basel, Vol. 10, No. 5, 2020, id. 216501035.10.3390/app10051801Search in Google Scholar

[135] Gokarneshan, N. A. Review of some recent breakthroughs in medical textiles research. Current Trends in Fashion Technology & Textile Engineering, Vol. 2, 2018.10.19080/CTFTTE.2018.02.555588Search in Google Scholar

[136] Chin, A. W. H., J. T. S. Chu, M. R. A. Perera, K. P. Y. Hui, H. L. Yen, M. C. W. Chan, et al. Stability of SARS-CoV2 in different environmental conditions. The Lancet Microbe, Vol. 1, No. 1, 2020, pp. e10.10.1016/S2666-5247(20)30003-3Search in Google Scholar

[137] van Doremalen, N., T. Bushmaker, D. H. Morris, M. G. Holbrook, A. Gamble, B. N. Williamson, et al. Aerosol and surface stability of SARS-CoV2 as compared with SARS-CoV-1. The New England Journal Medicine, Vol. 382, 2020, pp.1564-1567.10.1056/NEJMc2004973Search in Google Scholar PubMed PubMed Central

[138] Quirós, J., J. P. Borges, K. Boltes, I. Rodea-Palomares, and R. Rosal. Antimicrobial electrospun silver-, copper- and zinc-doped polyvinylpyrrolidone nanofibers. Journal of Hazard Materials, Vol. 299, 2015, pp. 298-305.10.1016/j.jhazmat.2015.06.028Search in Google Scholar PubMed

[139] Deshmukh, S. P., S. M. Patil, S. B. Mullani, and S. D. Delekar. Silver nanoparticles as an effective disinfectant: A review. Materials Science and Engineering: C, Vol. 97, 2019, pp. 954-965.Search in Google Scholar

[140] Ivanoska-Dacikj, A., G. Bogoeva-Gaceva, A. Krumme, E. Tarasova, C. Scalera, V. Stojkovski, et al. Biodegradable polyurethane/graphene oxide scaffolds for soft tissue engineering: in vivo behavior assessment. International Journal of Polymeric Materials and Polymeric Biomaterials. 2020, DOI:10.1080/00914037.2019.1655754.10.1080/00914037.2019.1655754Search in Google Scholar

[141] Ray, S. S., Y.-I. Park, H. Park, S.-E. Nam, I.-C. Kim, and Y.-N. Kwon. Surface innovation to enhance anti-droplet and hydrophobic behavior of breathable compressed-polyurethane masks. Environmental Technology & Innovation, Vol. 20, 2020, id. 101093.10.1016/j.eti.2020.101093Search in Google Scholar PubMed PubMed Central

[142] Lala, N. L., R. Ramaseshan, B. J. Li, S. Sundarrajan, R. S. Barhate, Y. J. Liu, and S. Ramakrishna. Fabrication of nanofibers with antimicrobial functionality used as filters: Protection against bacterial contaminants. Biotechnology and Bioengineering, Vol. 97, No. 6, 2007, pp. 1357-1365.10.1002/bit.21351Search in Google Scholar PubMed

[143] Chughtai, A. A., S. Stelzer-Braid, W. Rawlinson, G. Pontivivo, Q. Y. Wang, Y. Pan, et al. Contamination by respiratory viruses on outer surface of medical masks used by hospital healthcare workers. BMC Infectious Diseases, Vol. 19, 2019, id. 491.10.1186/s12879-019-4109-xSearch in Google Scholar PubMed PubMed Central

[144] Galante, A. J., S. Haghanifar, E. G. Romanowski, R. M. Q. Shanks, and P. W. Leu. Superhemophobic and antivirofouling coating for mechanically durable and wash-stable medical textiles. ACS Applied Materials & Interfaces, Vol. 12, No. 19, 2020, pp. 22120-22128.10.1021/acsami.9b23058Search in Google Scholar PubMed

[145] Darnell, M. E. R., K. Subbarao, S. M. Feinstone, and D. R. Taylor. Inactivation of the coronavirus that induces severe acute respiratory syndrome, SARS-CoV. Journal of Virological Methods, Vol. 121, No. 1, 2004, pp. 85-91.10.1016/j.jviromet.2004.06.006Search in Google Scholar PubMed PubMed Central

[146] Kampf, G., D. Todt, S. Pfaender, and E. Steinmann. Persistence of coronaviruses on inanimate surfaces and their inactivation with biocidal agents. Journal of Hospital Infection, Vol. 104, 2020, pp. 246-251.10.1016/j.jhin.2020.01.022Search in Google Scholar PubMed PubMed Central

[147] Bashshur, R., C. R. Doarn, J. M. Frenk, J. C. Kvedar, and J. O. Woolliscroft. Telemedicine and the COVID-19 pandemic, lessons for the future. Telemedicine and E-Health, Vol. 26, No. 5, 2020, pp. 571-573.10.1089/tmj.2020.29040.rbSearch in Google Scholar PubMed

[148] Wicaksono, I., C. I. Tucker, T. Sun, C. A. Guerrero, C. Liu, W. M. Woo, et al. A tailored, electronic textile conformable suit for large-scale spatiotemporal physiological sensing in vivo. npj Flexible Electronics, Vol. 4, No. 1, 2020, id. 5.10.1038/s41528-020-0068-ySearch in Google Scholar

[149] Coyle, S., and D. Diamond. Medical applications of smart textiles.In Advances in Smart Medical Textiles, Woodhead Publishing, Oxford, 2016. pp. 215-237.10.1016/B978-1-78242-379-9.00010-4Search in Google Scholar

[150] Kim, J., A. S. Campbell, B. E. F. de Avila, and J. Wang. Wearable biosensors for healthcare monitoring. Nature Biotechnology, Vol. 37, No. 4, 2019, pp. 389-406.10.1038/s41587-019-0045-ySearch in Google Scholar

[151] Ari, A. Practical strategies for a safe and effective delivery of aerosolized medications to patients with COVID-19. Respiratory Medicine, Vol. 167, 2020, id. 105987.10.1016/j.rmed.2020.105987Search in Google Scholar

[152] Gugliuzza, A., and E. Drioli. A review on membrane engineering for innovation in wearable fabrics and protective textiles. Journal of Membrane Science, Vol. 446, 2013, pp. 350-375.10.1016/j.memsci.2013.07.014Search in Google Scholar

[153] Heo, J. S., J. Eom, Y. H. Kim, and S. K. Park. Recent progress of textile-based wearable electronics: A comprehensive review of materials, devices, and applications. Small, Vol. 14, No. 3, 2018, id. 1703034.10.1002/smll.201703034Search in Google Scholar

[154] Gawel, M. Challenges in the design of sensors for telemedicine., Vol. 5, No. 1, 2010, Available from: file:///C:/Users/echmi/Downloads/challenges-in-the-design-of-sensors-for-telemedicine.pdf.Search in Google Scholar

[155] Xu, L., Z. Liu, H. Zhai, X. Chen, R. Sun, S. Lyu, et al. Moisture-resilient graphene dyed wool fabric for strain sensing. ACS Applied Materials & Interfaces, Vol. 12, No. 11, 2020, pp. 13265-13274.10.1021/acsami.9b20964Search in Google Scholar

[156] Zhu, C., E. Chalmers, L. Chen, Y. Wang, B. B. Xu, Y. Li, and X. Liu. A nature-inspired, flexible substrate strategy for future wearable electronics. Small, Vol. 15, No. 35, 2019, id. 1902440.10.1002/smll.201902440Search in Google Scholar

[157] Zhu, G., J. Li, Z. Meng, Y. Yu, Y. Li, X. Tang, et al. Learning from large scale wearable device data for predicting epidemics trend of COVID-19. Discrete Dynamics in Nature and Society, Vol. 2020, 2020, id. 6152041.Search in Google Scholar

[158] Whitelaw, S., M. A. Mamas, E. Topol, and H. G. C. Van Spall. Applications of digital technology in COVID-19 pandemic planning and response. The Lancet Digital Health, Vol. 2, No. 8, 2020, pp. e435-e440.10.1016/S2589-7500(20)30142-4Search in Google Scholar

[159] Budd, J., B. S. Miller, E. M. Manning, V. Lampos, M. Zhuang, M. Edelstein, et al. Digital technologies in the public-health response to COVID-19. Nature Medicine, Vol. 26, No. 8, 2020, pp. 1183-1192.10.1038/s41591-020-1011-4Search in Google Scholar PubMed

[160] Wong, C. K., D. T. Y. Ho, A. R. Tam, M. Zhou, Y. M. LAU, M. O. Y. Tang, et al. Artificial intelligence mobile health platform for early detection of COVID-19 in quarantine subjects using a wearable biosensor: protocol for a randomised controlled trial. BMJ Open, Vol. 10, No. 7, 2020, id. e038555.10.1136/bmjopen-2020-038555Search in Google Scholar PubMed PubMed Central

[161] Jeong, H., J. A. Rogers, and S. Xu. Continuous on-body sensing for the COVID-19 pandemic: Gaps and opportunities. Science Advances, Vol. 6, No. 36, 2020, id. eabd4794.10.1126/sciadv.abd4794Search in Google Scholar PubMed PubMed Central

[162] Tsikala Vafea, M., E. Atalla, J. Georgakas, F. Shehadeh, E. K. Mylona, M. Kalligeros, et al. Emerging technologies for use in the study, diagnosis, and treatment of patients with COVID-19. Cellular and Molecular Bioengineering, Vol. 13, No. 4, 2020, pp. 249-257.10.1007/s12195-020-00629-wSearch in Google Scholar PubMed PubMed Central

[163] Krucińska, I., W. Strzembosz, K. Majchrzycka, A. Brochocka, and K. Sulak. Biodegradable particle filtering half-masks for respiratory protection. Fibres and Textiles in Eastern Europe, Vol. 96, 2012, pp. 77-83.Search in Google Scholar

[164] Di Maria, F., E. Beccaloni, L. Bonadonna, C. Cini, E. Confalonieri, G. La Rosa, et al. Minimization of spreading of SARS-CoV-2 via household waste produced by subjects affected by COVID-19 or in quarantine. Science of the Total Environment, Vol. 743, 2020, id. 140803.10.1016/j.scitotenv.2020.140803Search in Google Scholar PubMed PubMed Central

[165] Saadat, S., D. Rawtani, and C. M. Hussain. Environmental perspective of COVID-19. Science of the Total Environment, Vol. 728, 2020, id. 138870.10.1016/j.scitotenv.2020.138870Search in Google Scholar PubMed PubMed Central

[166] Vaverková, M. D., E. K. Paleologos, A. Dominijanni, E. Koda, C.-S. Tang, M. Wdowska, et al. Municipal solid waste management under COVID-19: Challenges and recommendations. Environmental Geotechnics, Vol. 0, No. 0, 2020, pp. 1-15. DOI: in Google Scholar

[167] Liu, K., H. Wang, H. Liu, S. Nie, H. Du, and C. Si. COVID-19: Challenges and perspectives for the pulp and paper industry worldwide. Bioresources, Vol. 15, No. 3, 2020, pp. 4638-4641.10.15376/biores.15.3.4638-4641Search in Google Scholar

[168] Bhat, G., and D. V. Parikh. 3 - Biodegradable materials for nonwovens. In: Applications of Nonwovens in Technical Textiles, Woodhead Publishing Limited, 2010. pp. 46-62.10.1533/9781845699741.1.46Search in Google Scholar

[169] Maretschek, S., A. Greiner, and T. Kissel. Electrospun biodegradable nanofiber nonwovens for controlled release of proteins. Journal of Controlled Release, Vol. 127, No. 2, 2008, pp. 180-187.10.1016/j.jconrel.2008.01.011Search in Google Scholar PubMed

[170] Gu, J., P. Xiao, P. Chen, L. Zhang, H. Wang, L. Dai, et al. Functionalization of biodegradable PLA nonwoven fabric as superoleophilic and superhydrophobic material for eflcient oil absorption and oil/water separation. ACS Applied Materials & Interfaces, Vol. 9, No. 7, 2017, pp. 5968-5973.10.1021/acsami.6b13547Search in Google Scholar PubMed

[171] Güzdemir, Ö., V. Bermudez, S. Kanhere, and A. A. Ogale. Melt-spun poly(lactic acid) fibers modified with soy fillers: Toward environment-friendly disposable nonwovens. Polymer Engineering & Science, Vol. 60, No. 6, 2020, pp. 1158-1168.10.1002/pen.25369Search in Google Scholar

[172] Shi, J., L. Zhang, P. Xiao, Y. Huang, P. Chen, X. Wang, et al.Biodegradable PLA nonwoven fabric with controllable wettability for eflcient water purification and photocatalysis degradation. ACS Sustainable Chemistry & Engineering, Vol. 6, No. 2, 2018, pp. 2445-2452.10.1021/acssuschemeng.7b03897Search in Google Scholar

[173] Aydin, O., B. Emon, S. Cheng, L. Hong, L. P. Chamorro, and M. T. A. Saif. Performance of fabrics for home-made masks against the spread of COVID-19 through droplets: A quantitative mechanistic study. Extreme Mechanics Letters, Vol. 40, 2020, id. 100924.10.1016/j.eml.2020.100924Search in Google Scholar

[174] Sharma, H. B., K. R. Vanapalli, V. R. S. Cheela, V. P. Ranjan, A. K. Jaglan, B. Dubey, et al. Challenges, opportunities, and innovations for effective solid waste management during and post COVID-19 pandemic. Resources, Conservation and Recycling, Vol. 162, 2020, id. 105052.10.1016/j.resconrec.2020.105052Search in Google Scholar

[175] Sarkodie, S. A., and P. A. Owusu. Impact of COVID-19 pandemic on waste management. Environment, Development and Sustainability, 2020, DOI: in Google Scholar

[176] Patrício Silva, A. L., J. C. Prata, T. R. Walker, A. C. Duarte, W. Ouyang, D. Barcelò, et al. Increased plastic pollution due to COVID-19 pandemic: Challenges and recommendations. Chemical Engineering Journal, Vol. 405, 2021, id. 126683.10.1016/j.cej.2020.126683Search in Google Scholar

[177] Vanapalli, K. R., H. B. Sharma, V. P. Ranjan, B. Samal, J. Bhattacharya, B. K. Dubey, et al. Challenges and strategies for effective plastic waste management during and post COVID-19 pandemic. Science of the Total Environment, Vol. 750, 2021, id. 141514.10.1016/j.scitotenv.2020.141514Search in Google Scholar

[178] Chua, M. H., W. Cheng, S. S. Goh, J. Kong, B. Li, J. Y. C. Lim, et al. Face masks in the new COVID-19 normal: Materials, testing, and perspectives. Research, Vol. 2020, 2020, id. 7286735.Search in Google Scholar

[179] Ayebare, R. R., R. Flick, S. Okware, B. Bodo, and M. Lamorde. Adoption of COVID-19 triage strategies for low-income settings. The Lancet. Respiratory medicine, Vol. 8, No. 4, 2020, pp. e22-e22.10.1016/S2213-2600(20)30114-4Search in Google Scholar

[180] Massaroni, C., A. Nicolò, E. Schena, and M. Sacchetti. Remote respiratory monitoring in the time of COVID-19. Frontiers in Physiology, Vol. 11, 2020, id. 635.10.3389/fphys.2020.00635Search in Google Scholar PubMed PubMed Central

[181] De Jonckheere, J., F. Narbonneau, M. Jeanne, D. Kinet, J. Witt, K. Krebber, et al. OFSETH: Smart medical textile for continuous monitoring of respiratory motions under magnetic resonance imaging. In 2009 Annual International Conference of the Ieee Engineering in Medicine and Biology Society, Vols 1-20, 2009. pp. 1473-1476.10.1109/IEMBS.2009.5332432Search in Google Scholar PubMed

[182] De Jonckheere, J., M. Jeanne, F. Narbonneau, J. Witt, B. Paquet, D. Kinet, et al. OFSETH: A breathing motions monitoring system for patients under MRI. In 2010 Annual International Conference of the Ieee Engineering in Medicine and Biology Society, 2010. pp. 1016-1019.10.1109/IEMBS.2010.5627750Search in Google Scholar PubMed

[183] D’Angelo, L. T., S. Weber, Y. Honda, T. Thiel, F. Narbonneau, and T. C. Luth. A system for respiratory motion detection using optical fibers embedded into textiles.In: the 2008 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, August 20-25, 2008, pp. 3694-3697.10.1109/IEMBS.2008.4650011Search in Google Scholar PubMed

[184] Krehel, M., M. Schmid, R. M. Rossi, L. F. Boesel, G. L. Bona, and L. J. Scherer. An optical fibre-based sensor for respiratory monitoring. Sensors, Vol. 14, No. 7, 2014, pp. 13088-13101.10.3390/s140713088Search in Google Scholar PubMed PubMed Central

[185] Di, M. R., F. Rizzo, P. Meriggi, B. Bordoni, G. Brambilla, M. Ferratini, et al. Applications of a textile-based wearable system for vital signs monitoring. In: 2006 International Conference of the IEEE Engineering in Medicine and Biology Society, 2006. pp. 2223-2226.Search in Google Scholar

[186] Mobile applications to support contact tracing in the EU’s fight against COVID-19, Common EU Toolbox for Member States Brussels, Belgium. Available from: Accessed 20th September 2020.Search in Google Scholar

[187] Seshadri, D. R., E. V. Davies, E. R. Harlow, J. J. Hsu, S. C. Knighton, T. A. Walker, et al. Wearable sensors for COVID-19: A call to action to harness our digital infrastructure for remote patient monitoring and virtual assessments. Frontiers in Digital Health, Vol. 2, No. 8, 2020. DOI: 10.3389/fdgth.2020.00008.10.3389/fdgth.2020.00008Search in Google Scholar PubMed PubMed Central

[188] Kissler, S. M., C. Tedijanto, E. Goldstein, Y. H. Grad, and M. Lipsitch. Projecting the transmission dynamics of SARS-CoV-2 through the postpandemic period. Science, Vol. 368, No. 6493, 2020, pp. 860-868.Search in Google Scholar

[189] Inciardi, R. M., L. Lupi, G. Zaccone, L. Italia, M. Raffo, D. Tomasoni, et al. Cardiac involvement in a patient with coronavirus disease 2019 (COVID-19). JAMA Cardiology, Vol. 5, No. 7, 2020, pp. 819-824.10.1001/jamacardio.2020.1096Search in Google Scholar PubMed PubMed Central

[190] Zheng, Y.-Y., Y.-T. Ma, J.-Y. Zhang, and X. Xie. COVID-19 and the 65 cardiovascular system. Nature Reviews Cardiology, Vol. 17, No. 5, 2020, pp. 259-260.10.1038/s41569-020-0360-5Search in Google Scholar PubMed PubMed Central

[191] He, J., B. Wu, Y. Chen, J. Tang, Q. Liu, S. Zhou, et al. Characteristic electrocardiographic manifestations in patients with COVID-19. Canadian Journal of Cardiology, Vol. 36, No. 6, 2020, pp. 966.e961-966.e964.10.1016/j.cjca.2020.03.028Search in Google Scholar PubMed PubMed Central

[192] An, X., and G. K. Stylios. A hybrid textile electrode for electrocardiogram (ECG) measurement and motion tracking. materials. Vol. 11, No. 10, 2018, id. 1887.10.3390/ma11101887Search in Google Scholar PubMed PubMed Central

[193] Weder, M., D. Hegemann, M. Amberg, M. Hess, L. F. Boesel, R. Abacherli, et al. Embroidered Electrode with Silver/Titanium Coating for Long-Term ECG Monitoring. Sensors, Vol. 15, No. 1, 2015, pp. 1750-1759.10.3390/s150101750Search in Google Scholar PubMed PubMed Central

[194] Fontana, P., N. R. A. Martins, M. Camenzind, R. M. Rossi, F. Baty, M. Boesch, et al. Clinical applicability of a textile 1-Lead ECG device for overnight monitoring. Sensors, Vol. 19, No. 11, 2019, id. 2436.10.3390/s19112436Search in Google Scholar PubMed PubMed Central

[195] Arquilla, K., A. K. Webb, and A. P. Anderson. Textile Electrocardiogram (ECG) Electrodes for wearable health monitoring. Sensors, Vol. 20, No. 4, 2020, id. 1013.10.3390/s20041013Search in Google Scholar PubMed PubMed Central

[196] Wilkerson, R. G., J. D. Adler, N. G. Shah, and R. Brown. Silent hypoxia: A harbinger of clinical deterioration in patients with COVID-19. The American Journal of Emergency Medicine, 2020. DOI: in Google Scholar PubMed PubMed Central

[197] Gattinoni, L., D. Chiumello, P. Caironi, M. Busana, F. Romitti, L. Brazzi, et al. COVID-19 pneumonia: different respiratory treatments for different phenotypes? Intensive Care Medicine, Vol. 46, No. 6, 2020, pp. 1099-1102.10.1007/s00134-020-06033-2Search in Google Scholar PubMed PubMed Central

[198] Jouffroy, R., D. Jost, and B. Prunet. Prehospital pulse oximetry: A red flag for early detection of silent hypoxemia in COVID-19 patients. Critical Care, Vol. 24, No. 1, 2020, id. 313.10.1186/s13054-020-03036-9Search in Google Scholar PubMed PubMed Central

[199] Luks, A. M., and E. R. Swenson. Pulse Oximetry for monitoring patients with COVID-19 at home: Potential pitfalls and practical guidance. Annals of the American Thoracic Society, Vol. 17, No. 9, 2020, pp. 1040-1046.10.1513/AnnalsATS.202005-418FRSearch in Google Scholar PubMed PubMed Central

[200] Rothmaier, M., B. Selm, S. Spichtig, D. Haensse, and M. Wolf. Photonic textiles for pulse oximetry. Optics Express, Vol. 16, No. 17, 2008, pp. 12973-12986.10.1364/OE.16.012973Search in Google Scholar PubMed

[201] Liu, C., R. Correia, H. K. Ballaji, S. Korposh, B. R. Hayes-Gill, and S. P. Morgan. Optical fibre-based pulse oximetry sensor with contact force detection. Sensors, Vol. 18, No. 11, 2018, id. 3632.10.3390/s18113632Search in Google Scholar PubMed PubMed Central

[202] Zhu, L., Z.-G. She, X. Cheng, J.-J. Qin, X.-J. Zhang, J. Cai, et al. Association of blood glucose control and outcomes in patients with COVID-19 and pre-existing type 2 diabetes. Cell Metabolism, Vol. 31, No. 6, 2020, pp. 1068-1077.e1063.10.1016/j.cmet.2020.04.021Search in Google Scholar PubMed PubMed Central

[203] Zhao, Y., Q. Zhai, D. Dong, T. An, S. Gong, Q. Shi, et al. Highly stretchable and strain-insensitive fiber-based wearable electro-chemical biosensor to monitor glucose in the sweat. Analytical Chemistry, Vol. 91, No. 10, 2019, pp. 6569-6576.10.1021/acs.analchem.9b00152Search in Google Scholar PubMed

[204] Pasomsub, E., S. P. Watcharananan, K. Boonyawat, P. Janchompoo, G. Wongtabtim, W. Suksuwan, et al. Saliva sample as a non-invasive specimen for the diagnosis of coronavirus disease 2019: a cross-sectional study. Clinical Microbiology and Infection. DOI: 10.1016/j.cmi.2020.05.00110.1016/j.cmi.2020.05.001Search in Google Scholar PubMed PubMed Central

[205] Azzi, L., G. Carcano, F. Gianfagna, P. Grossi, D. D. Gasperina, A. 5 Genoni, et al. Saliva is a reliable tool to detect SARS-CoV-2. Journal of Infection, Vol. 81, No. 1, 2020, pp. e45-e50.10.1016/j.jinf.2020.04.005Search in Google Scholar PubMed PubMed Central

[206] Rutgers Launches Genetic Testing Service for New Coronavirus. Available from: Accessed 20-06-2020, 2020.Search in Google Scholar

[207] Murugan, D., H. Bhatia, V. V. R. Sai, and J. Satija. P-FAB: A fiber optic biosensor device for rapid detection of COVID-19. Transactions of the Indian National Academy of Engineering, Vol. 5, No. 2, 2020, pp. 211-215.10.1007/s41403-020-00122-wSearch in Google Scholar

[208] Oertel, D. S., D. M. Jank, B. Schmitz, and D. N. Lang. Monitoring of biomarkers in sweat with printed sensors combined with sport wearables. In: UbiComp ’16: the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing: Adjunct, Heidelberg, Germany, 2016, pp. 893-898. DOI: in Google Scholar

Received: 2020-07-28
Accepted: 2020-09-27
Published Online: 2020-11-04

© 2020 Aleksandra Ivanoska-Dacikj et al., published by De Gruyter

This work is licensed under the Creative Commons Attribution 4.0 International License.

Downloaded on 31.5.2023 from
Scroll to top button