Skip to content
Licensed Unlicensed Requires Authentication Published online by Birkhäuser May 25, 2019

Guidance for Finding a Sustainable Balance between Energy Savings and Heritage Preservation When Retrofitting Heritage Buildings

  • E. Héberlé EMAIL logo , J. Borderon and J. Burgholzer

Abstract

A guidance was developed to find a sustainable balance between energy savings and heritage preservation when retrofitting heritage buildings. It was applied in a study on the retrofitting of typical Alsatian heritage buildings. Seven buildings were analysed before retrofitting to evaluate them on five criteria: energy savings, heritage preservation but also comfort in winter and in summer and moisture damage. Then, compatible retrofitting works on walls, ceilings, floors, front door, windows, ventilation and heating and hot production water systems were selected in order to create three retrofitting scenarios: a high-energy efficiency scenario with moisture-permeable materials, a balance scenario between energy efficiency and heritage preservation and a high heritage preservation scenario. The results of the study showed that these sustainable retrofitting scenarios preserve heritage while saving energy and are available in a web publication headed to Alsatian private individuals. The guidance in itself can be easily replicated to other types of heritage buildings.

Acknowledgements

The “Habitat en Alsace” study and the guide that resulted from it was commissioned by the French Ministry of Cultural Affairs and the Ministry of Sustainable Development.

References

1. Arumägi E, Mändel M, Kalamees T. Method for assessment of energy retrofit measures in milieu valuable buildings. Energy Procedia. 2015;78:1027–32.10.1016/j.egypro.2015.11.052Search in Google Scholar

2. Cantin R, Burgholzer J, Guarracino G, Moujalled B, Tamelikecht S, Royet BG. Field assessment of thermal behaviour of heritage dwellings in France. Build Environ. 2010;45:473–84.10.1016/j.buildenv.2009.07.010Search in Google Scholar

3. Stéphan E, Cantin R, Caucheteux A, Tasca-Guernouti S, Michel P. Experimental assessment of thermal inertia in insulated and non-insulated old limestone buildings. Build Environ. 2014;80:241–8.10.1016/j.buildenv.2014.05.035Search in Google Scholar

4. Martinez-Molina A, Tort-Ausina I, Cho S, Vivancos J. Energy efficiency and thermal comfort in heritage buildings: a review. Renew Sustainable Energy Rev. 2016;61:70–85.10.1016/j.rser.2016.03.018Search in Google Scholar

5. Ascione F, de Rossi F, Peter Vanoli G. Energy retrofit of heritage buildings: theoretical and experimental investigations for the modelling of reliable performance scenarios. Energy Build. 2011;43:1925–36.10.1016/j.enbuild.2011.03.040Search in Google Scholar

6. De Berardinis P, Rotilio M, Marchionni C, Friedman A. Improving the energy-efficiency of heritage masonry buildings. A Case Study A Minor Centre Abruzzo Reg Italy Energy Build. 2014;80:415–23.Search in Google Scholar

7. Troi A. Heritage buildings and city centres – the potential impact of conservation compatible energy refurbishment on climate protection and living conditions. In: proceedings, International Conference Energy Management in Cultural Heritage, Croatia: Dubrovnik, 2011.Search in Google Scholar

8. Vieites E, Vassileva I, Arias JE. European initiatives towards improving the energy efficiency in existing and heritage buildings. Energy Procedia. 2015;75:1679–85.10.1016/j.egypro.2015.07.418Search in Google Scholar

9. EN16883:2017 conservation of cultural heritage - guidelines for improving of the energy performance of historic buildings.Search in Google Scholar

10. Roberti F, Filippi Oberegger U, Lucchi E, Troi A. Energy retrofit and conservation of a heritage building using multi-objective optimization and an analytic hierarchy process. Energy Build. 2017;138:1–10.10.1016/j.enbuild.2016.12.028Search in Google Scholar

11. Morelli M. Development of a method for holistic energy renovation. PhD thesis. Kingston Lyngby: Technical University of Denmark, 2013. 195.Search in Google Scholar

12. Borderon J, Nussbaumer P, Burgholzer J. On-site assessment of hygrothermal performance of heritage wall before and after retrofitting with insulation. In: proceedings, EECHB conference. Bruxelles, Belgium, 2016:234–40.Search in Google Scholar

13. Haverinen-Shaughnessy U, Hyvärinen A, Putus T, Nevalainen A. Monitoring success of remediation: seven case studies of moisture and mold damaged buildings. Sci Total Environ. 2008;399:19–27.10.1016/j.scitotenv.2008.03.033Search in Google Scholar

14. Morelli M, Rønby L, Erik Mikkelsen S, Minzari MG, Kildemoes T, Tommerup HM. Energy retrofitting of a typical old Danish multi-family building to a “nearly-zero” energy building based on experiences from a test apartment. Energy Build. 2012;54:395–406.10.1016/j.enbuild.2012.07.046Search in Google Scholar

15. Heim D, Krawczynski S, Grunewald J. Numerical analysis of heat and moisture transfer in heritage ceramic masonry wall. In: proceedings, 11th International IBPSA conference, United Kingdom: Glasgow, 2009.Search in Google Scholar

16. May N, Rye C. STBA. Responsible retrofit of traditional building, a report on existing research and guidance with recommendations. [internet]. 2012. Available at: http://www.sdfoundation.org.uk/downloads/RESPONSIBLE-RETROFIT_FINAL_20_SEPT_2012.pdf. Accessed: 29 sept 2017.Search in Google Scholar

17. Direction Régionale de l’Aménagement, de l’Environnement et du Logement (DREAL), and Direction Régionale des Affaires Culturelles (DRAC) Alsace. Habitat ancien en Alsace: énergie et patrimoine. [Internet]. 2016. Available at: http://www.grand-est.developpement-durable.gouv.fr/pour-comprendre-et-renover-le-bati-ancien-en-a193.html. Accessed: 29 sept 2017.Search in Google Scholar

18. Ministère de l’Environnement, de l’Energie et de la Mer. Diagnostic de performance énergétique. [Internet]. Oct 2012. Available at: http://www.developpement-durable.gouv.fr/-Diagnostic-de-Performance,855-.html. Accessed: 04 Feb 2016.Search in Google Scholar

19. Salomon T, Mikolasek R, Peuportier B. Outil de simulation thermique du bâtiment, COMFIE. In: proceedings, Journée thématique SFT-IBPSA, La Rochelle, France, 2005.Search in Google Scholar

20. Décret n° 2007-363 du 19 mars 2007 relatif aux études de faisabilité des approvisionnements en énergie, aux caractéristiques thermiques et à la performance énergétique des bâtiments existants et à l’affichage du diagnostic de performance énergétique. [internet]. 2007. Available at: https://www.legifrance.gouv.fr/eli/decret/2007/3/19/SOCU0710409D/jo/texte. Accessed: 29 Sept 2017.Search in Google Scholar

21. Künzel HM. Simultaneous Heat and Moisture Transport in Building Component: One- and Two-dimensional calculation using simple parameters. PhD thesis, Stuttgart, Germany: Fraunhofer-IBP, 1995.Search in Google Scholar

22. EN13829: thermal performance of buildings. Determination of air permeability of buildings. Fan pressurization method.Search in Google Scholar

23. Agence Nationale de l’Habitat (ANAH). Modélisation des performances énergétiques du parc de logement. Etat énergétique du parc en 2008. Rapport détaillé. [Internet]. Jan 2008. Available at: http://www.anah.fr/fileadmin/anah/Mediatheque/Publications/Les_etudes/rapport_performances_energetiques.pdf. Accessed: 04 Fev 2016.Search in Google Scholar

24. Héberlé E, Borderon J, Burgholzer J, Cantin R. Influence d’un défaut d’étanchéité à l’air sur la teneur en eau de quatre types de murs traditionnels rénovés. In: proceedings, IBPSA France, Arras, France, 2014.Search in Google Scholar

25. Dugué A, Betbeder F, Lopez J, Lagière P. Evaluation des risques liés à l’humidité dans le cas d’une isolation thermique par l’intérieur de murs anciens: étude de cas. In: proceedings, IBPSA France, Moret-sur-Loing, France, 2010.Search in Google Scholar

Published Online: 2019-05-25

© 2019 Birkhäuser Verlag GmbH, Basel. Part of Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 28.3.2024 from https://www.degruyter.com/document/doi/10.1515/rbm-2017-0007/html?lang=en
Scroll to top button