Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter March 1, 2021

Investigation on the Organic Acid Content inside the Storage of a Woodblock Print Collection and Evaluation on the FFU System as a Mitigation Strategy

Untersuchung des Gehalts an organischen Säuren in der Lagerungsumgebung einer Sammlung von Holzschnitten und Bewertung des FFU-Systems als Reduktionsstrategie
Ana Teresa Guimarães Romero, Toshiya Matsui and Eriko Nagahama

Abstract

This paper describes an investigation on the storage environment of an Edo period woodblock print collection in terms of volatile organic acid content, using active air sampling and precision gas detector tubes that can measure organic acid emissions in the low microgram range, and evaluates an organic acid mitigation method based on the fan filter unit (FFU) system. Ion-exchange chromatography method was also employed for estimation of acetic and formic acid ratio. Findings revealed an organic acid-concentrated microclimate inside the storage box, nevertheless, the off-gassing rates of the woodblock prints were low, with the exception of a print positioned in the middle of the stack. The acetic acid/formic acid ratio was similar between the storage room environment and inside the storage box, but comparatively higher levels of formic acid were identified in the mulberry paper folder housing the prints. Finally, the FFU system was able to reduce organic acid concentrations inside the storage box for a 5-month observation period, but it did not eliminate the tendency of the storage materials to create organic acid-concentrated microclimates.

Zusammenfassung

In diesem Artikel wird eine Untersuchung des Gehalts an flüchtigen organischen Säuren in der Lagerungsumgebung einer Sammlung von Holzschnitten aus der Edo-Zeit beschrieben. Dazu wurden aktive Luftprobenahme- und Präzisionsgasdetektorröhren verwendet, mit denen organische Säuremissionen im niedrigen Mikrogrammbereich gemessen werden können. Um den Gehalt an flüchtigen organischen Säuren zu reduzieren, wurde ein FFU-System (Fan Filter Unit) eingesetzt. Mittels Ionenaustauschchromatographie konnte auch das Verhältnis von Essigsäure und Ameisensäure abgeschätzt werden. Die Ergebnisse zeigen, dass in der Aufbewahrungsbox ein Mikroklima mit erhöhter Konzentration von organischen Säuren vorliegt. Dennoch waren die Ausgasungsraten der Holzschnitte selbst niedrig, mit Ausnahme eines Drucks in der Mitte des Stapels. Das Verhältnis von Essigsäure zu Ameisensäure war zwischen der Lagerungsumgebung und innerhalb der Aufbewahrungsbox ähnlich, jedoch wurde in den Aufbewahrungsmappen aus Japanpapier, in denen sich die Drucke befanden, ein vergleichsweise höherer Gehalt an Ameisensäure festgestellt. Mittels FFU-System konnte die Konzentration organischer Säure in der Aufbewahrungsbox für einen Beobachtungszeitraum von 5 Monaten verringert werden. Die generelle Tendenz, dass innerhalb von Aufbewahrungsboxen Mikroklimata mit höheren Konzentrationen an organischer Säure entstehen, kann mit dieser Maßnahme jedoch nicht verhindert werden.


Corresponding author: Ana Teresa Guimarães Romero, World Cultural Heritage Studies, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan, E-mail:

References

Aoki, M. 1999. “The Effect of Storage Boxes on Humidity Change (in Japanese).” Shiryōkan Kenkyū Kiyō 30: 450–16, https://doi.org/10.1023/a:1007543725559.10.1023/A:1007543725559Search in Google Scholar

Bigourdan, J.-L., P. Z. Adelstein, and J. M. Reilly. 1996. “Acetic Acid and Paper Alkaline Reserve: Assessment of a Practical Situation in Film Preservation.” In ICOM-CC 11th Triennial Meeting Edinburgh 1-6 September 1996, Preprints, 2, 573–9.Search in Google Scholar

Brokerhof, A. W., and M. Van Bommel. 1996. “Deterioration of Calcareous Materials by Acetic Acid Vapour: A Model Study.” In Preprints, ICOM Committee for Conservation, 11th Triennial Meeting, edited by J. Bridgland, 769–75. Edinburgh: London: James & James.Search in Google Scholar

Carter, H., P. Bégin, and D. Grattan. 2000. “Migration of Volatile Compounds through Stacked Sheets of Paper during Accelerated Ageing.” Restaurator 21: 87–203, https://doi.org/10.1515/rest.2000.77.Search in Google Scholar

Colbourne, J., and M. Hori. 2017. “Modern Machine-Made Washi and the Implications for Contemporary Conservation Practice.” In Adapt & Evolve 2015: East Asian Materials and Techniques in Western Conservation. Proceedings from the International Conference of the Icon Book & Paper Group, London 8–10 April 2015, 158–67. London: The Institute of Conservation.Search in Google Scholar

Di Pietro, G., A. Blüher, and G. Grossenbacher. 2010. “Monitoring Indoor Air Pollution in the Stacks of the Swiss National Library.” In IAQ 2010: 9th International Conference on Indoor Air Quality. Burgundy, France: Chalon-sur-Saônes, https://www.iaq.dk/iap/iaq2010/iaq2010_dipietro.pdf (accessed November 25, 2019).Search in Google Scholar

Fenech, A., M. Strlič, I. K. Cigić, A. Levart, L. T. Gibson, G. De Bruin, K. Ntanos, J. Kolar, and M. Cassar. 2010. “Volatile Aldehydes in Libraries and Archives.” Atmospheric Environment 44 (17): 2067–73, https://doi.org/10.1016/j.atmosenv.2010.03.021.Search in Google Scholar

Gibson, L. T., and C. M. Watt. 2010. “Acetic and Formic Acids Emitted from Wood Samples and Their Effect on Selected Materials in Museum Environments.” Corrosion Science 52 (1): 172–8, https://doi.org/10.1016/j.corsci.2009.08.054.Search in Google Scholar

Gibson, L. T., A. Ewlad-Ahmed, B. Knight, V. Horie, G Mitchell, and C. J. Robertson. 2012. “Measurement of Volatile Organic Compounds Emitted in Libraries and Archives: An Inferential indicator of Paper Decay?” Chemistry Central Journal 6 (1): 42, https://doi.org/10.1186/1752-153x-6-42.Search in Google Scholar

Gunschera, J., J. R. Andersen, N. Schulz, and T. Salthammer. 2009. “Surface-catalysed Reactions on Pollutant-Removing Building Products for indoor Use.” Chemosphere 75: 476–82, https://doi.org/10.1016/j.chemosphere.2008.12.055.Search in Google Scholar

Search in Google Scholar

Hughes, S. 1978. Washi, the World of Japanese Paper, 1st ed. 84. Japan: Kodansha International.Search in Google Scholar

Kotajima, T., T. Ro, C. Sano, and M. Inaba. 2018. “Organic Acid and Ammonia Emissions from Adhesives for Wood Materials (in Japanese).” Hozon Kagaku 57: 159–67.Search in Google Scholar

Ligterink, F., and G. Di Pietro. 2018. “The Limited impact of Acetic Acid in Archives and Libraries.” Heritage Science 6 (1): 2–12, https://doi.org/10.1186/s40494-018-0225-y.Search in Google Scholar

López-Aparicio, S., T. Grøntoft, M. Odlyha, E. Dahlin, P. Mottner, D. Thickett, M. Ryhl-Svendsen, N. Schmidbauer, and M. Scharff. 2010. “Measurement of Organic and Inorganic Pollutants in Microclimate Frames for Paintings.” e-Preservation Science 7: 59–70.Search in Google Scholar

Malagodi, M., C. Milanese, M. Licchelli, P. Cofrancesco, S. Bottigliero, and T. Rovetta. 2017. “Alteration Processes of Pigments Exposed to Acetic and Formic Acid Vapors.” In 17th International Conference on Environment and Electrical Engineering 2017 (IEEE EEEIC) & 1st Industrial and Commercial Power System Europe 2017 (IEEE I&CPS). Milan: IEEE.10.1109/EEEIC.2017.7977770Search in Google Scholar

Mašková, L., J. Smolík, and M. Ďurovič. 2017. “Characterization of Indoor Air Quality in Different Archives – Possible Implications for Books and Manuscripts.” Building and Environment 120: 77–84.10.1016/j.buildenv.2017.05.009Search in Google Scholar

Matsui, T., E. Kawazaki, E. Nagahama, A. T. Romero, and I. A. Hüttmann. 2018. Mitigation of Gaseous Susbtances Released by a Japanese Folding Screen (In Japanese), 104–5. Tokyo: Bunkazai Hozon Shūfuku Gakkai Dai 40 Kaitaikai Kenkyū Happyō Yōshi-shū.Search in Google Scholar

Meyer, F., and G. Volland. 2016. “A New Housing Concept for the Karl Friedrich Schinkel Collection: Chemical and Mechanical Aspects.” Restaurator 38 (1): 1–31, https://doi.org/10.1515/res-2016-0004.10.1515/res-2016-0004Search in Google Scholar

Nakano, O. 2002. Insertion Accelerated Ageing Test of Paper for Conservation (In Japanese). Lecture Record of the 15th Edition of Shiryō Hozon Kyōgikai Seminar. Tokyo: Shiryō Hozon Kyōgikai.Search in Google Scholar

Oikawa, T., M. Toshiya, M. Yasunori, T. Teruko, N. Hitoshi, N. Yasuyo, H. Kazuo, and Y. Mitsuyoshi. 2005. “Volatile Organic Compounds from Wood and Their influences on Museum Artifact Materials I. Differences in Wood Species and Analyses of Causal Substances of Deterioration.” Journal of Wood Science 51 (4): 363–9, https://doi.org/10.1007/s10086-004-0654-y.Search in Google Scholar

Porck, H. J. 2000. Rate of Paper Degradation - the Predictive Value of Artificial Aging Tests, 20 Amsterdam: European Commission on Preservation and Access.Search in Google Scholar

Raychaudhuri, M. R., and P. Brimblecombe. 2000. “Formaldehyde Oxidation and Lead Corrosion.” Studies in Conservation 45 (2000): 226–32, https://doi.org/10.2307/1506860.Search in Google Scholar

Ro, T., T. Kotajima, and C. Sano. 2014. “An Evaluation of Formic Acid /Acetic Acid Ratio in Organic Acid Concentration in Display Cases (in Japanese).” Hozon Kagaku 53: 205–13.Search in Google Scholar

Romero, A. T. G., M. Toshiya, and E. Nagahama. 2020. “Off-Gassing Woodblock Prints: Storage Impact Considerations and Mitigation Strategies.” Journal of Conservation Science 36 (1): 28–36, https://doi.org/10.12654/jcs.2020.36.1.03.Search in Google Scholar

Sano, C. 1999. “Indoor Air Pollutants in Museum – Carboxylic Acid Concentrations and Their Detective Methods: Case Studies (in Japanese).” Hozon Kagaku 38: 23–30.Search in Google Scholar

Smedemark, S. H., M. Ryhl-Svendsen, and A. Schieweck. 2020. “Quantification of Formic Acid and Acetic Acid Emissions from Heritage Collections under Indoor Room Conditions. Part I: Laboratory and Field Measurements.” Heritage Science 8 (58) https://doi.org/10.1186/s40494-020-00404-0.Search in Google Scholar

Schieweck, A. 2020. “Adsorbent Media for the Sustainable Removal of Organic Air Pollutants from Museum Display Cases.” Heritage Science 8 (12), https://doi.org/10.1186/s40494-020-0357-8.Search in Google Scholar

Tétreault, J., E. Cano, M. Van Bommel, D. Scott, M. Dennis, M-G. Barthés-Labrousse, L. Minel, and L. Robbiola. 2003. “Corrosion of Copper and Lead by Formaldehyde, Formic and Acetic Acid Vapours.” Studies in Conservation 48 (4): 237–50, https://doi.org/10.1179/sic.2003.48.4.237.Search in Google Scholar

Tétreault, J., J. Sirois, and E. Stamatopoulou. 1998. “Study of Lead Corrosion in Acetic Acid Environment.” Studies in Conservation 43 (1): 17–32, https://doi.org/10.1179/sic.1998.43.1.17.Search in Google Scholar

Tokyo National Research Institute for Cultural Properties. 2019. A Guideline to Air Cleaning for Museums. (March 2019 Edition). Tokyo: Independent Administrative Institution National Institutes for Cultural Heritage Tokyo National Research Institute for Cultural Properties, https://www.tobunken.go.jp/∼ccr/pub/190410aircleaning_guideline.pdf (accessed November 1, 2019).Search in Google Scholar

Tokyo National Museum, ed. 2013. Tōkyō Kokuritsu Hakubutsukan No Rinshō Hozon = Clinical Conservation at the Tokyo National Museum. Tokyo: Bijutsu Shuppansha.Search in Google Scholar

Yamada, T., and M. Hirose. 1991. “Preservation and Conservation Activities at the Department of Historical Documents (in Japanese).” Shiryōkan Kenkyū Kiyō 22: 59–152.Search in Google Scholar

Published Online: 2021-03-01
Published in Print: 2021-03-26

© 2020 Walter de Gruyter GmbH, Berlin/Boston