Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter August 1, 2019

Modeling methods for gravity flow of granular solids in silos

  • Shahab Golshan , Reza Zarghami and Khashayar Saleh EMAIL logo

Abstract

This paper provides a review on the flow of free-flowing particles inside silos. We have previously reviewed in detail the experimental studies in this field. In the present work, the focus is placed on the theoretical approaches allowing numerical simulation and modeling of these systems. Modeling of granular flow in silos is very significant due to the advantages of modeling compared to experiments. The simulation methods are divided into four main groups: analytical methods, finite element method, discrete element method, and hybrid models. In each section, the most significant researches are reviewed. The drawbacks and advantages of each method are discussed, and the effects of different parameters are reviewed. Finally, the perspective of future work and the main challenges in this area are discussed.

Nomenclature

A (m2)

cross-sectional area of the silo

a (−)

Drucker-Prager model constant

Bi (N/kg)

body force per unit mass in i direction

dp (mm)

particle mean size

E (Pa)

Young’s modulus

F (N)

force

Fyield (N/m2)

yield surface

G (Pa)

shear modulus

g (m/s2)

gravitational acceleration

I (kg·m2)

moment of inertia

J1 (N/m2)

first stress invariant

J2 (N2/m4)

second stress invariant

k (N/m2)

Drucker-Prager model constant

kl (−)

lateral pressure ratio

L (m)

distance between outlets of silo

Mij (N·m)

torque

mi (kg)

mass of particle i

nij (−)

normal unit vector

P (Pa)

pressure

Q (m3/s)

volumetric flow rate

Qu (m2/s)

flow rate per unit of thickness

R (m)

radius

T (s)

time

tij (−)

tangential unit vector

Vα, Vβ (m/s)

orthogonal projections of velocity vector on α and β

Vi (m/s)

velocity in i direction

x, y, z (−)

coordination axis

Greek symbols
α (−)

hopper angle

δi (m)

displacement

δij (mm)

overlap of particles

εij (−)

strain

Γ (kg/m3)

bulk density

μ (−)

coefficient of sliding friction

μr (−)

rolling friction of particles

ν (−)

Poisson’s ratio

η (kg/s·m0.25)

damping coefficient

θ (−)

angular position

(−)

proportionality factor

ρ (kg/m3)

density

σ (N/m2)

stress

φ (−)

angle of internal friction

ψ (−)

angle of inclination

ω (rad/s)

angular velocity

Subscripts and superscripts
Eff

effective

N

normal

p

plastic

r

rolling

T

tangential

References

Abou-Chakra H, Baxter J, Tüzün U. Three-dimensional particle shape descriptors for computer simulation of non-spherical particulate assemblies. Adv Powder Technol 2004; 15: 63–77.10.1163/15685520460740070Search in Google Scholar

Acevedo M, Zuriguel I, Maza D, Pagonabarraga I, Alonso-Marroquin F, Hidalgo R. Stress transmission in systems of faceted particles in a silo: the roles of filling rate and particle aspect ratio. Granul Matter 2014; 16: 411–420.10.1007/s10035-014-0509-1Search in Google Scholar

Arévalo R, Zuriguel I, Maza D, Garcimartín A. Role of driving force on the clogging of inert particles in a bottleneck. Phys Rev E 2014; 89: 042205.10.1103/PhysRevE.89.042205Search in Google Scholar PubMed

Balevičius R, Kačianauskas R, Mroz Z, Sielamowicz I. Discrete element method applied to multiobjective optimization of discharge flow parameters in hoppers. Struct Multidiscip Optim 2006; 31: 163–175.10.1007/s00158-005-0596-zSearch in Google Scholar

Balevičius R, Kačianauskas R, Mroz Z, Sielamowicz I. Microscopic and macroscopic analysis of granular material behaviour in 3D flat-bottomed hopper by the discrete element method. Arch Mech 2007; 59: 231–257.Search in Google Scholar

Balevičius R, Kačianauskas R, Mróz Z, Sielamowicz I. Discrete-particle investigation of friction effect in filling and unsteady/steady discharge in three-dimensional wedge-shaped hopper. Powder Technol 2008; 187: 159–174.10.1016/j.powtec.2008.02.006Search in Google Scholar

Balevičius R, Kačianauskas R, Mroz Z, Sielamowicz I. Analysis and DEM simulation of granular material flow patterns in hopper models of different shapes. Adv Powder Technol 2011; 22: 226–235.10.1016/j.apt.2010.12.005Search in Google Scholar

Baxter J, Abou-Chakra H, Tüzün U, Lamptey BM. A DEM simulation and experimental strategy for solving fine powder flow problems. Chem Eng Res Des 2000; 78: 1019–1025.10.1205/026387600528139Search in Google Scholar

Bohrnsen JU, Antes H, Ostendorf M, Schwedes J. Silo discharge: measurement and simulation of dynamic behaviour in bulk solids. Chem Eng Technol 2004; 27: 71–76.10.1002/ceat.200401913Search in Google Scholar

Brown CJ, Nielsen J. Silos: fundamentals of theory, behaviour and design. Boca Raton, FL: CRC Press, 2014.Search in Google Scholar

Campbell CS. Rapid granular flows. Annu Rev Fluid Mech 1990; 22: 57–90.10.1146/annurev.fl.22.010190.000421Search in Google Scholar

Chen B, Roberts A, Donohue T. DEM Modelling of silo loads asymmetry induced by eccentric discharge. In: International Conference on Discrete Element Methods, Berlin. Singapore: Springer, 2017: 1133–1141.10.1007/978-981-10-1926-5_118Search in Google Scholar

Choi J, Kudrolli A, Rosales RR, Bazant MZ. Diffusion and mixing in gravity-driven dense granular flows. Phys Rev Lett 2004; 92: 174301.10.1103/PhysRevLett.92.174301Search in Google Scholar PubMed

Choi J, Kudrolli A, Bazant MZ. Velocity profile of granular flows inside silos and hoppers. J Phys-Condens Mat 2005; 17: S2533.10.1088/0953-8984/17/24/011Search in Google Scholar

Chou C, Hsu J. Kinematic model for granular flow in a two-dimensional flat-bottomed hopper. Adv Powder Technol 2003; 14: 313–331.10.1163/15685520360685965Search in Google Scholar

Chuayjan W, Boonkrong P, Wiwatanapataphee B, Wu Y. Effect of the silo-bottom design on the granular behaviour during discharging process. Latest Adv Systems Sci Comput Intelligence 2012; 62: 68–73.Search in Google Scholar

Cleary PW. The effect of particle shape on hopper discharge. In: Second International Conference on CFD in the Minerals and Process Industries. CSIRO, 1999: 71–76.Search in Google Scholar

Cleary PW, Sawley ML. DEM modelling of industrial granular flows: 3D case studies and the effect of particle shape on hopper discharge. Appl Math Model 2002; 26: 89–111.10.1016/S0307-904X(01)00050-6Search in Google Scholar

Colijn H, Peschl I. Non-symmetrical bin flow problems. Int J Storing Handling Bulk Mater 1981; 6: 79–96.Search in Google Scholar

Cundall PA, Strack OD. A discrete numerical model for granular assemblies. Geotechnique 1979; 29: 47–65.10.1680/geot.1979.29.1.47Search in Google Scholar

Datta A, Mishra B, Das S, Sahu A. A DEM analysis of flow characteristics of noncohesive particles in hopper. Mater Manuf Process 2008; 23: 195–202.10.1080/10426910701774742Search in Google Scholar

Ding S. Investigations of flow and pressure in silos during filling and discharging in presence of inserts. Doctoral dissertation, University of Edinburgh, 2004.Search in Google Scholar

Ding S, Enstad G, De Silva S. Development of load on a hopper during filling with granular material. Particul Sci Technol 2003; 21: 259–270.10.1080/02726350307487Search in Google Scholar

Ding S, Rotter J, Ooi J, Enstad G, Xu D. Normal pressures and frictional tractions on shallow conical hopper walls after concentric filling: predictions and experiments. Chem Eng Sci 2013; 89: 264–272.10.1016/j.ces.2012.11.028Search in Google Scholar

Drescher A, De Jong GDJ. Photoelastic verification of a mechanical model for the flow of a granular material. J Mech Phys Solids 1972; 20: 337–340.10.1007/978-1-4020-3629-3_5Search in Google Scholar

El-Sawy K, Moore ID. A two-level iterative FEM technique for rigorous solution of non-linear interaction problems under large deformations. Comput Struct 1996; 61: 43–54.10.1016/0045-7949(96)00014-4Search in Google Scholar

Elaskar SA, Godoy LA, Brewer AT. Granular flow based on non-Newtonian fluid mechanics. Eng Mech 1996; 1: 394397.Search in Google Scholar

Elaskar SA, Godoy LA, Gray DD, Stiles JM. A viscoplastic approach to model the flow of granular solids. Int J Solids Struct 2000; 37: 2185–2214.10.1016/S0020-7683(98)00300-XSearch in Google Scholar

Enstad GG. A novel theory on the arching and doming in mass flow hoppers. Norges Teknisks Høgskole, 1981.Search in Google Scholar

Fang Z, Hu G, Du J, Fan Z, Liu J. A contact detection algorithm for multi-sphere particles by means of two-level-grid-searching in DEM simulations. Int J Numer Meth Eng 2015; 102: 1869–1893.10.1002/nme.4875Search in Google Scholar

Favier J, Abbaspour-Fard M, Kremmer M. Modeling nonspherical particles using multisphere discrete elements. J Eng Mech 2001; 127: 971–977.10.1061/(ASCE)0733-9399(2001)127:10(971)Search in Google Scholar

Gallego E, Rombach G, Neumann F, Ayuga F. Simulations of granular flow in silos with different finite element programs: ANSYS vs. SILO. Trans ASABE 2010; 53: 819–829.10.13031/2013.30065Search in Google Scholar

Gallego E, Ruiz A, Aguado PJ. Simulation of silo filling and discharge using ANSYS and comparison with experimental data. Comput Electron Agr 2015; 118: 281–289.10.1016/j.compag.2015.09.014Search in Google Scholar

Goda TJ, Ebert F. Three-dimensional discrete element simulations in hoppers and silos. Powder Technol 2005; 158: 58–68.10.1016/j.powtec.2005.04.019Search in Google Scholar

Golshan S, Zarghami R, Norouzi HR, Mostoufi N. Granular mixing in nauta blenders. Powder Technol 2017; 305: 279–288.10.1016/j.powtec.2016.09.059Search in Google Scholar

González-Montellano C, Ayuga F, Ooi J. Discrete element modelling of grain flow in a planar silo: influence of simulation parameters. Granul Matter 2011; 13: 149–158.10.1007/s10035-010-0204-9Search in Google Scholar

González-Montellano C, Gallego E, Ramírez-Gómez Á, Ayuga F. Three dimensional discrete element models for simulating the filling and emptying of silos: analysis of numerical results. Comput Chem Eng 2012a; 40: 22–32.10.1016/j.compchemeng.2012.02.007Search in Google Scholar

González-Montellano C, Ramírez A, Fuentes JM, Ayuga F. Numerical effects derived from en masse filling of agricultural silos in DEM simulations. Comput Electron Agr 2012b; 81: 113–123.10.1016/j.compag.2011.11.013Search in Google Scholar

Goodey R, Brown C. The influence of the base boundary condition in modelling filling of a metal silo. Comput Struct 2004; 82: 567–579.10.1016/j.compstruc.2004.02.003Search in Google Scholar

Goodey R, Brown C, Rotter J. Verification of a 3-dimensional model for filling pressures in square thin-walled silos. Eng Struct 2003; 25: 1773–1783.10.1016/j.engstruct.2003.07.003Search in Google Scholar

Goodey R, Brown C, Rotter J. Predicted patterns of filling pressures in thin-walled square silos. Eng Struct 2006; 28: 109–119.10.1016/j.engstruct.2005.08.004Search in Google Scholar

Gray DD, Stiles JM. Geometry of yield surfaces for frictional flow of granular materials. Mechanics computing in 1990’s and beyond. ASCE 1991; 2: 1219–1223.Search in Google Scholar

Gray D, Stiles JM, Celik I. Theoretical and numerical studies of constitutive relations for frictional granular flow. Department of Civil Engineering, West Virginia University, Morgantown, WV (United States), 1991.10.2172/5119247Search in Google Scholar

Gröger T, Tüzün U, Heyes DM. Modelling and measuring of cohesion in wet granular materials. Powder Technol 2003; 133: 203–215.10.1016/S0032-5910(03)00093-7Search in Google Scholar

Guaita M, Couto A, Ayuga F. Numerical simulation of wall pressure during discharge of granular material from cylindrical silos with eccentric hoppers. Biosyst Eng 2003; 85: 101–109.10.1016/S1537-5110(03)00037-0Search in Google Scholar

Guines D, Ragneau E, Kerour B. 3D finite-element simulation of a square silo with flexible walls. J Eng Mech 2001; 127: 1051–1057.10.1061/(ASCE)0733-9399(2001)127:10(1051)Search in Google Scholar

Gutfraind R, Savage SB. Flow of fractured ice through wedge-shaped channels: smoothed particle hydrodynamics and discrete-element simulations. Mech Mater 1998; 29: 1–17.10.1016/S0167-6636(97)00072-0Search in Google Scholar

Haaker G, Scott O. Wall loads on corrugated steel silos. In: Proceedings, Second International Conference on the Design of Silos for Strength and Flow, Stratford-upon-Avon, Powder Advisory Centre, 1983: 480–503.Search in Google Scholar

Hartlén J, Nielsen J, Ljunggren L, Mårtensson G, Wigram S. The wall pressure in large grain silos. Inventory, pressure measurements, material investigations. Statens Raad foer Byggnadsforskning, 1984.Search in Google Scholar

Häussler U, Eibl J. Numerical investigations on discharging silos. J Eng Mech 1984; 110: 957–971.10.1061/(ASCE)0733-9399(1984)110:6(957)Search in Google Scholar

Helbing D, Johansson A, Mathiesen J, Jensen MH, Hansen A. Analytical approach to continuous and intermittent bottleneck flows. Phys Rev Lett 2006; 97: 168001.10.1103/PhysRevLett.97.168001Search in Google Scholar PubMed

Hidaka J, Kano J, Shimosaka A. Flow mechanism of granular materials discharging from bin-hopper system. Kagaku Kogaku Ronbun 1994; 20: 397–397.10.1252/kakoronbunshu.20.397Search in Google Scholar

Hirshfeld D, Rapaport D. Granular flow from a silo: discrete-particle simulations in three dimensions. Eur Phys J E 2001; 4: 193–199.10.1007/s101890170128Search in Google Scholar

Holst JMF, Ooi JY, Rotter JM, Rong GH. Numerical modeling of silo filling. I: continuum analyses. J Eng Mech 1999a; 125: 94–103.10.1061/(ASCE)0733-9399(1999)125:1(94)Search in Google Scholar

Holst JMF, Rotter JM, Ooi JY, Rong, GH. Numerical modeling of silo filling. II: discrete element analyses. J Eng Mech 1999b; 125: 104–110.10.1061/(ASCE)0733-9399(1999)125:1(104)Search in Google Scholar

Horabik J, Molenda M. Mechanical properties of granular materials and their impact on load distribution in silo: a review. Sci Agric Bohem 2014; 45: 203–211.10.1515/sab-2015-0001Search in Google Scholar

Horabik J, Molenda M. Parameters and contact models for DEM simulations of agricultural granular materials: a review. Biosyst Eng 2016; 147: 206–225.10.1016/j.biosystemseng.2016.02.017Search in Google Scholar

Horabik J, Schwab CV, Ross IJ. Non-symmetrical loads in a model grain bin during eccentric discharge. Trans ASAE 1992; 35: 987.10.13031/2013.28691Search in Google Scholar

Horne R, Nedderman R. Stress distribution in hoppers. Powder Technol 1978; 19: 243–254.10.1016/0032-5910(78)80033-3Search in Google Scholar

Jaeger HM, Nagel SR, Behringer RP. Granular solids, liquids, and gases. Rev Mod Phys 1996a; 68: 1259.10.1103/RevModPhys.68.1259Search in Google Scholar

Jaeger HM, Nagel SR, Behringer RP. The physics of granular materials. Phys Today 1996b; 49: 32–39.10.1063/1.881494Search in Google Scholar

James R, Bransby P. A velocity field for some passive earth pressure problems. Geotechnique 1971; 21: 61–83.10.1680/geot.1971.21.1.61Search in Google Scholar

Janssen H. Versuche über getreidedruck in silozellen. Zeitschr Vereines Deutscher Ingenieure 1895; 39: 1045–1049.Search in Google Scholar

Jenike AW. Storage and flow of solids. Bulletin no. 123, University of Utah, 1964.Search in Google Scholar

Jenike AW. Denting of circular bins with eccentric drawpoints. J Struct Div 1967; 93: 27–36.10.1061/JSDEAG.0001582Search in Google Scholar

Jenike AW, Johanson J. On the theory of bin loads. ASME 1968.10.1115/1.3591570Search in Google Scholar

Jenkins JT, Savage SB. A theory for the rapid flow of identical, smooth, nearly elastic, spherical particles. J Fluid Mech 1983; 130: 187–202.10.1017/S0022112083001044Search in Google Scholar

Jospeph GG, Geffroy E, Mena B, Walton OR, Huilgol RR. Simulation of filling and emptying in a hexagonal-shape solar grain silo. Particul Sci Technol 2000; 18: 309–327.10.1080/02726350008906841Search in Google Scholar

Kano J, Saito F, Shimosaka A, Hidaka J. Simulation of mass flow rate of particles discharged from hopper by particle element method. J Chem Eng Jpn 1998; 31: 936–940.10.1252/jcej.31.936Search in Google Scholar

Karlsson T, Klisinski M, Runesson K. Finite element simulation of granular material flow in plane silos with complicated geometry. Powder Technol 1998; 99: 29–39.10.1016/S0032-5910(98)00087-4Search in Google Scholar

Keiter TW, Rombach GA. Numerical aspects of FE simulations of granular flow in silos. J Eng Mech 2001; 127: 1044–1050.10.1061/(ASCE)0733-9399(2001)127:10(1044)Search in Google Scholar

Ketterhagen WR, Curtis JS, Wassgren CR, Kong A, Narayan PJ, Hancock BC. Granular segregation in discharging cylindrical hoppers: a discrete element and experimental study. Chem Eng Sci 2007; 62: 6423–6439.10.1016/j.ces.2007.07.052Search in Google Scholar

Ketterhagen WR, Curtis JS, Wassgren CR, Hancock BC. Modeling granular segregation in flow from quasi-three-dimensional, wedge-shaped hoppers. Powder Technol 2008; 179: 126–143.10.1016/j.powtec.2007.06.023Search in Google Scholar

Ketterhagen WR, Curtis JS, Wassgren CR, Hancock BC. Predicting the flow mode from hoppers using the discrete element method. Powder Technol 2009; 195: 1–10.10.1016/j.powtec.2009.05.002Search in Google Scholar

Kobyłka R, Molenda M. DEM modelling of silo load asymmetry due to eccentric filling and discharge. Powder Technol 2013; 233: 65–71.10.1016/j.powtec.2012.08.039Search in Google Scholar

Kobyłka R, Molenda M. DEM simulations of loads on obstruction attached to the wall of a model grain silo and of flow disturbance around the obstruction. Powder Technol 2014; 256: 210–216.10.1016/j.powtec.2014.02.030Search in Google Scholar

Kodikara J, Moore ID. A general interaction analysis for large deformations. Int J Numer Meth Eng 1993; 36: 2863–2876.10.1002/nme.1620361702Search in Google Scholar

Kohring G, Melin S, Puhl H, Tillemans H, Vermöhlen W. Computer simulations of critical, non-stationary granular flow through a hopper. Comput Method Appl M 1995; 124: 273–281.10.1016/0045-7825(94)00743-7Search in Google Scholar

Kolymbas D. Hypoplasticity as a constitutive framework for granular materials. Comput Methods Adv Geomech 1994; 1: 197–208.Search in Google Scholar

Kondic L. Simulations of two dimensional hopper flow. Granul Matter, 2014; 16: 235–242.10.1007/s10035-013-0462-4Search in Google Scholar

Kruggel-Emden H, Wirtz S, Simsek E, Scherer V. Modeling of granular flow and combined heat transfer in hoppers by the discrete element method (DEM). J Press Vess-T 2006; 128: 439–444.10.1115/1.2218349Search in Google Scholar

Lade PV. Elasto-plastic stress-strain theory for cohesionless soil with curved yield surfaces. Int J Solids Struct 1977; 13: 1019–1035.10.1016/0020-7683(77)90073-7Search in Google Scholar

Langston P, Tüzün U, Heyes D. Continuous potential discrete particle simulations of stress and velocity fields in hoppers: transition from fluid to granular flow. Chem Eng Sci 1994; 49: 1259–1275.10.1016/0009-2509(94)85095-XSearch in Google Scholar

Langston P, Tüzün U, Heyes D. Discrete element simulation of granular flow in 2D and 3D hoppers: dependence of discharge rate and wall stress on particle interactions. Chem Eng Sci 1995a; 50: 967–987.10.1016/0009-2509(94)00467-6Search in Google Scholar

Langston P, Tüzün U, Heyes D. Discrete element simulation of internal stress and flow fields in funnel flow hoppers. Powder Technol 1995b; 85: 153–169.10.1016/0032-5910(95)03009-XSearch in Google Scholar

Langston P, Tüzün U, Heyes D. Distinct element simulation of interstitial air effects in axially symmetric granular flows in hoppers. Chem Eng Sci 1996; 51: 873–891.10.1016/0009-2509(95)00342-8Search in Google Scholar

Langston P, Nikitidis M, Tüzün U, Heyes D, Spyrou N. Microstructural simulation and imaging of granular flows in two-and three-dimensional hoppers. Powder Technol 1997; 94: 59–72.10.1016/S0032-5910(97)03288-9Search in Google Scholar

Langston PA, Al-Awamleh MA, Fraige FY, Asmar BN. Distinct element modelling of non-spherical frictionless particle flow. Chem Eng Sci 2004; 59: 425–435.10.1016/j.ces.2003.10.008Search in Google Scholar

Lebon F, Ronel-Idrissi S. Asymptotic studies of Mohr-Coulomb and Drucker-Prager soft thin layers. Steel Compos Struct 2004; 4: 133–147.10.12989/scs.2004.4.2.133Search in Google Scholar

Lehmann L. Numerische Simulation der Spannungs-und Geschwindigkeitsfelder in Silos mit Einbauten. Inst. für Angewandte Mechanik, 1996.Search in Google Scholar

Leszczynski J, Blaszczyk T. Modeling the transition between stable and unstable operation while emptying a silo. Granul Matter 2011; 13: 429–438.10.1007/s10035-010-0240-5Search in Google Scholar

Li J, Langston PA, Webb C, Dyakowski T. Flow of sphero-disc particles in rectangular hoppers – a DEM and experimental comparison in 3D. Chem Eng Sci 2004; 59: 5917–5929.10.1016/j.ces.2004.07.022Search in Google Scholar

Litwiniszyn J. Statistical methods in the mechanics of granular bodies. Rheol Acta 1958; 1: 146–150.10.1007/BF01968857Search in Google Scholar

Litwiniszyn J. The model of a random walk of particles adopted to researches on problem of mechanics of loose media. Bull Acad Pol Sci 1963; 11: 61–70.Search in Google Scholar

Liu S, Zhou Z, Zou R, Pinson D, Yu A. Flow characteristics and discharge rate of ellipsoidal particles in a flat bottom hopper. Powder Technol 2014; 253: 70–79.10.1016/j.powtec.2013.11.001Search in Google Scholar

Lu Z, Negi S, Jofriet J. A numerical model for flow of granular materials in silos. Part 1: model development. J Agr Eng Res 1997; 68: 223–229.10.1006/jaer.1997.0196Search in Google Scholar

Luding S. Collisions & contacts between two particles. Physics of dry granular media. Berlin: Springer, 1998: 285–304.10.1007/978-94-017-2653-5_20Search in Google Scholar

Lvin JB. Analytical evaluation of pressures of granular materials on silo walls. Powder Technol 1971; 4: 280–285.10.1016/0032-5910(71)80050-5Search in Google Scholar

Maiti R, Das G, Das PK. Experiments on eccentric granular discharge from a quasi-two-dimensional silo. Powder Technol 2016; 301: 1054–1066.10.1016/j.powtec.2016.07.054Search in Google Scholar

Manna SS, Herrmann HJ. Intermittent granular flow and clogging with internal avalanches. Eur Phys J E 2000; 1: 341–344.10.1007/s101890050034Search in Google Scholar

Markauskas D, Ramírez-Gómez Á, Kačianauskas R, Zdancevičius E. Maize grain shape approaches for DEM modelling. Comput Electron Agr 2015; 118: 247–258.10.1016/j.compag.2015.09.004Search in Google Scholar

Masson S, Martinez J. Effect of particle mechanical properties on silo flow and stresses from distinct element simulations. Powder Technol 2000a; 109: 164–178.10.1016/S0032-5910(99)00234-XSearch in Google Scholar

Masson S, Martinez J. Multiscale simulations of the mechanical behaviour of an ensiled granular material. Mech Cohes-Frict Mat 2000b; 5: 425–442.10.1002/1099-1484(200008)5:6<425::AID-CFM103>3.0.CO;2-VSearch in Google Scholar

Medina A, Cordova J, Luna E, Trevino C. Velocity field measurements in granular gravity flow in a near 2D silo. Phys Lett A 1998; 250: 111–116.10.1016/S0375-9601(98)00795-6Search in Google Scholar

Meng Q, Jofriet JC, Negi SC. Finite element analysis of bulk solids flow. Part 1: development of a model based on a secant constitutive relationship. J Agr Eng Res 1997; 67: 141–150.10.1006/jaer.1997.0161Search in Google Scholar

Mullins W. Experimental evidence for the stochastic theory of particle flow under gravity. Powder Technol 1974; 9: 29–37.10.1016/0032-5910(74)80006-9Search in Google Scholar

Nedderman RM, Tüzün U. A kinematic model for the flow of granular materials. Powder Technol 1979; 22: 243–253.10.1016/0032-5910(79)80030-3Search in Google Scholar

Negi S, Lu Z, Jofriet J. A numerical model for flow of granular materials in silos. Part 2: model validation. J Agr Eng Res 1997; 68: 231–236.10.1006/jaer.1997.0197Search in Google Scholar

Norouzi HR, Mostoufi N, Zarghami R, Sotudeh-Gharebagh R. Coupled CFD-DEM modeling: formulation, implementation and application to multiphase flows. Chichester, UK: John Wiley & Sons, 2016.10.1002/9781119005315Search in Google Scholar

Oldal I, Safranyik F. Extension of silo discharge model based on discrete element method. J Mech Sci Technol 2015; 29: 3789–3796.10.1007/s12206-015-0825-3Search in Google Scholar

Ooi JY, Rotter JM. Wall pressures in squat steel silos from simple finite element analysis. Comput Struct 1990; 37: 361–374.10.1016/0045-7949(90)90026-XSearch in Google Scholar

Ooi JY, Chen JF, Rotter JM. Measurement of solids flow patterns in a gypsum silo. Powder Technol 1998; 99: 272–284.10.1016/S0032-5910(98)00124-7Search in Google Scholar

Parafiniuk P, Molenda M, Horabik J. Discharge of rapeseeds from a model silo: physical testing and discrete element method simulations. Comput Electron Agr 2013; 97: 40–46.10.1016/j.compag.2013.06.008Search in Google Scholar

Pariseau WG. Discontinuous velocity, fields in gravity flows of granular materials through slots. Powder Technol 1969; 3: 218–226.10.1016/0032-5910(69)80081-1Search in Google Scholar

Parisi D, Masson S, Martinez J. Partitioned distinct element method simulation of granular flow within industrial silos. J Eng Mech 2004; 130: 771–779.10.1061/(ASCE)0733-9399(2004)130:7(771)Search in Google Scholar

Paulick M, Morgeneyer M, Kwade A. Review on the influence of elastic particle properties on DEM simulation results. Powder Technol 2015; 283: 66–76.10.1016/j.powtec.2015.03.040Search in Google Scholar

Peng QF, Wang F. Stress analysis of grain steel Silo with hole. Adv Mat Res 2012; 594: 666671.10.4028/www.scientific.net/AMR.594-597.666Search in Google Scholar

Peng L, Xu J, Zhu Q, Li H, Ge W, Chen F, Ren X. GPU-based discrete element simulation on flow regions of flat bottomed cylindrical hopper. Powder Technol 2016; 304: 218–228.10.1016/j.powtec.2016.08.029Search in Google Scholar

Pieper K. Investigation of silo loads in measuring models. J Eng Ind 1969; 91: 365–372.10.1115/1.3591574Search in Google Scholar

Pitman EB, Schaeffer DG. Stability of time dependent compressible granular flow in two dimensions. Commun Pur Appl Math 1987; 40: 421–447.10.1002/cpa.3160400403Search in Google Scholar

Pizette P, Govender N, Wilke D, Abriak N. New advances in large scale industrial DEM modeling towards energy efficient processes. In: Congrès français de mécanique. AFM, Association Française de Mécanique, 2017.Search in Google Scholar

Potapov AV, Campbell CS. Computer simulation of hopper flow. Phys Fluids 1996; 8: 2884–2894.10.1063/1.869069Search in Google Scholar

Qadir A, Memon KH. Simulation techniques for porous media confined in silo geometry. In: MATEC Web of Conferences. EDP Sciences, 2016.10.1051/matecconf/20164301001Search in Google Scholar

Qiu J, Xu Y, Zhang J, Ju D. DEM simulation of particle flow in a parallel-hopper bell-less blast furnace charging model. In: Proceedings of the 7th International Conference on Discrete Element Methods. Berlin: Springer, 2017: 659–669.10.1007/978-981-10-1926-5_68Search in Google Scholar

Ragneau E. Modelisation numerique et nouvelles methodes analytiques pour le calcul des actions dans les silos cylindro-coniques (remplissage et vidange). Doctoral dissertation, Rennes, INSA, 1993.Search in Google Scholar

Ragneau E, Aribert J, Sanad A. Modélisation numérique par élément finis tridimensionnel pour le calcul des actions dans aux parois des silos (remplissage et vidange). Revue De Construction Métallique, 1994.Search in Google Scholar

Reimbert ML, Reimbert AM. Silos: traité théorique et pratique. Édit. Eyrolles, 1956.Search in Google Scholar

Ristow GH. Outflow rate and wall stress for two-dimensional hoppers. Physica A 1997; 235: 319–326.10.1016/S0378-4371(96)00365-2Search in Google Scholar

Ristow GH, Herrmann HJ. Forces on the walls and stagnation zones in a hopper filled with granular material. Physica A 1995; 213: 474–481.10.1016/0378-4371(94)00249-SSearch in Google Scholar

Rombach G, Neumann F. Schüttguteinwirkungen auf Silozellen. Diss. Universitat Karlsruhe, 1991.Search in Google Scholar

Rombach GA, Ayuga F, Neumann F, Vázquez EG. Modelling of granular flow in silos based on finite element method ANSYS vs. SILO. In Proceedings of Conference Powders and Grains 2005; 469473.Search in Google Scholar

Rong G, Negi S, Jofriet J. Simulation of flow behaviour of bulk solids in bins. Part 1: model development and validation. J Agr Eng Res 1995a; 62: 247–256.10.1006/jaer.1995.1083Search in Google Scholar

Rong G, Negi S, Jofriet J. Simulation of flow behaviour of bulk solids in bins. Part 2: shear bands, flow corrective inserts and velocity profiles. J Agr Eng Res 1995b; 62: 257–269.10.1006/jaer.1995.1084Search in Google Scholar

Rotter J, Jumikis P, Fleming S, Porter S. Experiments on the buckling of thin-walled model silo structures. J Constr Steel Res 1989; 13: 271–299.10.1016/0143-974X(89)90032-1Search in Google Scholar

Rotter J, Holst J, Ooi J, Sanad A. Silo pressure predictions using discrete-element and finite-element analyses. Philos Trans Roy Soc A 1998; 356: 26852712.10.1098/rsta.1998.0293Search in Google Scholar

Rubio-Largo S, Maza D, Hidalgo R. Large-scale numerical simulations of polydisperse particle flow in a silo. Comput Part Mech 2016; 4: 19.10.1007/s40571-016-0133-4Search in Google Scholar

Runesson K, Klisinski M, Larsson R. Formulation and implementation of conditions for frictional contact. Eng Comput 1993; 10: 3–14.10.1108/eb023891Search in Google Scholar

Safranyik F, Oldal I. 3D discrete element model of silo discharge, 2015.Search in Google Scholar

Sakaguchi H, Ozaki E, Igarashi T. Plugging of the flow of granular materials during the discharge from a silo. Int J Mod Phys B 1993; 7: 1949–1963.10.1142/S0217979293002705Search in Google Scholar

Saleh K, Golshan S, Zarghami R. A review on gravity flow of free-flowing granular solids in silos-Basics and practical aspects. Chem Eng Sci 2018; 192: 1011–1035.10.1016/j.ces.2018.08.028Search in Google Scholar

Samadani A, Pradhan A, Kudrolli A. Size segregation of granular matter in silo discharges. Phys Rev E 1999; 60: 7203.10.1103/PhysRevE.60.7203Search in Google Scholar

Sanad A, Ooi J, Holst J, Rotter J. Computations of granular flow and pressures in a flat-bottomed silo. J Eng Mech 2001; 127: 1033–1043.10.1061/(ASCE)0733-9399(2001)127:10(1033)Search in Google Scholar

Schaeffer DG. Instability in the evolution equations describing incompressible granular flow. J Differ Equat 1987; 66: 19–50.10.1016/0022-0396(87)90038-6Search in Google Scholar

Sielamowicz I, Czech M. Analysis of the radial flow assumption in a converging model silo. Biosyst Eng 2010; 106: 412–422.10.1016/j.biosystemseng.2010.05.004Search in Google Scholar

Sielamowicz I, Czech M, Kowalewski TA. Empirical description of flow parameters in eccentric flow inside a silo model. Powder Technol 2010; 198: 381–394.10.1016/j.powtec.2009.12.003Search in Google Scholar

Song Y, Turton R, Kayihan F. Contact detection algorithms for DEM simulations of tablet-shaped particles. Powder Technol 2006; 161: 32–40.10.1016/j.powtec.2005.07.004Search in Google Scholar

Spencer A. A theory of the kinematics of ideal soils under plane strain conditions. J Mech Phys Solids 1964; 12: 337–351.10.1016/0022-5096(64)90029-8Search in Google Scholar

Staron L, Lagrée PY, Popinet S. Continuum simulation of the discharge of the granular silo. Eur Phys J E 2014; 37: 1–12.10.1140/epje/i2014-14005-6Search in Google Scholar

Sykut J, Molenda M, Horabik J. DEM simulation of the packing structure and wall load in a 2-dimensional silo. Granul Matter 2008; 10: 273.10.1007/s10035-008-0089-zSearch in Google Scholar

Tan Y, Günthner WA, Kessler S. Simplified multi-sphere model-based DEM simulation of particle behavior in hopper during ship loading for dust control. In: International Conference on Discrete Element Methods. Singapore: Springer, 2017: 1335–1342.10.1007/978-981-10-1926-5_137Search in Google Scholar

Tao H, Jin B, Zhong W, Wang X, Ren B, Zhang Y, Xiao R. Discrete element method modeling of non-spherical granular flow in rectangular hopper. Chem Eng Process 2010; 49: 151–158.10.1016/j.cep.2010.01.006Search in Google Scholar

Tao H, Jin B, Zhong W. Simulation of ellipsoidal particle flow in rectangular hopper with discrete element method. In: 2011 International Conference on Electric Technology and Civil Engineering (ICETCE). IEEE, 2011: 678–681.10.1109/ICETCE.2011.5776032Search in Google Scholar

Tao H, Zhong W, Jin B. Flow behavior of non-spherical particle flowing in hopper. Front Energy 2014; 8: 315.10.1007/s11708-014-0331-9Search in Google Scholar

Tejehman J. Numerical simulation of filling in silos with a polar hypoplastic constitutive model. Powder Technol 1998; 96: 227–239.10.1016/S0032-5910(97)03378-0Search in Google Scholar

Tewari S, Dichter M, Chakraborty B. Signatures of incipient jamming in collisional hopper flows. Soft Matter 2013; 9: 5016–5024.10.1039/c3sm27760gSearch in Google Scholar

Theuerkauf J, Dhodapkar S, Manjunath K, Jacob K, Steinmetz T. Applying the discrete element method in process engineering. Chem Eng Technol 2003; 26: 157–162.10.1002/ceat.200390023Search in Google Scholar

Thompson S, Usry J, Legg J. Loads in a model grain bin as affected by various unloading techniques. Trans ASAE 1986; 29: 556–561.10.13031/2013.30190Search in Google Scholar

Thornton C, Cummins SJ, Cleary PW. An investigation of the comparative behaviour of alternative contact force models during elastic collisions. Powder Technol 2011; 210: 189–197.10.1016/j.powtec.2011.01.013Search in Google Scholar

Thornton C, Cummins SJ, Cleary PW. An investigation of the comparative behaviour of alternative contact force models during inelastic collisions. Powder Technol 2013; 233: 30–46.10.1016/j.powtec.2012.08.012Search in Google Scholar

Tian Y, Lin P, Zhang S, Wang C, Wan J, Yang L. Study on free fall surfaces in three-dimensional hopper flows. Adv Powder Technol 2015; 26: 1191–1199.10.1016/j.apt.2015.05.015Search in Google Scholar

Tsuji Y, Tanaka T, Ishida T. Lagrangian numerical simulation of plug flow of cohesionless particles in a horizontal pipe. Powder Technol 1992; 71: 239–250.10.1016/0032-5910(92)88030-LSearch in Google Scholar

Tuzun U, Walton O. Micro-mechanical modelling of load dependent friction in contacts of elastic spheres. J Phys D Appl Phys 1992; 25: A44.10.1088/0022-3727/25/1A/009Search in Google Scholar

Tüzün U, Baxter J, Heyes D. Analysis of the evolution of granular stress-strain and voidage states based on DEM simulations. Philos Trans R Soc A 2004; 362: 19311951.10.1098/rsta.2004.1424Search in Google Scholar

Umekage T, Yuu S, Shinkai T, Abe T. Numerical simulation for blockage of cohesive particles in a hopper using the distinct element method and its correlation with experimental results of real cohesive granular materials. Adv Powder Technol 1998; 9: 331–344.10.1016/S0921-8831(08)60564-6Search in Google Scholar

Vidal P, Couto A, Ayuga F, Guaita M. Influence of hopper eccentricity on discharge of cylindrical mass flow silos with rigid walls. J Eng Mech 2006; 132: 1026–1033.10.1061/(ASCE)0733-9399(2006)132:9(1026)Search in Google Scholar

Vidal P, Gallego E, Guaita M, Ayuga F. Finite element analysis under different boundary conditions of the filling of cylindrical steel silos having an eccentric hopper. J Constr Steel Res 2008; 64: 480–492.10.1016/j.jcsr.2007.08.005Search in Google Scholar

Vidyapati V, Subramaniam S. Granular flow in silo discharge: discrete element method simulations and model assessment. Ind Eng Chem Res 2013; 52: 13171–13182.10.1021/ie303598eSearch in Google Scholar

Walker D. An approximate theory for pressures and arching in hoppers. Chem Eng Sci 1966; 21: 975–997.10.1016/0009-2509(66)85095-9Search in Google Scholar

Walton OR. Explicit particle-dynamics model for granular materials. Livermore, CA: Lawrence Livermore National Laboratory, 1982.Search in Google Scholar

Wang Y, Lu Y, Ooi JY. Numerical modelling of dynamic pressure and flow in hopper discharge using the arbitrary Lagrangian-Eulerian formulation. Eng Struct 2013; 56: 1308–1320.10.1016/j.engstruct.2013.07.006Search in Google Scholar

Wassgren C, Hunt M, Freese P, Palamara J, Brennen C. Effects of vertical vibration on hopper flows of granular material. Phys Fluids 2002; 14: 3439–3448.10.1063/1.1503354Search in Google Scholar

Wójcik M, Tejchman J. Modeling of shear localization during confined granular flow in silos within non-local hypoplasticity. Powder Technol 2009; 192: 298–310.10.1016/j.powtec.2009.01.021Search in Google Scholar

Wójcik M, Enstad G, Jecmenica M. Numerical calculations of wall pressures and stresses in steel cylindrical silos with concentric and eccentric hoppers. Particul Sci Technol 2003; 21: 247–258.10.1080/02726350307486Search in Google Scholar

Wu J, Binbo J, Chen J, Yang Y. Multi-scale study of particle flow in silos. Adv Powder Technol 2009; 20: 62–73.10.1016/j.apt.2008.02.003Search in Google Scholar

Wu S, Kou M, Xu J, Guo X, Du K, Shen W, Sun J. DEM simulation of particle size segregation behavior during charging into and discharging from a Paul-Wurth type hopper. Chem Eng Sci 2013; 99: 314–323.10.1016/j.ces.2013.06.018Search in Google Scholar

Xu Y, Kafui K, Thornton C, Lian G. Effects of material properties on granular flow in a silo using DEM simulation. Particul Sci Technol 2002; 20: 109–124.10.1080/02726350215338Search in Google Scholar

Xu P, Duan X, Qian G, Zhou XG. Dependence of wall stress ratio on wall friction coefficient during the discharging of a 3D rectangular hopper. Powder Technol 2015; 284: 326–335.10.1016/j.powtec.2015.06.054Search in Google Scholar

Xu J, Hu Z, Xu Y, Wang D, Wen L, Bai C. Transient local segregation grids of binary size particles discharged from a wedge-shaped hopper. Powder Technol 2017; 308: 273–289.10.1016/j.powtec.2016.12.013Search in Google Scholar

Yang SC, Hsiau SS. The simulation and experimental study of granular materials discharged from a silo with the placement of inserts. Powder Technol 2001; 120: 244–255.10.1016/S0032-5910(01)00277-7Search in Google Scholar

Yang Y, Ooi J, Rotter M, Wang Y. Numerical analysis of silo behavior using non-coaxial models. Chem Eng Sci 2011; 66: 1715–1727.10.1016/j.ces.2011.01.012Search in Google Scholar

Zeng C. DEM modeling of dense grain shear characteristic in silo. Electron J Geotech Eng 2014; 19: 7061–7070.Search in Google Scholar

Zhang J, Qiu J, Guo H, Ren S, Sun H, Wang G, Gao Z. Simulation of particle flow in a bell-less type charging system of a blast furnace using the discrete element method. Particuology 2014a; 16: 167–177.10.1016/j.partic.2014.01.003Search in Google Scholar

Zhang S, Lin P, Wang CL, Tian Y, Wan JF, Yang L. Investigating the influence of wall frictions on hopper flows. Granul Matter 2014b; 16: 857–866.10.1007/s10035-014-0533-1Search in Google Scholar

Zhang X, Zhang S, Yang G, Lin P, Tian Y, Wan JF, Yang L. Investigation of flow rate in a quasi-2D hopper with two symmetric outlets. Phys Lett A 2016; 380: 1301–1305.10.1016/j.physleta.2016.01.046Search in Google Scholar

Zheng Q, Yu A. Finite element investigation of the flow and stress patterns in conical hopper during discharge. Chem Eng Sci 2015; 129: 49–57.10.1016/j.ces.2015.02.022Search in Google Scholar

Zhu H, Yu A. Steady-state granular flow in a three-dimensional cylindrical hopper with flat bottom: microscopic analysis. J Phys D Appl Phys 2004; 37: 1497.10.1088/0022-3727/37/10/013Search in Google Scholar

Zhu H, Yu A. Steady-state granular flow in a 3D cylindrical hopper with flat bottom: macroscopic analysis. Granul Matter 2005; 7: 97–107.10.1007/s10035-004-0191-9Search in Google Scholar

Zhu H, Wu Y, Yu A. Discrete and continuum modelling of granular flow. China Part 2005; 3: 354–363.10.1016/S1672-2515(07)60215-2Search in Google Scholar

Zhu H, Yu A, Wu Y. Numerical investigation of steady and unsteady state hopper flows. Powder Technol 2006; 170: 125–134.10.1016/j.powtec.2006.09.001Search in Google Scholar

Zhu HP, Zhou ZY, Yang RY, Yu AB. Discrete particle simulation of particulate systems: a review of major applications and findings. Chem Eng Sci 2008; 63: 5728–5770.10.1016/j.ces.2008.08.006Search in Google Scholar

Received: 2019-02-06
Accepted: 2019-07-01
Published Online: 2019-08-01
Published in Print: 2021-05-26

© 2019 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 1.12.2023 from https://www.degruyter.com/document/doi/10.1515/revce-2019-0003/html
Scroll to top button