Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter September 23, 2020

SAPO-34 zeotype membrane for gas sweetening

I Gusti B. N. Makertihartha , Kevin S. Kencana ORCID logo , Theodorus R. Dwiputra , Khoiruddin Khoiruddin ORCID logo , Graecia Lugito ORCID logo , Rino R. Mukti ORCID logo and I Gede Wenten ORCID logo EMAIL logo

Abstract

Membranes are considered promising tools for gas sweetening due to their lower footprint (i.e., area and energy requirement, considering elimination of solvent/absorbent and its associated regeneration procedures), and ease of scale-up. Performing membrane gas separation is strongly dependent on membrane materials. With a 0.38-nm pore size, the SAPO-34 membrane surpasses the upper bond limit for CO2/CH4 separation. However, preparing defect-free and high-performance zeolite membranes is quite challenging. This paper reviews gas transport and separation mechanisms in SAPO-34 membranes, and it discusses prospective approaches for obtaining membranes with defect-free selective layers and hence high separation performance. Highlights, as well as the authors’ perspectives on the future development of SAPO-34 membranes in the field of gas separation, are pointed out.


Corresponding author: I Gede Wenten, Department of Chemical Engineering, Institut Teknologi Bandung, Jl. Ganesha No. 10, Bandung, Indonesia; and Research Center for Nanosciences and Nanotechnology, Institut Teknologi Bandung, Jl. Ganesha No. 10, Bandung, Indonesia, E-mail:

Funding source: Indonesian Ministry of Research and Technology

Award Identifier / Grant number: World Class Research Program

  1. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This research is funded by the Indonesian Ministry of Research and Technology under World Class Research Program.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

Aoki, K., Kusakabe, K., and Morooka, S. (1998). Gas permeation properties of A-type zeolite membrane formed on porous substrate by hydrothermal synthesis. J. Membr. Sci. 141: 197–205, https://doi.org/10.1016/s0376-7388(97)00300-1.Search in Google Scholar

Aryanti, P.T.P., Sianipar, M., Zunita, M., and Wenten, I.G. (2017). Modified membrane with antibacterial properties. Membr. Water Treat 8: 463–481. https://doi.org/10.12989/mwt.2017.8.5.463.Search in Google Scholar

Asaeda, M., and Yamasaki, S. (2001). Separation of inorganic/organic gas mixtures by porous silica membranes. Separ. Purif. Technol. 25: 151–159, https://doi.org/10.1016/s1383-5866(01)00099-5.Search in Google Scholar

Avila, A.M., Funke, H.H., Zhang, Y., Falconer, J.L., and Noble, R.D. (2009). Concentration polarization in SAPO-34 membranes at high pressures. J. Membr. Sci. 335: 32–36, https://doi.org/10.1016/j.memsci.2009.02.028.Search in Google Scholar

Bai, L., Chang, N., Li, M., Wang, Y., Nan, G., Zhang, Y., Hu, D., Zeng, G., and Wei, W. (2017). Ultrafast synthesis of thin SAPO-34 zeolite membrane by oil-bath heating. Microporous Mesoporous Mater. 241: 392–399, https://doi.org/10.1016/j.micromeso.2016.12.019.Search in Google Scholar

Baker, R.W. (2002). Future directions of membrane gas separation technology. Ind. Eng. Chem. Res. 41: 1393–1411, https://doi.org/10.1021/ie0108088.Search in Google Scholar

Bakker, W.J.W., Kapteijn, F., Poppe, J., and Moulijn, J.A. (1996). Permeation characteristics of a metal-supported silicalite-1 zeolite membrane. J. Membr. Sci. 117: 57–78, https://doi.org/10.1016/0376-7388(96)00035-x.Search in Google Scholar

Belhaj Messaoud, S., Takagaki, A., Sugawara, T., Kikuchi, R., and Oyama, ST. (2015). Mixed matrix membranes using SAPO-34/polyetherimide for carbon dioxide/methane separation. Separ. Purif. Technol. 148: 38–48, https://doi.org/10.1016/j.seppur.2015.04.017.Search in Google Scholar

van den Bergh, J., Mittelmeijer-Hazeleger, M., and Kapteijn, F. (2010). Modeling permeation of CO2/CH4, N2/CH4, and CO2/air mixtures across a DD3R zeolite membrane. J. Phys. Chem. C 114: 9379–9389, https://doi.org/10.1021/jp101075h.Search in Google Scholar

Bernal, M.., Coronas, J., Menéndez, M., and Santamarı́a, J. (2002). Characterization of zeolite membranes by temperature programmed permeation and step desorption. J. Membr. Sci. 195: 125–138, https://doi.org/10.1016/s0376-7388(01)00557-9.Search in Google Scholar

Bonilla, G., Vlachos, D.G., and Tsapatsis, M. (2001). Simulations and experiments on the growth and microstructure of zeolite MFI films and membranes made by secondary growth. Microporous Mesoporous Mater. 42: 191–203, https://doi.org/10.1016/s1387-1811(00)00317-6.Search in Google Scholar

Burggraaf, A.J. (1996). Chapter 2 Important characteristics of inorganic membranes. Membr. Sci. Technol. 4: 21–34, https://doi.org/10.1016/s0927-5193(96)80005-2.Search in Google Scholar

Cakal, U., Yilmaz, L., and Kalipcilar, H. (2012). Effect of feed gas composition on the separation of CO2/CH4 mixtures by PES-SAPO 34-HMA mixed matrix membranes. J. Membr. Sci. 417–418: 45–51, https://doi.org/10.1016/j.memsci.2012.06.011.Search in Google Scholar

Camblor, M.A., Corma, A., Díaz-Cabañas, M.-J., and Baerlocher, C. (1998). Synthesis and structural characterization of MWW type zeolite ITQ-1, the pure silica analog of MCM-22 and SSZ-25. J. Phys. Chem. B 102: 44–51, https://doi.org/10.1021/jp972319k.Search in Google Scholar

Carreon, M., Dahe, G., Feng, J., and Venna, S.R. (2017). Mixed matrix membranes for gas separation applications. In: Carreon, MA. (Ed.), Membrane Gas Separation, World Scientific Series in Membrane Science and Technology: Biological and Biomimetic Applications, Energy and the Environment, 1: 1–57. https://doi.org/10.1142/9789813207714_0001.Search in Google Scholar

Carreon, M.A., Li, S., Falconer, J.L., and Noble, R.D. (2008a). Alumina-supported SAPO-34 membranes for CO2/CH4 separation. J. Am. Chem. Soc. 130: 5412–5413, https://doi.org/10.1021/ja801294f.Search in Google Scholar

Carreon, M.A., Li, S., Falconer, J.L., and Noble, R.D. (2008b). SAPO-34 seeds and membranes prepared using multiple structure directing agents. Adv. Mater. 20: 729–732, https://doi.org/10.1002/adma.200701280.Search in Google Scholar

Chaikittisilp, W., Suzuki, Y., Mukti, R.R., Suzuki, T., Sugita, K., Itabashi, K., Shimojima, A., and Okubo, T. (2013). formation of hierarchically organized zeolites by sequential intergrowth. Angew. Chem. Int. Ed. 52: 3355–3359, https://doi.org/10.1002/anie.201209638.Search in Google Scholar

Chang, N., Tang, H., Bai, L., Zhang, Y., and Zeng, G. (2018). Optimized rapid thermal processing for the template removal of SAPO-34 zeolite membranes. J. Membr. Sci. 552: 13–21, https://doi.org/10.1016/j.memsci.2018.01.066.Search in Google Scholar

Chen, Y., Zhang, Y., Zhang, C., Jiang, J., and Gu, X. (2017). Fabrication of high-flux SAPO-34 membrane on α-Al2O3 four-channel hollow fibers for CO2 capture from CH4. J CO2 Util 18: 30–40, https://doi.org/10.1016/j.jcou.2017.01.005.Search in Google Scholar

Chew, T.L., and Ahmad, A.L. (2016). Gas permeation properties of modified SAPO-34 zeolite membranes. Procedia Eng 148: 1225–1231, https://doi.org/10.1016/j.proeng.2016.06.471.Search in Google Scholar

Chew, T.L., Ahmad, A.L., and Bhatia, S. (2011). Ba-SAPO-34 membrane synthesized from microwave heating and its performance for CO2/CH4 gas separation. Chem. Eng. J. 171: 1053–1059, https://doi.org/10.1016/j.cej.2011.05.001.Search in Google Scholar

Chew, T.L., Ahmad, A.L., and Bhatia, S. (2012). Microwave heating-synthesized zeolite membrane for CO2/CH4 separation. Desalin Water Treat 47: 139–149, https://doi.org/10.1080/19443994.2012.696796.Search in Google Scholar

Chew, T.L., Ahmad, A.L., and Bhatia, S. (2014). Development of Ba-SAPO-34 zeolite membrane for separation of CO2 in the binary gas mixtures. J Teknologi 69: 5–10, https://doi.org/10.11113/jt.v69.3387.Search in Google Scholar

Choi, J., Ghosh, S., King, L., and Tsapatsis, M. (2006). MFI zeolite membranes from a- and randomly oriented monolayers. Adsorption 12: 339–360, https://doi.org/10.1007/s10450-006-0564-y.Search in Google Scholar

Cui, Y., Kita, H., and Okamoto, K. (2004). Preparation and gas separation performance of zeolite T membrane. J. Mater. Chem. 14: 924, https://doi.org/10.1039/b311881a.Search in Google Scholar

Do, D.D. (1998). Adsorption Analysis: Equilibria and Kinetics. Series on Chemical Engineering, 2. London: Imperial College Press.10.1142/p111Search in Google Scholar

Drioli, E., and Curcio, E. (2007). Membrane engineering for process intensification: a perspective. J. Chem. Technol. Biotechnol. 82: 223–227, https://doi.org/10.1002/jctb.1650.Search in Google Scholar

Duke, M.C., Zhu, B., Doherty, C.M., Hill, M.R., Hill, A.J., and Carreon, M.A. (2016). Structural effects on SAPO-34 and ZIF-8 materials exposed to seawater solutions, and their potential as desalination membranes. Desalination 377: 128–137, https://doi.org/10.1016/j.desal.2015.09.004.Search in Google Scholar

Feng, C., Khulbe, K.C., Matsuura, T., Farnood, R., and Ismail, A.F. (2015). Recent progress in zeolite/zeotype membranes. J. Membr. Sci. Res. 1: 49–72. https://doi.org/10.22079/jmsr.2015.13530.Search in Google Scholar

Funke, H.H., Tokay, B., Zhou, R., Ping, E.W., Zhang, Y., Falconer, J.L., and Noble, R.D. (2012). Spatially resolved gas permeation through SAPO-34 membranes. J. Membr. Sci. 409–410: 212–221, https://doi.org/10.1016/j.memsci.2012.03.058.Search in Google Scholar

Gilliland, E.R., Baddour, R.F., and Russell, J.L. (1958). Rates of flow through microporous solids. AIChE J. 4: 90–96, https://doi.org/10.1002/aic.690040117.Search in Google Scholar

Hakim, A.N., Khoiruddin, K., Ariono, D., and Wenten, I.G. (2020). Ionic separation in electrodeionization system: mass transfer mechanism and factor affecting separation performance. Separ. Purif. Rev. 49: 294–316, https://doi.org/10.1080/15422119.2019.1608562.Search in Google Scholar

Handojo, L., Wardani, A.K., Regina, D., Bella, C., Kresnowati, M.T.A.P., and Wenten, I.G. (2019). Electro-membrane processes for organic acid recovery. RSC Adv. 9: 7854–7869, https://doi.org/10.1039/c8ra09227c.Search in Google Scholar

Hasegawa, Y., Tanaka, T., Watanabe, K., Jeong, B.-H., Kusakabe, K., and Morooka, S. (2002). Separation of CO2-CH4 and CO2-N2 systems using ion-exchanged FAU-type zeolite membranes with different Si/Al ratios. Kor. J. Chem. Eng. 19: 309–313, https://doi.org/10.1007/bf02698420.Search in Google Scholar

Himeno, S., Tomita, T., Suzuki, K., Nakayama, K., Yajima, K., and Yoshida, S. (2007). Synthesis and permeation properties of a DDR-type zeolite membrane for separation of CO2/CH4 gaseous mixtures. Ind. Eng. Chem. Res. 46: 6989–6997, https://doi.org/10.1021/ie061682n.Search in Google Scholar

Himma, N.F., Anisah, S., Prasetya, N., and Wenten, I.G. (2016). Advances in preparation, modification, and application of polypropylene membrane. J. Polym. Eng. 36: 329–362, https://doi.org/10.1515/polyeng-2015-0112.Search in Google Scholar

Himma, N.F., Prasetya, N., Anisah, S., and Wenten, I.G. (2019a). Superhydrophobic membrane: progress in preparation and its separation properties. Rev. Chem. Eng. 35: 211–238, https://doi.org/10.1515/revce-2017-0030.Search in Google Scholar

Himma, N.F., Wardani, A.K., Prasetya, N., Aryanti, P.T.P., and Wenten, I.G. (2019b). Recent progress and challenges in membrane-based O2/N2 separation. Rev. Chem. Eng. 35: 591–625, https://doi.org/10.1515/revce-2017-0094.Search in Google Scholar

Hong, M., Li, S., Funke, H.F., Falconer, J.L., and Noble, R.D. (2007). Ion-exchanged SAPO-34 membranes for light gas separations. Microporous Mesoporous Mater. 106: 140–146, https://doi.org/10.1016/j.micromeso.2007.02.037.Search in Google Scholar

Iarikov, D.D., and Ted Oyama, S. (2011). Review of CO2/CH4 separation membranes. Membr. Sci. Technol. 14: 91–115, https://doi.org/10.1016/b978-0-444-53728-7.00005-7.Search in Google Scholar

Jabbari, Z., Fatemi, S., and Davoodpour, M. (2014). Comparative study of seeding methods; dip-coating, rubbing and EPD, in SAPO-34 thin film fabrication. Adv. Powder Technol. 25: 321–330, https://doi.org/10.1016/j.apt.2013.05.011.Search in Google Scholar

Jang, E., Hong, S., Kim, E., Choi, N., Cho, S.J., and Choi, J. (2018). Organic template-free synthesis of high-quality CHA type zeolite membranes for carbon dioxide separation. J. Membr. Sci. 549: 46–59, https://doi.org/10.1016/j.memsci.2017.11.068.Search in Google Scholar

Jareman, F., Hedlund, J., Creaser, D., and Sterte, J. (2004). Modelling of single gas permeation in real MFI membranes. J. Membr. Sci. 236: 81–89, https://doi.org/10.1016/j.memsci.2004.01.028.Search in Google Scholar

Julian, H., Sutrisna, P.D., Hakim, A.N., Harsono, H.O., Hugo, Y.A., and Wenten, I.G. (2018). Nano-silica/polysulfone asymmetric mixed-matrix membranes (MMMs) with high CO2 permeance in the application of CO2/N2 separation. Polym. Plast. Technol. Eng. 58: 678–689, https://doi.org/10.1080/03602559.2018.1520253.Search in Google Scholar

Junaidi, M.U.M., Khoo, C.P., Leo, C.P., and Ahmad, A.L. (2014a). The effects of solvents on the modification of SAPO-34 zeolite using 3-aminopropyl trimethoxy silane for the preparation of asymmetric polysulfone mixed matrix membrane in the application of CO2 separation. Microporous Mesoporous Mater. 192: 52–59, https://doi.org/10.1016/j.micromeso.2013.10.006.Search in Google Scholar

Junaidi, M.U.M., Leo, C.P., Ahmad, A.L., and Ahmad, N.A. (2015). Fluorocarbon functionalized SAPO-34 zeolite incorporated in asymmetric mixed matrix membranes for carbon dioxide separation in wet gases. Microporous Mesoporous Mater. 206: 23–33, https://doi.org/10.1016/j.micromeso.2014.12.013.Search in Google Scholar

Junaidi, M.U.M., Leo, C.P., Ahmad, A.L., Kamal, S.N.M., and Chew, T.L. (2014b). Carbon dioxide separation using asymmetric polysulfone mixed matrix membranes incorporated with SAPO-34 zeolite. Fuel Process. Technol. 118: 125–132, https://doi.org/10.1016/j.fuproc.2013.08.009.Search in Google Scholar

Kalipcilar, H., Bowen, T.C., Noble, R.D., and Falconer, J.L. (2002). Synthesis and separation performance of SSZ-13 zeolite membranes on tubular supports. Chem. Mater. 14: 3458–3464, https://doi.org/10.1021/cm020248i.Search in Google Scholar

Kapteijn, F., Bakker, W.J.W., van de Graaf, J., Zheng, G., Poppe, J., and Moulijn, J.A. (1995). Permeation and separation behaviour of a silicalite-1 membrane. Catal. Today 25: 213–218, https://doi.org/10.1016/0920-5861(95)00078-t.Search in Google Scholar

Kapteijn, F., Moulijn, J.A., and Krishna, R. (2000). The generalized Maxwell–Stefan model for diffusion in zeolites:: sorbate molecules with different saturation loadings. Chem. Eng. Sci. 55: 2923–2930, https://doi.org/10.1016/s0009-2509(99)00564-3.Search in Google Scholar

Kentish, S.E., Scholes, C.A., and Stevens, G.W. (2008). Carbon dioxide separation through polymeric membrane systems for flue gas applications. Recent Pat. Chem. Eng. 1: 52–66, https://doi.org/10.2174/2211334710801010052.Search in Google Scholar

Kgaphola, K., Sigalas, I., and Daramola, M.O. (2017). Synthesis and characterization of nanocomposite SAPO-34/ceramic membrane for post-combustion CO2 capture. Asia Pac. J. Chem. Eng. 12: 894–904, https://doi.org/10.1002/apj.2127.Search in Google Scholar

Khajavi, S., Sartipi, S., Gascon, J., Jansen, J.C., and Kapteijn, F. (2010). Thermostability of hydroxy sodalite in view of membrane applications. Microporous Mesoporous Mater. 132: 510–517, https://doi.org/10.1016/j.micromeso.2010.03.035.Search in Google Scholar

Kida, K., Maeta, Y., and Yogo, K. (2018). Pure silica CHA-type zeolite membranes for dry and humidified CO2/CH4 mixtures separation. Separ. Purif. Technol. 197: 116–121, https://doi.org/10.1016/j.seppur.2017.12.060.Search in Google Scholar

Kosinov, N., Gascon, J., Kapteijn, F., and Hensen, E.J.M. (2016). Recent developments in zeolite membranes for gas separation. J. Membr. Sci. 499: 65–79, https://doi.org/10.1016/j.memsci.2015.10.049.Search in Google Scholar

Krishna, R., Baten, J.M., García-pérez, E., and Calero, S. (2006). Incorporating the loading dependence of the Maxwell−Stefan diffusivity in the modeling of CH4 and CO2 permeation across zeolite membranes. Ind. Eng. Chem. Res. 46: 2974–2986, https://doi.org/10.1021/ie060693d.Search in Google Scholar

Lassinantti Gualtieri, M., Andersson, C., Jareman, F., Hedlund, J., Gualtieri, A.F., Leoni, M., and Meneghini, C. (2007). Crack formation in α-alumina supported MFI zeolite membranes studied by in situ high temperature synchrotron powder diffraction. J. Membr. Sci. 290: 95–104, https://doi.org/10.1016/j.memsci.2006.12.018.Search in Google Scholar

Li, M., Zhang, J., Liu, X., Wang, Y., Liu, C., Hu, D., Zeng, G., Zhang, Y., Wei, W., and Sun, Y. (2016). Synthesis of high performance SAPO-34 zeolite membrane by a novel two-step hydrothermal synthesis+dry gel conversion method. Microporous Mesoporous Mater. 225: 261–271, https://doi.org/10.1016/j.micromeso.2015.11.056.Search in Google Scholar

Li, S., Alvarado, G., Noble, R.D., and Falconer, J.L. (2005a). Effects of impurities on CO2/CH4 separations through SAPO-34 membranes. J. Membr. Sci. 251: 59–66, https://doi.org/10.1016/j.memsci.2004.10.036.Search in Google Scholar

Li, S., Martinek, J.G., Falconer, J.L., Noble, R.D., and Gardner, TQ. (2005b). High-pressure CO2/CH4 separation using SAPO-34 membranes. Ind. Eng. Chem. Res. 44: 3220–3228, https://doi.org/10.1021/ie0490177.Search in Google Scholar

Li, S., Carreon, M.A., Zhang, Y., Funke, H.H., Noble, R.D., and Falconer, J.L. (2010). Scale-up of SAPO-34 membranes for CO2/CH4 separation. J. Membr. Sci. 352: 7–13, https://doi.org/10.1016/j.memsci.2010.01.037.Search in Google Scholar

Li, S., Falconer, J.L., and Noble, R.D. (2004). SAPO-34 membranes for CO2/CH4 separation. J. Membr. Sci. 241: 121–135, https://doi.org/10.1016/j.memsci.2004.04.027.Search in Google Scholar

Li, S., Falconer, J.L., and Noble, R.D. (2008). SAPO-34 membranes for CO2/CH4 separations: effect of Si/Al ratio. Microporous Mesoporous Mater. 110: 310–317, https://doi.org/10.1016/j.micromeso.2007.06.016.Search in Google Scholar

Li, S., Falconer, J.L., Noble, R.D., and Krishna, R. (2006a). Modeling permeation of CO2/CH4, CO2/N2, and N2/CH4 mixtures across SAPO-34 membrane with the Maxwell−Stefan equations. Ind. Eng. Chem. Res. 46: 3904–3911, https://doi.org/10.1021/ie0610703.Search in Google Scholar

Li, S., Falconer, J.L.J.L., and Noble, R.D.R.D. (2006b). Improved SAPO-34 membranes for CO2/CH4 separations. Adv. Mater. 18: 2601–2603, https://doi.org/10.1002/adma.200601147.Search in Google Scholar

Li, S., and Fan, C.Q. (2010). High-flux SAPO-34 membrane for CO2/N2 separation. Ind. Eng. Chem. Res. 49: 4399–4404, https://doi.org/10.1021/ie902082f.Search in Google Scholar

Li, S., Zong, Z., Zhou, S.J., Huang, Y., Song, Z., Feng, X., Zhou, R., Meyer, H.S., Yu, M., and Carreon, M.A. (2015). SAPO-34 Membranes for N2/CH4 separation: preparation, characterization, separation performance and economic evaluation. J. Membr. Sci. 487: 141–151, https://doi.org/10.1016/j.memsci.2015.03.078.Search in Google Scholar

Li, Y., Chung, T.-S., and Kulprathipanja, S. (2007). Novel Ag+-zeolite/polymer mixed matrix membranes with a high CO2/CH4 selectivity. AIChE J. 53: 610–616, https://doi.org/10.1002/aic.11109.Search in Google Scholar

Lightfoot, E.N., Bassingthwaighte, J.B., and Grabowski, E.F. (1976). Hydrodynamic models for diffusion in microporous membranes. Ann. Biomed. Eng. 4: 78–90, https://doi.org/10.1007/bf02363560.Search in Google Scholar

Lin, Y., and Duke, M.C. (2013). Recent progress in polycrystalline zeolite membrane research. Curr Opin Chem Eng 2: 209–216, https://doi.org/10.1016/j.coche.2013.03.002.Search in Google Scholar

Lito, P.F., Cardoso, S.P., Rodrigues, A.E., and Silva, C.M. (2015). Kinetic modeling of pure and multicomponent gas permeation through microporous membranes: diffusion mechanisms and influence of isotherm type. Separ. Purif. Rev. 44: 287–307, https://doi.org/10.1080/15422119.2014.908918.Search in Google Scholar

Liu, B., Zhou, R., Bu, N., Wang, Q., Zhong, S., Wang, B., and Hidetoshi, K. (2017). Room-temperature ionic liquids modified zeolite SSZ-13 membranes for CO2/CH4 separation. J. Membr. Sci. 524: 12–19, https://doi.org/10.1016/j.memsci.2016.11.004.Search in Google Scholar

Liu, X., Du, S., and Zhang, B. (2013). The seeded growth of dense and thin SAPO-34 membranes on porous α-Al2O3 substrates under microwave irradiation. Mater. Lett. 91: 195–197, https://doi.org/10.1016/j.matlet.2012.09.076.Search in Google Scholar

Lixiong, Z., Mengdong, J., and Enze, M. (1997). Synthesis of SAPO-34/ceramic composite membranes. Stud. Surf. Sci. Catal. 105: 2211–2216, https://doi.org/10.1016/s0167-2991(97)80692-1.Search in Google Scholar

Maghsoudi, H., and Soltanieh, M. (2014). Simultaneous separation of H2S and CO2 from CH4 by a high silica CHA-type zeolite membrane. J. Membr. Sci. 470: 159–165, https://doi.org/10.1016/j.memsci.2014.07.025.Search in Google Scholar

Maghsoudi, H., Soltanieh, M., Bozorgzadeh, H., and Mohamadalizadeh, A. (2013). Adsorption isotherms and ideal selectivities of hydrogen sulfide and carbon dioxide over methane for the Si-CHA zeolite: comparison of carbon dioxide and methane adsorption with the all-silica DD3R zeolite. Adsorption 19: 1045–1053, https://doi.org/10.1007/s10450-013-9528-1.Search in Google Scholar

Makertihartha, I.G.B.N., Dharmawijaya, P.T., Zunita, M., and Wenten, IG. (2017). Post combustion CO2 capture using zeolite membrane. AIP Conf. Proc. 1818: 20074, https://doi.org/10.1063/1.4979941.Search in Google Scholar

Makertihartha, I.G.B.N., Kencana, K.S., Dwiputra, T.R., Khoiruddin, K., Mukti, R.R., and Wenten, I.G. (2020). Silica supported SAPO-34 membranes for CO2/N2 separation. Microporous Mesoporous Mater. 298: 110068, https://doi.org/10.1016/j.micromeso.2020.110068.Search in Google Scholar

Mannan, H.A., Mukhtar, H., Murugesan, T., Nasir, R., Mohshim, D.F., and Mushtaq, A. (2013). Recent applications of polymer blends in gas separation membranes. Chem. Eng. Technol. 36: 1838–1846, https://doi.org/10.1002/ceat.201300342.Search in Google Scholar

McLeary, E.E., Jansen, J.C., and Kapteijn, F. (2006). Zeolite based films, membranes and membrane reactors: progress and prospects. Microporous Mesoporous Mater. 90: 198–220, https://doi.org/10.1016/j.micromeso.2005.10.050.Search in Google Scholar

Mirfendereski, S.M. (2019). Development of a multi-step hybrid method to synthesize highly-permeable and well-oriented SAPO-34 membranes for CO2 removal applications. Chem. Eng. Sci. 208: 115157, https://doi.org/10.1016/j.ces.2019.115157.Search in Google Scholar

Mohammadi Demochali, M., Ghoreyshi, A.A., and Najafpour, G. (2011). Development of a multicomponent mass transport model for predicting CO2 separation behavior from its mixture with natural gas and hydrogen using zeolite membranes. Desalin Water Treat 34: 190–196, https://doi.org/10.5004/dwt.2011.2798.Search in Google Scholar

Mohammadi, T., Asarehpour, S., and Samei, M. (2012). Effects of synthesis temperature and support material on CO2 and CH4 permeation through SAPO-34 membranes. Separ. Sci. Technol. 47: 2320–2330. https://doi.org/10.1080/01496395.2012.677924.Search in Google Scholar

Mukti, R.R., Jentys, A., and Lercher, J.A. (2007). Orientation of alkyl-substituted aromatic molecules during sorption in the pores of H/ZSM-5 zeolites. J. Phys. Chem. C 111: 3973–3980, https://doi.org/10.1021/jp066715r.Search in Google Scholar

Nishiyama, N., Gora, L., Teplyakov, V., Kapteijn, F., and Moulijn, J.A. (2001). Evaluation of reproducible high flux silicalite-1 membranes: gas permeation and separation characterization. Separ. Purif. Technol. 22–23: 295–307, https://doi.org/10.1016/s1383-5866(00)00152-0.Search in Google Scholar

Ohta, Y., Takaba, H., and Nakao, S.-i. (2007). A combinatorial dynamic Monte Carlo approach to finding a suitable zeolite membrane structure for CO2/N2 separation. Microporous Mesoporous Mater. 101: 319–323, https://doi.org/10.1016/j.micromeso.2006.12.030.Search in Google Scholar

Payra, P., and Prabir, K.D. (2003). Zeolites: a primer. In: ScottAuerbach, M., Carrada, K.A., and Dutta, P.K. (Eds.), Handb Zeolite Sci Technol, pp. 1–19.10.1201/9780203911167.pt1Search in Google Scholar

Peng, C., Liu, Z., Horimoto, A., Anand, C., Yamada, H., Ohara, K., Sukenaga, S., Ando, M., Shibata, H., Takewaki, T., Mukti, R.R., Okubo, T., and Wakihara, T. (2018). Preparation of nanosized SSZ-13 zeolite with enhanced hydrothermal stability by a two-stage synthetic method. Microporous Mesoporous Mater. 255: 192–199, https://doi.org/10.1016/j.micromeso.2017.07.042.Search in Google Scholar

Peydayesh, M., Asarehpour, S., Mohammadi, T., and Bakhtiari, O. (2013). Preparation and characterization of SAPO-34 – Matrimid® 5218 mixed matrix membranes for CO2/CH4 separation. Chem. Eng. Res. Des. 91: 1335–1342, https://doi.org/10.1016/j.cherd.2013.01.022.Search in Google Scholar

Ping, E.W., Zhou, R., Funke, H.H., Falconer, J.L., and Noble, R.D. (2012). Seeded-gel synthesis of SAPO-34 single channel and monolith membranes, for CO2/CH4 separations. J. Membr. Sci.: 770–775, https://doi.org/10.1016/j.memsci.2012.05.068.Search in Google Scholar

Poling, B.E., Prausnitz, J.M., and O’Connell, J.P. (2001). The Properties of Gasses and Liquids, 5th ed.Search in Google Scholar

Poshusta, J.C., Noble, R.D., and Falconer, J.L. (1999). Temperature and pressure effects on CO2 and CH4 permeation through MFI zeolite membranes. J. Membr. Sci. 160: 115–125, https://doi.org/10.1016/s0376-7388(99)00073-3.Search in Google Scholar

Poshusta, J.C., Noble, R.D., and Falconer, J.L. (2001). Characterization of SAPO-34 membranes by water adsorption. J. Membr. Sci. 186: 25–40, https://doi.org/10.1016/s0376-7388(00)00666-9.Search in Google Scholar

Poshusta, J.C., Tuan, VA., Falconer, J.L., and Noble, R.D. (1998). Synthesis and permeation properties of SAPO-34 tubular membranes. Ind. Eng. Chem. Res. 37: 3924–3929, https://doi.org/10.1021/ie980240b.Search in Google Scholar

Poshusta, J.C., Tuan, V.A., Pape, E.A., Noble, RD., and Falconer, J.L. (2000). Separation of light gas mixtures using SAPO-34 membranes. AIChE J. 46: 779–789, https://doi.org/10.1002/aic.690460412.Search in Google Scholar

Prasetya, N., Himma, N.F., Sutrisna, P.D., Wenten, I.G., and Ladewig, B.P. (2019). A review on emerging organic-containing microporous material membranes for carbon capture and separation. Chem. Eng. J.: 123575, https://doi.org/10.1016/j.cej.2019.123575.Search in Google Scholar

Rehman, R.U., Song, Q., Peng, L., Wu, Z., and Gu, X. (2020). A facile coating to intact SAPO-34 membranes for wet CO2/CH4 mixture separation. Chem. Eng. Res. Des. 153: 37–48, https://doi.org/10.1016/j.cherd.2019.10.032.Search in Google Scholar

Robeson, L.M. (2008). The upper bound revisited. J. Membr. Sci. 320: 390–400, https://doi.org/10.1016/j.memsci.2008.04.030.Search in Google Scholar

Romero, J., Gijiu, C., Sanchez, J., and Rios, G.M. (2004). A unified approach of gas, liquid and supercritical solvent transport through microporous membranes. Chem. Eng. Sci. 59: 1569–1576, https://doi.org/10.1016/j.ces.2004.01.021.Search in Google Scholar

Ruthven, D.M. (1984). Principles of adsorption and adsorption processes. New York: John Wiley & Sons.Search in Google Scholar

Sanders, D.F., Smith, Z.P., Guo, R., Robeson, L.M., McGrath, J.E., Paul, D.R., and Freeman, B.D. (2013). Energy-efficient polymeric gas separation membranes for a sustainable future: a review. Polymer 54: 4729–4761, https://doi.org/10.1016/j.polymer.2013.05.075.Search in Google Scholar

Shah, M.S., Tsapatsis, M., and Siepmann, J.I. (2017). Hydrogen sulfide capture: from absorption in polar liquids to oxide, zeolite, and metal-organic framework adsorbents and membranes. Chem. Rev. 117: 9755–9803, https://doi.org/10.1021/acs.chemrev.7b00095.Search in Google Scholar

Shi, H. (2014). Synthesis of SAPO-34 zeolite membranes with the aid of crystal growth inhibitors for CO2-CH4 separation. New J. Chem. 38: 5276–5278, https://doi.org/10.1039/c4nj01405g.Search in Google Scholar

Shi, H. (2015). Organic template-free synthesis of SAPO-34 molecular sieve membranes for CO2–CH4 separation. RSC Adv. 5: 38330–38333, https://doi.org/10.1039/c5ra04848f.Search in Google Scholar

Sianipar, M., Kim, S.H., Khoiruddin, K., Iskandar, F., and Wenten, I.G. (2017). Functionalized carbon nanotube (CNT) membrane: progress and challenges. RSC Adv. 7: 51175–51198, https://doi.org/10.1039/c7ra08570b.Search in Google Scholar

Sips, R. (1948). On the structure of a catalyst surface. J. Chem. Phys. 16: 490–495, https://doi.org/10.1063/1.1746922.Search in Google Scholar

Smith, L., Cheetham, A.K., Morris, R.E., Marchese, L., Thomas, J.M., Wright, P.A., and Chen, J. (1996). On the nature of water bound to a solid acid catalyst. Science 271: 799, https://doi.org/10.1126/science.271.5250.799.Search in Google Scholar

Song, S., Gao, F., Zhang, Y., Li, X., Zhou, M., Wang, B., and Zhou, R. (2019). Preparation of SSZ-13 membranes with enhanced fluxes using asymmetric alumina supports for N2/CH4 and CO2/CH4 separations. Separ. Purif. Technol. 209: 946–954, https://doi.org/10.1016/j.seppur.2018.09.016.Search in Google Scholar

Sun, Q., Wang, N., Guo, G., Chen, X., and Yu, J. (2015). Synthesis of tri-level hierarchical SAPO-34 zeolite with intracrystalline micro–meso–macroporosity showing superior MTO performance, 1978. J. Mater. Chem. 3: 3–9, https://doi.org/10.1039/c5ta04642d.Search in Google Scholar

Szostak, R. (1989). Molecular Sieves-principles of Synthesis and Identification. The Netherlands: Springer Netherlands.10.1007/978-94-010-9529-7Search in Google Scholar

Talesh, S.S.A., Fatemi, S., Hashemi, S.J., and Ghasemi, M. (2010). Effect of Si/Al ratio on CO2-CH4 adsorption and selectivity in synthesized SAPO-34. Separ. Sci. Technol. 45: 1295–1301, https://doi.org/10.1080/01496391003684414.Search in Google Scholar

Tang, H., Bai, L., Wang, M., Zhang, Y., Li, M., Wang, M., Kong, L., Xu, N., Zhang, Y., and Rao, P. (2019). Fast synthesis of thin high silica SSZ-13 zeolite membrane using oil-bath heating. Int. J. Hydrogen Energy 44: 23107–23119, https://doi.org/10.1016/j.ijhydene.2019.07.038.Search in Google Scholar

Tian, Y., Fan, L., Wang, Z., Qiu, S., and Zhu, G. (2009). Synthesis of a SAPO-34 membrane on macroporous supports for high permeance separation of a CO2/CH4 mixture. J. Mater. Chem. 19: 7698–7703, https://doi.org/10.1039/b907237c.Search in Google Scholar

Venna, S.R., and Carreon, M.A. (2011). Amino-functionalized SAPO-34 membranes for CO2/CH4 and CO2/N2 separation. Langmuir 27: 2888–2894, https://doi.org/10.1021/la105037n.Search in Google Scholar

Watanabe, Y., Koiwai, A., Takeuchi, H., Hyodo, S.A., and Noda, S. (1993). Multinuclear NMR studies on the thermal stability of SAPO-34. J. Catal. 143: 430–436, https://doi.org/10.1006/jcat.1993.1287.Search in Google Scholar

Wenten, I.G., Dharmawijaya, P.T., Aryanti, P.T.P., Mukti, R.R., and Khoiruddin, K. (2017). LTA zeolite membranes: current progress and challenges in pervaporation. RSC Adv. 7: 29520–29539, https://doi.org/10.1039/c7ra03341a.Search in Google Scholar

Wenten, I.G., Friatnasary, D.L., Khoiruddin, K., Setiadi, T., and Boopathy, R. (2020a). Extractive membrane bioreactor (EMBR): recent advances and applications. Bioresour. Technol. 297: 122424, https://doi.org/10.1016/j.biortech.2019.122424.Search in Google Scholar

Wenten, I.G., Khoiruddin, K., Aryanti, P.T.P., and Hakim, A.N. (2016). Scale-up strategies for membrane-based desalination processes: a review. J Membr Sci Res 2: 42–58, https://doi.org/10.1016/s0958-2118(00)86634-3.Search in Google Scholar

Wenten, I.G., Khoiruddin, K., Aryanti, P.T.P., Victoria, A.V., and Tanukusuma, G. (2020b). Membrane-based zero-sludge palm oil mill plant. Rev. Chem. Eng. 36: 237–264, https://doi.org/10.1515/revce-2017-0117.Search in Google Scholar

White, J.C., Dutta, P.K., Shqau, K., and Verweij, H. (2010). Synthesis of ultrathin zeolite y membranes and their application for separation of carbon dioxide and nitrogen gases. Langmuir 26: 10287–10293, https://doi.org/10.1021/la100463j.Search in Google Scholar

Widodo, S., Ariono, D., Khoiruddin, K., Hakim, A.N., and Wenten, I.G. (2018). Recent advances in waste lube oils processing technologies. Environ. Prog. Sustain. Energy 37: 1867–1881, https://doi.org/10.1002/ep.13011.Search in Google Scholar

Woodcock, D.A., Lightfoot, P., Villaescusa, L.A., Díaz-Cabañas, M.-J., Camblor, M.A., and Engberg, D. (1999). Negative thermal expansion in the siliceous zeolites chabazite and ITQ-4:  A neutron powder diffraction study. Chem. Mater. 11: 2508–2514, https://doi.org/10.1021/cm991047q.Search in Google Scholar

Wu, T., Diaz, M.C., Zheng, Y., Zhou, R., Funke, H.H., Falconer, J.L., and Noble, R.D. (2015). Influence of propane on CO2/CH4 and N2/CH4 separations in CHA zeolite membranes. J. Membr. Sci. 473: 201–209, https://doi.org/10.1016/j.memsci.2014.09.021.Search in Google Scholar

Xiao, J., and Wei, J. (1992). Diffusion mechanism of hydrocarbons in zeolites—I. Theory. Chem Eng Sci 47: 1123–1141, https://doi.org/10.1016/0009-2509(92)80236-6.Search in Google Scholar

Xu, X., Bao, Y., Song, C., Yang, W., Liu, J., and Lin, L. (2004). Microwave-assisted hydrothermal synthesis of hydroxy-sodalite zeolite membrane. Microporous Mesoporous Mater. 75: 173–181, https://doi.org/10.1016/j.micromeso.2004.07.019.Search in Google Scholar

Ye, P., Korelskiy, D., Grahn, M., and Hedlund, J. (2015). Cryogenic air separation at low pressure using MFI membranes. J. Membr. Sci. 487: 135–140, https://doi.org/10.1016/j.memsci.2015.03.063.Search in Google Scholar

Yoshioka, T., Nakanishi, E., Tsuru, T., and Asaeda, M. (2001). Experimental studies of gas permeation through microporous silica membranes. AIChE J. 47: 2052–2063, https://doi.org/10.1002/aic.690470916.Search in Google Scholar

Yu, M., and Noble, R.D. (2011). Falconer JL. Zeolite membranes: microstructure characterization and permeation mechanisms. Acc. Chem. Res. 44: 1196–1206, https://doi.org/10.1021/ar200083e.Search in Google Scholar

Zhang, Y., Avila, A.M., Tokay, B., Funke, H.H., Falconer, J.L., and Noble, R.D. (2010a). Blocking defects in SAPO-34 membranes with cyclodextrin. J. Membr. Sci. 358: 7–12, https://doi.org/10.1016/j.memsci.2010.04.006.Search in Google Scholar

Zhang, Y., Li, M., and Sun, Y. (2013). Synthesis of ion-exchanged SAPO-34 zeolite membrane for CO2/CH4 separation 13th Top Conf Gas Util 2013-Top Conf 2013 AIChE Spring Meet 9th Glob Congr Process Saf, pp. 212–214.Search in Google Scholar

Zhang, Y., Tokay, B., Funke, H.H., Falconer, J.L., and Noble, RD. (2010b). Template removal from SAPO-34 crystals and membranes. J. Membr. Sci. 363: 29–35, https://doi.org/10.1016/j.memsci.2010.06.054.Search in Google Scholar

Zhang, Y., Wang, M., Liu, S., Qiu, H., Wang, M., Xu, N., Gao, L., and Zhang, Y. (2019). Mild template removal of SAPO-34 zeolite membranes in wet ozone environment. Separ. Purif. Technol. 228: 115758, https://doi.org/10.1016/j.seppur.2019.115758.Search in Google Scholar

Zheng, Y., Hu, N., Wang, H., Bu, N., Zhang, F., and Zhou, R. (2015). Preparation of steam-stable high-silica CHA (SSZ-13) membranes for CO2/CH4 and C2H4/C2H6 separation. J. Membr. Sci. 475: 303–310, https://doi.org/10.1016/j.memsci.2014.10.048.Search in Google Scholar

Zhou, L., Yang, J., Li, G., Wang, J., Zhang, Y., Lu, J., and Yin, D. (2014). Highly H2 permeable SAPO-34 membranes by steam-assisted conversion seeding. Int. J. Hydrogen Energy 39: 14949–14954, https://doi.org/10.1016/j.ijhydene.2014.06.159.Search in Google Scholar

Zhou, R., Ping, E.W., Funke, H.H., Falconer, J.L., and Noble, R.D. (2013). Improving SAPO-34 membrane synthesis. J. Membr. Sci. 444: 384–393, https://doi.org/10.1016/j.memsci.2013.05.048.Search in Google Scholar

Zhu, M., Liang, L., Wang, H., Liu, Y., Wu, T., Zhang, F., Li, Y., Kumakiri, I., Chen, X., and Kita, H. (2019). Influences of acid post-treatment on high silica SSZ-13 zeolite membrane. Ind. Eng. Chem. Res. 58: 14037–14043, https://doi.org/10.1021/acs.iecr.9b01250.Search in Google Scholar

Zhu, W., Hrabanek, P., Gora, L., Kapteijn, F., and Moulijn, JA. (2006). Role of adsorption in the permeation of CH4 and CO2 through a silicalite-1 membrane. Ind. Eng. Chem. Res. 45: 767–776, https://doi.org/10.1021/ie0507427.Search in Google Scholar

Zones, S.I., Hwang, S.-J., and Davis, M.E. (2001). Studies of the synthesis of SSZ-25 zeolite in a “mixed-template” system. Chem. Eur J. 7: 1990–2001, https://doi.org/10.1002/1521-3765(20010504)7:9<1990::aid-chem1990>3.0.co;2-g.10.1002/1521-3765(20010504)7:9<1990::AID-CHEM1990>3.0.CO;2-GSearch in Google Scholar

Zong, Z., and Carreon, M.A. (2017). Thin SAPO-34 membranes synthesized in stainless steel autoclaves for N2/CH4 separation. J. Membr. Sci. 524: 117–123https://doi.org/10.1016/j.memsci.2016.11.011.Search in Google Scholar

Received: 2019-12-21
Revised: 2020-06-17
Accepted: 2020-07-26
Published Online: 2020-09-23
Published in Print: 2022-05-25

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 9.12.2022 from https://www.degruyter.com/document/doi/10.1515/revce-2019-0086/html
Scroll Up Arrow