Accessible Unlicensed Requires Authentication Published online by De Gruyter January 4, 2021

Electrospun-based TiO2 nanofibers for organic pollutant photodegradation: a comprehensive review

Khee Chung Hui, Hazwani Suhaimi and Nonni Soraya Sambudi ORCID logo

Abstract

Titanium dioxide (TiO2) is commonly used as a photocatalyst in the removal of organic pollutants. However, weaknesses of TiO2 such as fast charge recombination and low visible light usage limit its industrial application. Furthermore, photocatalysts that are lost during the treatment of pollutants create the problem of secondary pollutants. Electrospun-based TiO2 fiber is a promising alternative to immobilize TiO2 and to improve its performance in photodegradation. Some strategies have been employed in fabricating the photocatalytic fibers by producing hollow fibers, porous fibers, composite TiO2 with magnetic materials, graphene oxide, as well as doping TiO2 with metal. The modification of TiO2 can improve the absorption of TiO2 to the visible light area, act as an electron acceptor, provide large surface area, and promote the phase transformation of TiO2. The improvement of TiO2 properties can enhance carrier transfer rate which reduces the recombination and promotes the generation of radicals that potentially degrade organic pollutants. The recyclability of fibers, calcination effect, photocatalytic reactors used, operation parameters involved in photodegradation as well as the commercialization potential of TiO2 fibers are also discussed in this review.


Corresponding author: Nonni Soraya Sambudi, Department of Chemical Engineering, Universiti Teknologi PETRONAS, Seri Iskandar, Perak32610, Malaysia; and Center for Urban Resource Sustainability (CUReS), Universiti Teknologi PETRONAS, Seri Iskandar, Perak32610, Malaysia, E-mail:

Funding source: YUTP

Award Identifier / Grant number: 015LC0-025

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: The authors acknowledge financial support from YUTP Research Grant 015LC0-025 (August 15, 2018 – August 14, 2021).

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

Adhikari, S.P., Awasthi, G.P., Kim, H.J., Park, C.H., and Kim, C.S. (2016). Electrospinning directly synthesized porous TiO2 nanofibers modified by graphitic carbon nitride sheets for enhanced photocatalytic degradation activity under solar light irradiation. Langmuir 32: 6163–6175, https://doi.org/10.1021/acs.langmuir.6b01085.Search in Google Scholar

Akpan, U.G. and Hameed, B.H. (2010). The advancements in sol–gel method of doped-TiO2 photocatalysts. Appl. Catal. Gen. 375: 1–11, https://doi.org/10.1016/j.apcata.2009.12.023.Search in Google Scholar

Ali, I., Asim, M., and Khan, T.A. (2012). Low cost adsorbents for the removal of organic pollutants from wastewater. J. Environ. Manag. 113: 170–183, https://doi.org/10.1016/j.jenvman.2012.08.028.Search in Google Scholar

Almeida, N.A., Martins, P.M., Teixeira, S., Lopes Da Silva, J.A., Sencadas, V., Kühn, K., Cuniberti, G., Lanceros-Mendez, S., and Marques, P.a.a.P. (2016). TiO2/graphene oxide immobilized in P(VDF-TrFE) electrospun membranes with enhanced visible-light-induced photocatalytic performance. J. Mater. Sci. 51: 6974–6986, https://doi.org/10.1007/s10853-016-9986-4.Search in Google Scholar

Alves, A.K., Berutti, F.A., and Bergmann, C.P. (2013). Visible and UV photocatalytic characterization of Sn–TiO2 electrospun fibers. Catal. Today 208: 7–10, https://doi.org/10.1016/j.cattod.2012.10.020.Search in Google Scholar

Anu Bhushani, J. and Anandharamakrishnan, C. (2014). Electrospinning and electrospraying techniques: potential food based applications. Trends Food Sci. Technol. 38: 21–33, https://doi.org/10.1016/j.tifs.2014.03.004.Search in Google Scholar

Ariffin, N., Abdullah, M.M.a.B., Rozainy, Z., Murshed, M.F., Zain, H., Meor Ahmad Tajudin, M.a.F., and Bayuaji, R. (2017). Review on adsorption of heavy metal in wastewater by using geopolymer. MATEC Web Conf. 97: 01023, https://doi.org/10.1051/matecconf/20179701023.Search in Google Scholar

Asmatulu, R. and Khan, W.S. (2019). Chapter 1 - Introduction to electrospun nanofibers. In: Asmatuluand, R. and Khan, W.S. (Eds.), Synthesis and applications of electrospun nanofibers. Elsevier, Oxford, pp. 1–15.Search in Google Scholar

Awad, A.M., Shaikh, S.M.R., Jalab, R., Gulied, M.H., Nasser, M.S., Benamor, A., and Adham, S. (2019). Adsorption of organic pollutants by natural and modified clays: a comprehensive review. Separ. Purif. Technol. 228: 115719, https://doi.org/10.1016/j.seppur.2019.115719.Search in Google Scholar

Azeez, F., Al-Hetlani, E., Arafa, M., Abdelmonem, Y., Nazeer, A.A., Amin, M.O., and Madkour, M. (2018). The effect of surface charge on photocatalytic degradation of methylene blue dye using chargeable titania nanoparticles. Sci. Rep. 8: 7104, https://doi.org/10.1038/s41598-018-25673-5.Search in Google Scholar

Babu, V.J., Vempati, S., and Ramakrishna, S. (2014). Reduced recombination and enhanced UV-assisted photocatalysis by highly anisotropic titanates from electrospun TiO2–SiO2 nanostructures. RSC Adv. 4: 27979–27987, https://doi.org/10.1039/c4ra03498h.Search in Google Scholar

Bairamis, F., Konstantinou, I., Petrakis, D., and Vaimakis, T. (2019). Enhanced performance of electrospun nanofibrous TiO2/g-C3N4 photocatalyst in photocatalytic degradation of methylene blue. Catalysts 9: 880, doi:https://doi.org/10.3390/catal9110880.Search in Google Scholar

Barhoum, A., Pal, K., Rahier, H., Uludag, H., Kim, I.S., and Bechelany, M. (2019). Nanofibers as new-generation materials: from spinning and nano-spinning fabrication techniques to emerging applications. Appl. Mater. Today 17: 1–35, https://doi.org/10.1016/j.apmt.2019.06.015.Search in Google Scholar

Bhardwaj, N. and Kundu, S.C. (2010). Electrospinning: a fascinating fiber fabrication technique. Biotechnol. Adv. 28: 325–347, https://doi.org/10.1016/j.biotechadv.2010.01.004.Search in Google Scholar

Boyer, S.M., Liu, J., Zhang, S., Ehrlich, M.I., Mccarthy, D.L., Tong, L., Decoste, J.B., Bernier, W.E., and Jones, W.E. (2016). The role of ruthenium photosensitizers in the degradation of phenazopyridine with TiO2 electrospun fibers. J. Photochem. Photobiol. Chem. 329: 46–53, https://doi.org/10.1016/j.jphotochem.2016.06.007.Search in Google Scholar

Carp, O., Huisman, C.L., and Reller, A. (2004). Photoinduced reactivity of titanium dioxide. Prog. Solid State Chem. 32: 33–177, https://doi.org/10.1016/j.progsolidstchem.2004.08.001.Search in Google Scholar

Castillo-Leon, J., Andersen, K., and Svendsen, W. (2011). Self-assembled peptide nanostructures for biomedical applications: advantages and challenges. In: Biomaterials science and engineering. Intech Open, London, pp. 115–138.Search in Google Scholar

Cataño, F.A., Valencia, S., Hincapié, E.A., Restrepo, G., and Marín, J.M. (2012). A Comparative study between TiO2 and ZnO photocatalysis: photocatalytic degradation of cibacron yellow FN-2R dye. Lat. Am. Appl. Res. 42: 33–38.Search in Google Scholar

Chaúque, E.F.C., Adelodun, A.A., Dlamini, L.N., Greyling, C.J., Ray, S.C., and Ngila, J.C. (2017). Synthesis and photocatalytic application of TiO2 nanoparticles immobilized on polyacrylonitrile nanofibers using EDTA chelating agents. Mater. Chem. Phys. 192: 108–124, https://doi.org/10.1016/j.matchemphys.2017.01.016.Search in Google Scholar

Chen, Y., Lu, W., Guo, Y., Zhu, Y., Lu, H., and Song, Y. (2018). Synthesis, characterization and photocatalytic activity of nanocrystalline first transition-metal (Ti, Mn, Co, Ni and Zn) oxisde nanofibers by electrospinning. Appl. Sci. 9: 8, https://doi.org/10.3390/app9010008.Search in Google Scholar

Choi, K.-I., Ho Lee, S., Park, J.-Y., Choi, D.-Y., Hwang, C.-H., Lee, I.-H., and Hwa Chang, M. (2013). Fabrication and characterization of hollow TiO2 fibers by microemulsion electrospinning for photocatalytic reactions. Mater. Lett. 112: 113–116, https://doi.org/10.1016/j.matlet.2013.08.101.Search in Google Scholar

Choi, K.-I., Lee, W., Lee, S.-H., and Lim, C. (2015). Synthesis of hierarchical hollow electrospun TiO2 nanofibers. Mater. Lett. 158: 36–39, https://doi.org/10.1016/j.matlet.2015.05.066.Search in Google Scholar

Choy, K.-L. (2003). Chemical vapour deposition of coatings. Prog. Mater. Sci. 48: 57–170, https://doi.org/10.1016/s0079-6425(01)00009-3.Search in Google Scholar

Cossich, E., Bergamasco, R., Pessoa De Amorim, M.T., Martins, P.M., Marques, J., Tavares, C.J., Lanceros-Méndez, S., and Sencadas, V. (2015). Development of electrospun photocatalytic TiO2-polyamide-12 nanocomposites. Mater. Chem. Phys. 164: 91–97, https://doi.org/10.1016/j.matchemphys.2015.08.029.Search in Google Scholar

Daels, N., Radoicic, M., Radetic, M., Van Hulle, S.W.H., and De Clerck, K. (2014). Functionalisation of electrospun polymer nanofibre membranes with TiO2 nanoparticles in view of dissolved organic matter photodegradation. Separ. Purif. Technol. 133: 282–290, https://doi.org/10.1016/j.seppur.2014.06.040.Search in Google Scholar

Dai, Y.R. and Yin, L.F. (2014). Enhancement of photocatalytic activity for electrospun C@Ti/anatase fibers by lattice distortion under anisotropic stress. Catal. Sci. Technol. 4: 456–463, https://doi.org/10.1039/c3cy00730h.Search in Google Scholar

Dong, H., Zeng, G., Tang, L., Fan, C., Zhang, C., He, X., and He, Y. (2015). An overview on limitations of TiO2-based particles for photocatalytic degradation of organic pollutants and the corresponding countermeasures. Water Res. 79: 128–146, https://doi.org/10.1016/j.watres.2015.04.038.Search in Google Scholar

Dos Santos, A.B., Cervantes, F.J., and Van Lier, J.B. (2007). Review paper on current technologies for decolourisation of textile wastewaters: perspectives for anaerobic biotechnology. Bioresour. Technol. 98: 2369–2385, https://doi.org/10.1016/j.biortech.2006.11.013.Search in Google Scholar

Du, F., Sun, L., Huang, Z., Chen, Z., Xu, Z., Ruan, G., and Zhao, C. (2020). Electrospun reduced graphene oxide/TiO2/poly(acrylonitrile-co-maleic acid) composite nanofibers for efficient adsorption and photocatalytic removal of malachite green and leucomalachite green. Chemosphere 239: 124764, https://doi.org/10.1016/j.chemosphere.2019.124764.Search in Google Scholar

Ehsani, M. and Aroujalian, A. (2019). Fabrication of electrospun polyethersulfone/titanium dioxide (PES/TiO2) composite nanofibers membrane and its application for photocatalytic degradation of phenol in aqueous solution. Polym. Adv. Technol. 31: 772–785, https://doi.org/10.1002/pat.4813.Search in Google Scholar

Fausey, C.L., Zucker, I., Shaulsky, E., Zimmerman, J.B., and Elimelech, M. (2019). Removal of arsenic with reduced graphene oxide-TiO2-enabled nanofibrous mats. Chem. Eng. J. 375: 122040, https://doi.org/10.1016/j.cej.2019.122040.Search in Google Scholar

Foo, K.Y. and Hameed, B. (2011). An overview of dyes removal via activated carbon adsorption process. Desalination Water Treat. 19: 255–274, https://doi.org/10.5004/dwt.2010.1214.Search in Google Scholar

Garg, K. and Bowlin, G. (2011). Electrospinning jets and nanofibrous structures. Biomicrofluidics 5: 13403, https://doi.org/10.1063/1.3567097.Search in Google Scholar

Ghalia, M.A. and Dahman, Y. (2016). Chapter 6 - Advanced nanobiomaterials in tissue engineering: synthesis, properties, and applications. In: Grumezescu, A.M. (Ed.), Nanobiomaterials in soft tissue engineering. William Andrew Publishing.Search in Google Scholar

Gomes, J., Lincho, J., Domingues, E., Gmurek, M., Mazierski, P., Zaleska-Medynska, A., Klimczuk, T., Quinta-Ferreira, R.M., and Martins, R.C. (2019a). TiO2 nanotube arrays-based reactor for photocatalytic oxidation of parabens mixtures in ultrapure water: effects of photocatalyst properties, operational parameters and light source. Sci. Total Environ. 689: 79–89, https://doi.org/10.1016/j.scitotenv.2019.06.410.Search in Google Scholar

Gomes, J., Lincho, J., Domingues, E., Quinta-Ferreira, R., and Martins, R. (2019b). N–TiO2 photocatalysts: a review of their characteristics and capacity for emerging contaminants removal. Water 11: 373, https://doi.org/10.3390/w11020373.Search in Google Scholar

Gonzalez-Abrego, M., Hernandez-Granados, A., Guerrero-Bermea, C., Martinez De La Cruz, A., Garcia-Gutierrez, D., Sepulveda-Guzman, S., and Cruz-Silva, R. (2017). Mesoporous titania nanofibers by solution blow spinning. J. Sol. Gel Sci. Technol. 81: 468–474, https://doi.org/10.1007/s10971-016-4210-1.Search in Google Scholar

Haider, A., Haider, S., and Kang, I.-K. (2018). A comprehensive review summarizing the effect of electrospinning parameters and potential applications of nanofibers in biomedical and biotechnology. Arabian J. Chem. 11: 1165–1188, https://doi.org/10.1016/j.arabjc.2015.11.015.Search in Google Scholar

He, T., Zhou, Z., Xu, W., Cao, Y., Shi, Z., and Pan, W.-P. (2010). Visible-light photocatalytic activity of semiconductor composites supported by electrospun fiber. Compos. Sci. Technol. 70: 1469–1475, https://doi.org/10.1016/j.compscitech.2010.05.001.Search in Google Scholar

Hou, C., Jiao, T., Xing, R., Chen, Y., Zhou, J., and Zhang, L. (2017). Preparation of TiO2 nanoparticles modified electrospun nanocomposite membranes toward efficient dye degradation for wastewater treatment. J. Taiwan Inst. Chem. Eng. 78: 118–126, https://doi.org/10.1016/j.jtice.2017.04.033.Search in Google Scholar

Hou, X., Cai, Y., Song, X., Wu, Y., Zhang, J., and Wei, Q. (2019). Electrospun TiO2 nanofibers coated with polydopamine for enhanced sunlight-driven photocatalytic degradation of cationic dyes. Surf. Interface Anal. 51: 169–176, https://doi.org/10.1002/sia.6554.Search in Google Scholar

Hu, X., Liu, S., Zhou, G., Huang, Y., Xie, Z., and Jing, X. (2014). Electrospinning of polymeric nanofibers for drug delivery applications. J. Contr. Release 185: 12–21, https://doi.org/10.1016/j.jconrel.2014.04.018.Search in Google Scholar

Im, J.S., Kim, M.I., and Lee, Y.-S. (2008). Preparation of PAN-based electrospun nanofiber webs containing TiO2 for photocatalytic degradation. Mater. Lett. 62: 3652–3655, https://doi.org/10.1016/j.matlet.2008.04.019.Search in Google Scholar

Isac, L., Cazan, C., Enesca, A., and Andronic, L. (2019). Copper sulfide based heterojunctions as photocatalysts for dyes photodegradation. Front. Chem. 7: 9, https://doi.org/10.3389/fchem.2019.00694.Search in Google Scholar

James, R., Nukavarapu, S., and Laurencin, C. (2008). Electrospun nanofiber scaffolds: engineering soft tissues. Biomed. Mater. 3: 034002, https://doi.org/10.1088/1748-6041/3/3/034002.Search in Google Scholar

Kaijun, Z., Qingshan, L., and Yu, W. (2018). Preparation and performance of PMMA/R-TiO2 and PMMA/A-TiO2 electrospun fibrous films. Integrated Ferroelectrics Int. J. 188: 31–43, https://doi.org/10.1080/10584587.2018.1454760.Search in Google Scholar

Kanjwal, M.A., Barakat, N.a.M., and Chronakis, I.S. (2015). Photocatalytic degradation of dairy effluent using AgTiO2 nanostructures/polyurethane nanofiber membrane. Ceram. Int. 41: 9615–9621, https://doi.org/10.1016/j.ceramint.2015.04.024.Search in Google Scholar

Karahaliloglu, Z., Hacker, C., Demirbilek, M., Seide, G., Denkbas, E.B., and Gries, T. (2014). Photocatalytic performance of melt-electrospun polypropylene fabric decorated with TiO2 nanoparticles. J. Nanoparticle Res. 16: 2615, https://doi.org/10.1007/s11051-014-2615-8.Search in Google Scholar

Kharub, M. (2012). Use of various technologies, methods and adsorbents for the removal of dye. J. Environ. Res. Dev. 6: 879–883.Search in Google Scholar

Khodja, A., Sehili, T., Pilichowski, J.-F., and Boule, P. (2001). Photocatalytic degradation of a 2-phenyl on TiO2 and ZnO in aqueous suspension. J. Photochem. Photobiol. Chem. 141: 231–239, https://doi.org/10.1016/s1010-6030(01)00423-3.Search in Google Scholar

Kobayashi, M. (2016). Synthesis and development of titania with controlled structures. J. Ceram. Soc. Jpn. 124: 863–869, https://doi.org/10.2109/jcersj2.16117.Search in Google Scholar

Koe, W.S., Lee, J.W., Chong, W.C., Pang, Y.L., and Sim, L.C. (2020). An overview of photocatalytic degradation: photocatalysts, mechanisms, and development of photocatalytic membrane. Environ. Sci. Pollut. Control Ser. 27: 2522–2565, https://doi.org/10.1007/s11356-019-07193-5.Search in Google Scholar

Korina, E., Stoilova, O., Manolova, N., and Rashkov, I. (2018). Polymer fibers with magnetic core decorated with titanium dioxide prospective for photocatalytic water treatment. J. Environ. Chem. Eng. 6: 2075–2084, https://doi.org/10.1016/j.jece.2018.03.016.Search in Google Scholar

Küçük, Ö., Teber, S., Cihan Kaya, İ., Akyıldız, H., and Kalem, V. (2018). Photocatalytic activity and dielectric properties of hydrothermally derived tetragonal BaTiO3 nanoparticles using TiO2 nanofibers. J. Alloys Compd. 765: 82–91, https://doi.org/10.1016/j.jallcom.2018.06.165.Search in Google Scholar

Kurniawan, T.A., Chan, G.Y.S., Lo, W.-H., and Babel, S. (2006). Physico–chemical treatment techniques for wastewater laden with heavy metals. Chem. Eng. J. 118: 83–98, https://doi.org/10.1016/j.cej.2006.01.015.Search in Google Scholar

Lee, J.-C., Gopalan, A.-I., Sai-Anand, G., Lee, K.-P., and Kim, W.-J. (2019). Preparation of visible light photocatalytic graphene embedded rutile titanium(IV) oxide composite nanowires and enhanced NOx removal. Catalysts 9: 170, doi:https://doi.org/10.3390/catal9020170.Search in Google Scholar

Lee, C.-G., Javed, H., Zhang, D., Kim, J.-H., Westerhoff, P., Li, Q., and Alvarez, P.J.J. (2018). Porous electrospun fibers embedding TiO2 for adsorption and photocatalytic degradation of water pollutants. Environ. Sci. Technol. 52: 4285–4293, https://doi.org/10.1021/acs.est.7b06508.Search in Google Scholar

Lee, J.A., Krogman, K.C., Ma, M., Hill, R.M., Hammond, P.T., and Rutledge, G.C. (2009). Highly reactive multilayer-assembled TiO2 coating on electrospun polymer nanofibers. Adv. Mater. 21: 1252–1256, https://doi.org/10.1002/adma.200802458.Search in Google Scholar

Lee, J.A., Nam, Y.S., Rutledge, G.C., and Hammond, P.T. (2010). Enhanced photocatalytic activity using layer-by-layer electrospun constructs for water remediation. Adv. Funct. Mater. 20: 2424–2429, https://doi.org/10.1002/adfm.201000418.Search in Google Scholar

Leung, W.W.-F., Hung, C.-H., and Yuen, P.-T. (2010). Effect of face velocity, nanofiber packing density and thickness on filtration performance of filters with nanofibers coated on a substrate. Separ. Purif. Technol. 71: 30–37, https://doi.org/10.1016/j.seppur.2009.10.017.Search in Google Scholar

Li, C.-J., Wang, J.-N., Li, X.-Y., and Zhang, L.-L. (2011a). Functionalization of electrospun magnetically separable TiO2-coated SrFe12O19 nanofibers: strongly effective photocatalyst and magnetic separation. J. Mater. Sci. 46: 2058–2063, https://doi.org/10.1007/s10853-010-5038-7.Search in Google Scholar

Li, H., Zhang, W., and Pan, W. (2011b). Enhanced photocatalytic activity of electrospun TiO2 nanofibers with optimal anatase/rutile ratio. J. Am. Ceram. Soc. 94: 3184–3187, https://doi.org/10.1111/j.1551-2916.2011.04748.x.Search in Google Scholar

Li, H., Zhu, Y., Cao, H., Yang, X., and Li, C. (2013). Preparation and characterization of photocatalytic carbon dots-sensitized electrospun titania nanostructured fibers. Mater. Res. Bull. 48: 232–237, https://doi.org/10.1016/j.materresbull.2012.10.052.Search in Google Scholar

Li, Y., Li, W., Liu, F., Li, M., Qi, X., Xue, M., Wang, Y., and Han, F. (2020). Construction of CeO2/TiO2 heterojunctions immobilized on activated carbon fiber and its synergetic effect between adsorption and photodegradation for toluene removal. J. Nanoparticle Res. 22: 122, https://doi.org/10.1007/s11051-020-04860-4.Search in Google Scholar

Lian, H. and Meng, Z. (2018). A novel and highly photocatalytic “TiO2wallpaper” made of electrospun TiO2/bioglass hybrid nanofiber. Mater. Sci. Semicond. Process. 80: 68–73, https://doi.org/10.1016/j.mssp.2018.02.019.Search in Google Scholar

Liang, H.-W., Guan, Q.-F., Chen, L.-F., Zhu, Z., Zhang, W.-J., and Yu, S.-H. (2012). Macroscopic-scale template synthesis of robust carbonaceous nanofiber hydrogels and aerogels and their applications. Angew. Chem. Int. Ed. 51: 5101–5105, https://doi.org/10.1002/anie.201200710.Search in Google Scholar

Liang, Z., Li, Q., Li, F., and Zhao, S. (2016). Microstructure of SiO2/TiO2 hybrid electrospun nanofibers and their application in dye degradation. Res. Chem. Intermed. 42: 7017–7029, https://doi.org/10.1007/s11164-016-2513-z.Search in Google Scholar

Lin, L., Jiang, W., Bechelany, M., Nasr, M., Jarvis, J., Schaub, T., Sapkota, R.R., Miele, P., Wang, H., and Xu, P. (2019a). Adsorption and photocatalytic oxidation of ibuprofen using nanocomposites of TiO2 nanofibers combined with BN nanosheets: degradation products and mechanisms. Chemosphere 220: 921–929, https://doi.org/10.1016/j.chemosphere.2018.12.184.Search in Google Scholar

Lin, L., Jiang, W., Nasr, M., Bechelany, M., Miele, P., Wang, H., and Xu, P. (2019b). Enhanced visible light photocatalysis by TiO2–BN enabled electrospinning of nanofibers for pharmaceutical degradation and wastewater treatment. Photochem. Photobiol. Sci. 18: 2921–2930, https://doi.org/10.1039/c9pp00304e.Search in Google Scholar

Lin, Y.-H., Weng, C.-H., Tzeng, J.-H., and Lin, Y.-T. (2016). Adsorption and photocatalytic kinetics of visible-light response N-doped TiO2 nanocatalyst for Indoor acetaldehyde removal under dark and light conditions. Int. J. Photoenergy 2016: 3058429, https://doi.org/10.1155/2016/3058429.Search in Google Scholar

Liu, X., Chen, Y., Cao, C., Xu, J., Qian, Q., Luo, Y., Xue, H., Xiao, L., Chen, Y., and Chen, Q. (2015). Electrospun nitrogen and carbon co-doped porous TiO2 nanofibers with high visible light photocatalytic activity. New J. Chem. 39: 6944–6950, https://doi.org/10.1039/c5nj01333j.Search in Google Scholar

Liu, X. and Ma, P.X. (2009). Phase separation, pore structure, and properties of nanofibrous gelatin scaffolds. Biomaterials 30: 4094–4103, https://doi.org/10.1016/j.biomaterials.2009.04.024.Search in Google Scholar

Liu, Z., Miao, Y.-E., Liu, M., Ding, Q., Tjiu, W.W., Cui, X., and Liu, T. (2014). Flexible polyaniline-coated TiO2/SiO2 nanofiber membranes with enhanced visible-light photocatalytic degradation performance. J. Colloid Interface Sci. 424: 49–55, https://doi.org/10.1016/j.jcis.2014.03.009.Search in Google Scholar

Mardare, D., Iacomi, F., Cornei, N., Girtan, M., and Luca, D. (2010). Undoped and Cr-doped TiO2 thin films obtained by spray pyrolysis. Thin Solid Films 518: 4586–4589, https://doi.org/10.1016/j.tsf.2009.12.037.Search in Google Scholar

Matoh, L., Žener, B., Korošec, R.C., and Štangar, U.L. (2019). 27 - Photocatalytic water treatment. In: Pacheco-Torgal, F., Diamanti, M.V., Nazari, A., Granqvist, C.G., Prunaand, A., and Amirkhanian, S. (Eds.), Nanotechnology in eco-efficient construction (second edition). Woodhead Publishing, Cambridge, pp. 675–698.Search in Google Scholar

Monai, M., Montini, T., and Fornasiero, P. (2017). Brookite: nothing new under the sun? Catalysts 7, https://doi.org/10.3390/catal7100304.Search in Google Scholar

Mondal, K., Bhattacharyya, S., and Sharma, A. (2014). Photocatalytic degradation of naphthalene by electrospun mesoporous carbon-doped anatase TiO2 nanofiber mats. Ind. Eng. Chem. Res. 53: 18900–18909, https://doi.org/10.1021/ie5025744.Search in Google Scholar

Nagajyothi, P.C., Prabhakar Vattikuti, S.V., Devarayapalli, K.C., Yoo, K., Shim, J., and Sreekanth, T.V.M. (2019). Green synthesis: photocatalytic degradation of textile dyes using metal and metal oxide nanoparticles-latest trends and advancements. Crit. Rev. Environ. Sci. Technol. 50: 2617–2723, https://doi.org/10.1080/10643389.2019.1705103.Search in Google Scholar

Nakaruk, A. and Sorrell, C. (2010). Conceptual model for spray pyrolysis mechanism: fabrication and annealing of titania thin films. J. Coating Technol. Res. 7: 665–676, https://doi.org/10.1007/s11998-010-9245-6.Search in Google Scholar

Nakata, K., Fujii, K., Ohkoshi, Y., Gotoh, Y., Nagura, M., Numata, M., and Kamiyama, M. (2007). Poly(ethylene terephthalate) nanofibers made by Sea–Island-type conjugated melt spinning and laser-heated flow drawing. Macromol. Rapid Commun. 28: 792–795, https://doi.org/10.1002/marc.200600624.Search in Google Scholar

Nasr, M., Eid, C., Habchi, R., Miele, P., and Bechelany, M. (2018a). Recent progress on titanium dioxide nanomaterials for photocatalytic applications. ChemSusChem 11: 3023–3047, https://doi.org/10.1002/cssc.201800874.Search in Google Scholar

Nasr, M., Soussan, L., Viter, R., Eid, C., Habchi, R., Miele, P., and Bechelany, M. (2018b). High photodegradation and antibacterial activity of BN–Ag/TiO2 composite nanofibers under visible light. New J. Chem. 42: 1250–1259, https://doi.org/10.1039/c7nj03183a.Search in Google Scholar

Nasr, M., Viter, R., Eid, C., Habchi, R., Miele, P., and Bechelany, M. (2017). Enhanced photocatalytic performance of novel electrospun BN/TiO2 composite nanofibers. New J. Chem. 41: 81–89, https://doi.org/10.1039/c6nj03088b.Search in Google Scholar

Ng, J., Wang, X., and Sun, D.D. (2011). One-pot hydrothermal synthesis of a hierarchical nanofungus-like anatase TiO2 thin film for photocatalytic oxidation of bisphenol A. Appl. Catal. B Environ. 110: 260–272, https://doi.org/10.1016/j.apcatb.2011.09.011.Search in Google Scholar

Nor, N.a.M., Jaafar, J., Ismail, A.F., Rahman, M.A., Othman, M.H.D., Matsuura, T., Aziz, F., Yusof, N., Salleh, W.N.W., and Subramaniam, M.N. (2017). Effects of heat treatment of TiO2 nanofibers on the morphological structure of PVDF nanocomposite membrane under UV irradiation. J. Water Process Eng. 20: 193–200, https://doi.org/10.1016/j.jwpe.2017.11.007.Search in Google Scholar

Notodarmojo, S., Sugiyana, D., Handajani, M., Kardena, E., and Larasati, A. (2017). Synthesis of TiO2 nanofiber-nanoparticle composite catalyst and its photocatalytic decolorization performance of reactive black 5 dye from aqueous solution. J. Eng. Technol. Sci. 49: 3, https://doi.org/10.5614/j.eng.technol.sci.2017.49.3.4.Search in Google Scholar

Nune, S., Rama, K., Dirisala, V., and Chavali, M. (2017). Chapter 11 - Electrospinning of collagen nanofiber scaffolds for tissue repair and regeneration. In: Micro and nano technologies, nanostructures for novel therapy. Elsevier, Oxford, pp. 281–311.Search in Google Scholar

Ouyang, W., Liu, S., Yao, K., Zhao, L., Cao, L., Jiang, S., and Hou, H. (2018). Ultrafine hollow TiO2 nanofibers from core-shell composite fibers and their photocatalytic properties. Compos. Commun. 9: 76–80, https://doi.org/10.1016/j.coco.2018.06.006.Search in Google Scholar

Pahasup-Anan, T., Suwannahong, K., Dechapanya, W., and Rangkupan, R. (2018). Fabrication and photocatalytic activity of TiO2 composite membranes via simultaneous electrospinning and electrospraying process. J. Environ. Sci. 72: 13–24, https://doi.org/10.1016/j.jes.2017.11.025.Search in Google Scholar

Pant, H.R., Bajgai, M.P., Nam, K.T., Seo, Y.A., Pandeya, D.R., Hong, S.T., and Kim, H.Y. (2011). Electrospun nylon-6 spider-net like nanofiber mat containing TiO2 nanoparticles: a multifunctional nanocomposite textile material. J. Hazard Mater. 185: 124–130, https://doi.org/10.1016/j.jhazmat.2010.09.006.Search in Google Scholar

Park, J.-Y., Lee, J.-H., Choi, D.-Y., Hwang, C.-H., and Lee, J.-W. (2012). Influence of Fe doping on phase transformation and crystallite growth of electrospun TiO2 nanofibers for photocatalytic reaction. Mater. Lett. 88: 156–159, https://doi.org/10.1016/j.matlet.2012.07.080.Search in Google Scholar

Pasini, S.M., Valério, A., Guelli Ulson De Souza, S.M.A., Hotza, D., Yin, G., Wang, J., and Ulson De Souza, A.A. (2019). Plasma-modified TiO2/polyetherimide nanocomposite fibers for photocatalytic degradation of organic compounds. J. Environ. Chem. Eng. 7: 103213, https://doi.org/10.1016/j.jece.2019.103213.Search in Google Scholar

Pelaez, M., Nolan, N.T., Pillai, S.C., Seery, M.K., Falaras, P., Kontos, A.G., Dunlop, P.S.M., Hamilton, J.W.J., Byrne, J.A., O’shea, K., et al.. (2012). A review on the visible light active titanium dioxide photocatalysts for environmental applications. Appl. Catal. B Environ. 125: 331–349, https://doi.org/10.1016/j.apcatb.2012.05.036.Search in Google Scholar

Ranjith, K.S. and Uyar, T. (2018). ZnO–TiO2 composites and ternary ZnTiO3 electrospun nanofibers: the influence of annealing on the photocatalytic response and reusable functionality. CrystEngComm 20: 5801–5813, https://doi.org/10.1039/c8ce00920a.Search in Google Scholar

Riaz, N., Hassan, M., Siddique, M., Mahmood, Q., Farooq, U., Sarwar, R., and Khan, M.S. (2020). Photocatalytic degradation and kinetic modeling of azo dye using bimetallic photocatalysts: effect of synthesis and operational parameters. Environ. Sci. Pollut. Control Ser. 27: 2992–3006, https://doi.org/10.1007/s11356-019-06727-1.Search in Google Scholar

Saiful Amran, S.N.B., Wongso, V., Abdul Halim, N.S., Husni, M.K., Sambudi, N.S., and Wirzal, M.D.H. (2019). Immobilized carbon-doped TiO2 in polyamide fibers for the degradation of methylene blue. J. Asian Ceram. Soc. 7: 321–330, https://doi.org/10.1080/21870764.2019.1636929.Search in Google Scholar

Salleh, M.a.M., Mahmoud, D.K., Karim, W.a.W.A., and Idris, A. (2011). Cationic and anionic dye adsorption by agricultural solid wastes: a comprehensive review. Desalination 280: 1–13, https://doi.org/10.1016/j.desal.2011.07.019.Search in Google Scholar

Sedghi, R., Moazzami, H.R., Hosseiny Davarani, S.S., Nabid, M.R., and Keshtkar, A.R. (2017). A one step electrospinning process for the preparation of polyaniline modified TiO2/polyacrylonitile nanocomposite with enhanced photocatalytic activity. J. Alloys Compd. 695: 1073–1079, https://doi.org/10.1016/j.jallcom.2016.10.232.Search in Google Scholar

Seong, D.B., Son, Y.-R., and Park, S.-J. (2018). A study of reduced graphene oxide/leaf-shaped TiO2 nanofibers for enhanced photocatalytic performance via electrospinning. J. Solid State Chem. 266: 196–204, https://doi.org/10.1016/j.jssc.2018.06.003.Search in Google Scholar

Shan, A., Mohd Ghazi, T., and Abdul Rashid, S. (2010). Immobilisation of titanium dioxide onto supporting materials in heterogeneous photocatalysis: a review. Appl. Catal. Gen. 389: 1–8, https://doi.org/10.1016/j.apcata.2010.08.053.Search in Google Scholar

Shen, X. (2016). 10 - Molecularly imprinted photocatalysts. In: Li, S., Cao, S., Piletsky, S.A., and Turner, A.P.F. (Eds.), Molecularly imprinted catalysts. Elsevier, Amsterdam, pp. 211–228.Search in Google Scholar

Shi, X., Zhang, X., Ma, L., Xiang, C., and Li, L. (2019). TiO2-Doped chitosan microspheres supported on cellulose acetate fibers for adsorption and photocatalytic degradation of methyl orange. Polymers 11: 1293, doi:https://doi.org/10.3390/polym11081293.Search in Google Scholar

Sidaraviciute, R., Krugly, E., Dabasinskaite, L., Valatka, E., and Martuzevicius, D. (2017). Surface-deposited nanofibrous TiO2 for photocatalytic degradation of organic pollutants. J. Sol. Gel Sci. Technol. 84: 306–315, https://doi.org/10.1007/s10971-017-4505-x.Search in Google Scholar

Sobczyk-Guzenda, A., Pietrzyk, B., Szymanowski, H., Gazicki-Lipman, M., and Jakubowski, W. (2013). Photocatalytic activity of thin TiO2 films deposited using sol–gel and plasma enhanced chemical vapor deposition methods. Ceram. Int. 39: 2787–2794, https://doi.org/10.1016/j.ceramint.2012.09.046.Search in Google Scholar

Soo, J.Z., Ang, B.C., and Ong, B.H. (2019a). Influence of calcination on the morphology and crystallinity of titanium dioxide nanofibers towards enhancing photocatalytic dye degradation. Mater. Res. Express 6: 025039, https://doi.org/10.1088/2053-1591/aaf013.Search in Google Scholar

Soo, J.Z., Lee, K.M., Ang, B.C., and Ong, B.H. (2019b). Optimal electrospun TiO2 nanofiber photocatalytic performance via synergistic morphology and particle crystallinity with anatase/rutile phase tuning. Phys. Status Solidi 216: 1900066, https://doi.org/10.1002/pssa.201900066.Search in Google Scholar

Su, J., Yang, G., Cheng, C., Huang, C., Xu, H., and Ke, Q. (2017). Hierarchically structured TiO2/PAN nanofibrous membranes for high-efficiency air filtration and toluene degradation. J. Colloid Interface Sci. 507: 386–396, https://doi.org/10.1016/j.jcis.2017.07.104.Search in Google Scholar

Sui, X., Li, X., Chen, L., Li, G., Lin, F., and Liu, C. (2017). Tailored fabrication of TiO2@carbon nanofibers composites via foaming agent migration. RSC Adv. 7: 49220–49226, https://doi.org/10.1039/c7ra09403e.Search in Google Scholar

Sun, G., Sun, L., Xie, H., and Liu, J. (2016). Electrospinning of nanofibers for energy applications. Nanomaterials 6: 129, https://doi.org/10.3390/nano6070129.Search in Google Scholar

Sutisna, W.E., Rokhmat, M., Rahman, D.Y., Murniati, R., Khairurrijal, and Abdullah, M. (2017). Batik wastewater treatment using TiO2 nanoparticles coated on the surface of plastic sheet. Procedia Eng. 170: 78–83, https://doi.org/10.1016/j.proeng.2017.03.015.Search in Google Scholar

Tang, Y., Li, X., Zhang, H., Ouyang, T., Jiang, Y., Mu, M., and Yin, X. (2020). Cobalt-based ZIF coordinated hybrids with defective TiO2-x for boosting visible light-driven photo-Fenton-like degradation of bisphenol A. Chemosphere 259: 127431, https://doi.org/10.1016/j.chemosphere.2020.127431.Search in Google Scholar

Thomas, S., Pothan, L., and Cherian, B. (2009). Natural fibre reinforced polymer composites: from macro to nanoscale. Int. J. Mater. Prod. Technol. 36: 317–333, doi:https://doi.org/10.1504/ijmpt.2009.027839.Search in Google Scholar

Tu, H., Li, D., Yi, Y., Liu, R., Wu, Y., Dong, X., Shi, X., and Deng, H. (2019). Incorporation of rectorite into porous polycaprolactone/TiO2 nanofibrous mats for enhancing photocatalysis properties towards organic dye pollution. Compos. Commun. 15: 58–63, https://doi.org/10.1016/j.coco.2019.06.006.Search in Google Scholar

Varshney, G., Kanel, S., Kempisty, D., Varshney, V., Agrawal, A., Sahle-Demessie, E., Varma, R., and Nadagouda, M. (2015). Nanoscale TiO2 films and their application in remediation of organic pollutants. Coord. Chem. Rev. 306: 43–64, https://doi.org/10.1016/j.ccr.2015.06.011.Search in Google Scholar

Vild, A., Teixeira, S., Kühn, K., Cuniberti, G., and Sencadas, V. (2016). Orthogonal experimental design of titanium dioxide—poly(methyl methacrylate) electrospun nanocomposite membranes for photocatalytic applications. J. Environ. Chem. Eng. 4: 3151–3158, https://doi.org/10.1016/j.jece.2016.06.029.Search in Google Scholar

Wang, J., Yang, G., Wang, L., and Yan, W. (2016). Fabrication of a well-aligned TiO2 nanofibrous membrane by modified parallel electrode configuration with enhanced photocatalytic performance. RSC Adv. 6: 31476–31483, https://doi.org/10.1039/c6ra01606e.Search in Google Scholar

Wang, M. and Zhao, Q. (2019). Biomedical composites. In: Narayan, R. (Ed.), Encyclopedia of biomedical engineering. Elsevier, Oxford, pp. 34–52.Search in Google Scholar

Wang, S.-D., Ma, Q., Liu, H., Wang, K., Ling, L.-Z., and Zhang, K.-Q. (2015). Robust electrospinning cellulose acetate@TiO2 ultrafine fibers for dyeing water treatment by photocatalytic reactions. RSC Adv. 5: 40521–40530, https://doi.org/10.1039/c5ra03797b.Search in Google Scholar

Woo, D.J., Hansen, N.S., Joo, Y.L., and Obendorf, S.K. (2012). Photocatalytic self-detoxification by coaxially electrospun fiber containing titanium dioxide nanoparticles. Textil. Res. J. 82: 1920–1927, https://doi.org/10.1177/0040517512449053.Search in Google Scholar

Wu, H., Zheng, G., Liu, N., Carney, T. J., Yang, Y., and Cui, Y. (2012). Engineering empty space between Si nanoparticles for lithium-ion battery anodes. Nano Lett. 12: 904–909, https://doi.org/10.1021/nl203967r.Search in Google Scholar

Wu, X.-Q., Shao, Z.-D., Liu, Q., Xie, Z., Zhao, F., and Zheng, Y.-M. (2019). Flexible and porous TiO2/SiO2/carbon composite electrospun nanofiber mat with enhanced interfacial charge separation for photocatalytic degradation of organic pollutants in water. J. Colloid Interface Sci. 553: 156–166, https://doi.org/10.1016/j.jcis.2019.06.019.Search in Google Scholar

Xu, Z., Li, X., Wang, W., Shi, J., Teng, K., Qian, X., Shan, M., Li, C., Yang, C., and Liu, L. (2016). Microstructure and photocatalytic activity of electrospun carbon nanofibers decorated by TiO2 nanoparticles from hydrothermal reaction/blended spinning. Ceram. Int. 42: 15012–15022, https://doi.org/10.1016/j.ceramint.2016.06.150.Search in Google Scholar

Yar, A., Haspulat, B., Üstün, T., Eskizeybek, V., Avcı, A., Kamış, H., and Achour, S. (2017). Electrospun TiO2/ZnO/PAN hybrid nanofiber membranes with efficient photocatalytic activity. RSC Adv. 7: 29806–29814, https://doi.org/10.1039/c7ra03699j.Search in Google Scholar

Yu, M., Dong, R., Xu, Y., Yu, G.-F., You, M.-H., Ning, X., and Long, Y.-Z. (2017). Recent advances in needleless electrospinning of ultrathin fibers: from academia to industrial production. Macromol. Mater. Eng. 302: 1700002, https://doi.org/10.1002/mame.201700002.Search in Google Scholar

Zhan, S., Chen, D., Jiao, X., and Tao, C. (2006). Long TiO2 hollow fibers with mesoporous walls:  sol−gel combined electrospun fabrication and photocatalytic properties. J. Phys. Chem. B 110: 11199–11204, https://doi.org/10.1021/jp057372k.Search in Google Scholar

Zhang, R., Wang, X., Song, J., Si, Y., Zhuang, X., Yu, J., and Ding, B. (2015a). In situ synthesis of flexible hierarchical TiO2 nanofibrous membranes with enhanced photocatalytic activity. J. Mater. Chem. 3: 22136–22144, https://doi.org/10.1039/c5ta05442g.Search in Google Scholar

Zhang, Y., Park, M., Kim, H.-Y., El-Newehy, M., Rhee, K.Y., and Park, S.-J. (2015b). Effect of TiO2 on photocatalytic activity of polyvinylpyrrolidone fabricated via electrospinning. Compos. B Eng. 80: 355–360, https://doi.org/10.1016/j.compositesb.2015.05.040.Search in Google Scholar

Zhang, Z.-G., Liu, H., Cui, Y.-Q., Dong, M., Li, Q.-H., Wang, X.-X., Ramakrishna, S., and Long, Y.-Z. (2019a). One step in situ loading of CuS nanoflowers on anatase TiO2/polyvinylidene fluoride fibers and their enhanced photocatalytic and self-cleaning performance. Nanoscale Res. Lett. 14: 215, https://doi.org/10.1186/s11671-019-3052-5.Search in Google Scholar

Zhang, Z.-G., Liu, H., Wang, X.-X., Zhang, J., Yu, M., Ramakrishna, S., and Long, Y.-Z. (2019b). One-step low temperature hydrothermal synthesis of flexible TiO2/PVDF@MoS2 core-shell heterostructured fibers for visible-light-driven photocatalysis and self-cleaning. Nanomaterials 9: 431, https://doi.org/10.3390/nano9030431.Search in Google Scholar

Zhang, Z.-G., Liu, H., Wang, X.-X., Zhang, J., Zhang, F.-B., Li, R., Yu, M., Ramakrishna, S., and Long, Y.-Z. (2019c). Influences of acids on morphology and properties of TiO2 grown on electrospun PVDF fibers. J. Phys. Chem. Solid. 133: 117–127, https://doi.org/10.1016/j.jpcs.2019.04.026.Search in Google Scholar

Zhang, Z.-G., Liu, H., Zhang, B., Zhang, J., Liu, R.-Z., Ning, X., and Long, Y.-Z. (2017). Synthesis and application of highly ordered arrays of TiO2 rods grown on electrospun PVDF fibers. Mater. Res. Express 4: 075907, https://doi.org/10.1088/2053-1591/aa7cde.Search in Google Scholar

Zhang, Z., Shao, C., Zhang, L., Li, X., and Liu, Y. (2010). Electrospun nanofibers of V-doped TiO2 with high photocatalytic activity. J. Colloid Interface Sci. 351: 57–62, https://doi.org/10.1016/j.jcis.2010.05.067.Search in Google Scholar

Zheng, F. and Zhu, Z. (2018). Flexible, freestanding, and functional SiO2 nanofibrous mat for dye-sensitized solar cell and photocatalytic dye degradation. ACS Appl. Nano Mater. 1: 1141–1149, https://doi.org/10.1021/acsanm.7b00316.Search in Google Scholar

Zhou, Y., Lu, J., Zhou, Y., and Liu, Y. (2019). Recent advances for dyes removal using novel adsorbents: a review. Environ. Pollut. 252: 352–365, https://doi.org/10.1016/j.envpol.2019.05.072.Search in Google Scholar

Zhu, C., Mu, X., Van Aken, P.A., Yu, Y., and Maier, J. (2014). Single-layered ultrasmall nanoplates of MoS2 embedded in carbon nanofibers with excellent electrochemical performance for lithium and sodium storage. Angew. Chem. Int. Ed. 53: 2152–2156, https://doi.org/10.1002/anie.201308354.Search in Google Scholar

Zhu, T., Li Ong, W., Zhu, L., and Wei Ho, G. (2015). TiO2 fibers supported β-FeOOH nanostructures as efficient visible light photocatalyst and room temperature sensor. Sci. Rep. 5: 10601, https://doi.org/10.1038/srep10601.Search in Google Scholar

Supplementary Material

The online version of this article offers supplementary material (https://doi.org/10.1515/revce-2020-0022).

Received: 2020-04-22
Accepted: 2020-11-16
Published Online: 2021-01-04

© 2020 Walter de Gruyter GmbH, Berlin/Boston