Accessible Unlicensed Requires Authentication Published online by De Gruyter December 24, 2020

Slurry-phase ethylene polymerization processes: a review on multiscale modeling and simulations

Amit K. Thakur ORCID logo, Santosh K. Gupta ORCID logo and Pranava Chaudhari ORCID logo

Abstract

Slurry polymerization processes using Zeigler–Natta catalysts, are most widely used for the production of polyethylene due to their several advantages over other processes. Significant advancements have been made in the modeling of these processes to obtain high-quality final products. The modeling work in this field has a very wide scope due to the great diversity of the catalyst types, polymerization processes, polymerization conditions, product qualities and microstructures that exist at the commercial scale. In this article, we have reviewed and discussed the slurry polymerization processes for the production of polyethylene and the multiscale modeling and simulation framework in slurry reactors. The multiscale modeling framework mainly comprises of the kinetic model, single-particle diffusion models, multiphase hydrodynamics, phase equilibria, reactor residence time distribution and the overall mass and heat balances. Guidelines to implement the multiscale mathematical modeling and simulation in slurry-phase olefin polymerization processes are proposed. Special focus is given on the need to reduce the computational effort for the simulation of industrial reactors so that the models can be used as an effective tool-kit for optimization studies using state-of-art algorithms.


Corresponding author: Pranava Chaudhari, Department of Chemical Engineering, University of Petroleum and Energy Studies, Dehradun, 248007, Uttarakhand, India, E-mail: .

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

Abbasi, M.R., Shamiri, A., and Hussain, M.A. (2019). A review on modeling and control of olefin polymerization in fluidized-bed reactors. Rev. Chem. Eng. 35: 311–333, https://doi.org/10.1515/revce-2017-0040. Search in Google Scholar

Ali, D. and Ahmad, R. (2008). Modeling and simulation of olefin polymerization at microstructure level. Iran. J. Chem. Chem. Eng. 27: 13–22. Search in Google Scholar

Alizadeh, A. and McKenna, T.F.L. (2017). Particle growth during the polymerization of olefins on supported catalysts. Part 2: current experimental understanding and modeling progresses on particle fragmentation, growth, and morphology development. Macromol. React. Eng. 12: 1700027, https://doi.org/10.1002/mren.201700027. Search in Google Scholar

Alobaid, F., Ströhle, J., and Epple, B. (2013). Extended CFD/DEM model for the simulation of circulating fluidized bed. Adv. Powder Technol. 24: 403–415, https://doi.org/10.1016/j.apt.2012.09.003. Search in Google Scholar

Atan, M.F., Hussain, M.A., Abbasi, M.R., Khan, M.J.H., and Patah, M.F.A. (2019). Advances in mathematical modeling of gas-phase olefin polymerization. Processes 7: 1–33, https://doi.org/10.3390/pr7020067. Search in Google Scholar

Baier, M. C., Zuideveld, M. A., and Mecking, S. (2014). Post-metallocenes in the industrial production of polyolefins. Angew. Chem. Int. Ed. 53: 9722–9744, https://doi.org/10.1002/anie.201400799. Search in Google Scholar

Bariashir, C., Huang, C., Solan, G.A., and Sun, W.H. (2019). Recent advances in homogeneous chromium catalyst design for ethylene tri-, tetra-, oligo- and polymerization. Coord. Chem. Rev. 385: 208–229, https://doi.org/10.1016/j.ccr.2019.01.019. Search in Google Scholar

Beetstra, R., Van Der Hoef, M. A., and Kuipers, J. A. M. (2007). Drag force of intermediate Reynolds number flow past mono- and bidisperse arrays of spheres. AIChE J. 53: 489–501, https://doi.org/10.1002/aic.11065. Search in Google Scholar

Bhagwat, M.S., Bhagwat, S.S., and Sharma, M.M. (1994). Mathematical modeling of the slurry polymerization of ethylene: gas-liquid mass transfer limitations. Ind. Eng. Chem. Res. 33: 2322–2330, https://doi.org/10.1021/ie00034a010. Search in Google Scholar

Boor, J.J. (1979). Ziegler–Natta catalysts polymerizations.Academic, New York, USA. Search in Google Scholar

Buls, V.W. and Higgins, T.L. (1970). A particle growth theory for heterogeneous Ziegler polymerization. J. Polym. Sci. 1 Polym. Chem. 8: 1037–1053, https://doi.org/10.1002/pol.1970.150080502. Search in Google Scholar

Burdett, I.D., and Eisinger, R.S. (2017). Ethylene polymerization processes and manufacturing of polyethylene. In: Spalding, M.A., and Chatterjee, A.M. (Eds.), Handbook of industrial polyethylene and technology, definitive guide to manufacturing, properties, processing, applications and markets. Wiley, Scrivener Publishing, Beverly, MA, pp. 62–94. Search in Google Scholar

Calderbank, P.H. and Moo-Young, M.B. (1961). The continuous phase heat and mass-transfer properties of dispersions. Chem. Eng. Sci. 16: 39–54, https://doi.org/10.1016/0009-2509(61)87005-x. Search in Google Scholar

Casalini, T., Visscher, F., Janssen, E., Bertola, F., Storti, G., and Morbidelli, M. (2016). Modeling of polyolefin polymerization in semibatch slurry reactors: experiments and simulations. Macromol. React. Eng. 11: 1–19, https://doi.org/10.1002/mren.201600036. Search in Google Scholar

Casalini, T., Visscher, F., Tamaddoni, M., Friederichs, N., Bertola, F., Storti, G., and Morbidelli, M. (2018). The effect of residence time distribution on the slurry-phase catalytic ethylene polymerization: an experimental and computational study. Macromol. React. Eng. 12: 1700058, https://doi.org/10.1002/mren.201700058. Search in Google Scholar

Chakravarti, S. and Ray, W.H. (2001). Kinetic study of olefin polymerization with a supported metallocene catalyst. II. Ethylene/1-hexene copolymerization in gas phase. J. Appl. Polym. Sci. 80: 1096–1119, https://doi.org/10.1002/app.1194. Search in Google Scholar

Chaudhari, P. and Garg, S. (2017). Modeling of the maleic anhydride circulating fluidized bed reactor. Comput. Chem. Eng. 100: 198–218, https://doi.org/10.1016/j.compchemeng.2017.02.012. Search in Google Scholar

Chaudhari, P. and Garg, S. (2019). Multi-objective optimization of maleic anhydride circulating fluidized bed (CFB) reactors. Chem. Eng. Res. Des. 141: 115–132, https://doi.org/10.1016/j.cherd.2018.10.020. Search in Google Scholar

Chaudhari, P. and Gupta, S.K. (2012). Multiobjective optimization of a fixed bed maleic anhydride reactor using an improved biomimetic adaptation of NSGA-II. Ind. Eng. Chem. Res. 51: 3279–3294, https://doi.org/10.1021/ie202276q. Search in Google Scholar

Chen, C. (2018). Designing catalysts for olefin polymerization and copolymerization: beyond electronic and steric tuning. Nat. Rev. Chem. 2: 6–14, https://doi.org/10.1038/s41570-018-0003-0. Search in Google Scholar

Chen, X., Shao, Z., Gu, X., Feng, L., and Beigler, L.T. (2019). Process intensification of polymerization processes with embedded molecular weight distributions models: an advanced optimization approach. Ind. Eng. Chem. Res. 58: 6133–6145, https://doi.org/10.1021/acs.iecr.8b04424. Search in Google Scholar

Chen, Y. and Liu, X. (2005). Modeling mass transport of propylene polymerization on Ziegler–Natta catalyst. Polymer 46: 9434–9442, https://doi.org/10.1016/j.polymer.2005.07.049. Search in Google Scholar

Chiovetta, M.G. (1983). Heat and mass transfer during the polymerization of alpha-olefins from the gas phase, Ph.D. thesis. Amhurst, University of Massachusetts. Search in Google Scholar

Choi, K. Y. and Ray, W. H. (1985a). Recent developments in transition metal catalyzed olefin polymerization—a survey. I. Ethylene polymerization. J. Macromol. Sci. Part C. 25: 1–55, https://doi.org/10.1080/07366578508079456. Search in Google Scholar

Choi, K.Y. and Ray, W.H. (1985b). Polymerization of olefins through heterogeneous catalysis. II. Kinetics of gas phase propylene polymerization with Ziegler–Natta cata1ysts. J. Appl. Polym. Sci. 30: 1065–1081, https://doi.org/10.1002/app.1985.070300315. Search in Google Scholar

Choi, K.Y., Tang, S., and Sirohi, A. (1997). Estimation of kinetic parameters in transition-metal-catalyzed gas-phase olefin copolymerization processes. Ind. Eng. Chem. Res. 36: 1095–1102, https://doi.org/10.1021/ie9603631. Search in Google Scholar

Chum, P.S. and Swogger, K.W. (2008). Olefin polymer technologies-history and recent progress at the Dow Chemical Company. Prog. Polym. Sci. 33: 797–819, https://doi.org/10.1016/j.progpolymsci.2008.05.003. Search in Google Scholar

Cornelissen, J. T., Fariborz, T., Escudiéa, R., Naoko, E., John, R., and Grace, J.R. (2007). CFD modelling of a liquid-solid fluidized bed. Chem. Eng. Sci. 62: 6334–6348, https://doi.org/10.1016/j.ces.2007.07.014. Search in Google Scholar

Crabtree, J.R., Grimsby, F.N., Nummelin, A.J., and Sketchley, J.M. (1973). The role of diffusion in the Ziegler polymerization of ethylene. J. Appl. Polym. Sci. 17: 959–976, https://doi.org/10.1002/app.1973.070170322. Search in Google Scholar

Daftaribesheli, M. (2009). Comparison of catalytic ethylene polymerization in slurry and gas phase, Ph.D. thesis. The Netherlands, University of Twente. Search in Google Scholar

Dengfei, W., Guoxing, Y., Feng, G., Guo, F., Wang, J., and Jiang, Y. (2018). Progress in technology and catalysts for continuous stirred tank reactor type slurry phase polyethylene processes. Petrol. Chem. 58: 264–273. Search in Google Scholar

Dubé, M.A., Soares, J.B.P., Penlidis, A., and Hamielec, A.E. (1997). Mathematical modeling of multicomponent chain-growth polymerizations in batch, semibatch, and continuous reactors: a review. Ind. Eng. Chem. Res. 36: 966–1015, https://doi.org/10.1021/ie960481o. Search in Google Scholar

Dompazis, G., Kanellopoulos, V., Touloupides, V., and Kiparissides, C. (2008). Development of a multi-scale, multi-phase, multi-zone dynamic model for the prediction of particle segregation in catalytic olefin polymerization FBRs. Chem. Eng. Sci. 63: 4735–4753, https://doi.org/10.1016/j.ces.2007.08.069. Search in Google Scholar

Embiruçu, M., Prata, D.M., Lima, E.L., and Pinto, J.C. (2008). Continuous soluble Ziegler–Natta ethylene polymerizations in reactor trains, 2 - estimation of kinetic parameters from industrial data. Macromol. React. Eng. 2: 142–160, https://doi.org/10.1002/mren.200700046. Search in Google Scholar

Estenoz, D.A. and Chiovetta, M.G. (1996a). A structural model for the catalytic polymerization of ethylene using chromium catalysts. Part I: description and solution. Polym. Eng. Sci. 36: 2208–2228, https://doi.org/10.1002/pen.10618. Search in Google Scholar

Estenoz, D.A. and Chiovetta, M.G. (1996b). A structural model for the catalytic polymerization of ethylene using chromium catalysts. Part II: thermal effects. Polym. Eng. Sci. 36: 2229–2240, https://doi.org/10.1002/pen.10619. Search in Google Scholar

Ferrero, M.A. and Chiovetta, M.G. (1987a). Catalyst fragmentation during propylene polymerization. Part II: microparticle diffusion and reaction effects. Polym. Eng. Sci. 27: 1448–1460, https://doi.org/10.1002/pen.760271904. Search in Google Scholar

Ferrero, M.A. and Chiovetta, M.G. (1987b). Catalyst fragmentation during propylene polymerization. Part I: the effects of grain size and structure. Polym. Eng. Sci. 27: 1436–1447, https://doi.org/10.1002/pen.760271903. Search in Google Scholar

Flory, P.J. (1953). Principles of polymer chemistry. Cornell University Press, Ithaca, NY. Search in Google Scholar

Floyd, S., Choi, K.Y., Taylor, T.W., and Ray, W.H. (1986a). Polymerization of olefins through heterogeneous catalysis IV. Modeling of heat and mass transfer resistance in the polymer particle boundary layer. J. Appl. Polym. Sci. 31: 2231–2265, https://doi.org/10.1002/app.1986.070310724. Search in Google Scholar

Floyd, S., Choi, K.Y., Taylor, T.W., and Ray, W.H. (1986b). Polymerization of olefins through heterogeneous catalysis. iii. polymer particle modelling with an analysis of intraparticle heat and mass transfer effects. J. Appl. Polym. Sci. 32: 2935–2960, https://doi.org/10.1002/app.1986.070320108. Search in Google Scholar

Floyd, S., Hutchinson, R.A., and Ray, W.H. (1986c). Polymerization of olefins through heterogeneous catalysis V. Gas-liquid mass transfer limitations in liquid slurry reactors. J. Appl. Polym. Sci. 32: 5451–5479, https://doi.org/10.1002/app.1986.070320617. Search in Google Scholar

Fontes, C.H. and Mendes, M.J. (2005). Analysis of an industrial continuous slurry reactor for ethylene-butene copolymerization. Polymer 46: 2922–2932, https://doi.org/10.1016/j.polymer.2005.01.091. Search in Google Scholar

Galvan, R. and Tirrell, M. (1986a). Molecular weight distribution predictions for heterogeneous Ziegler–Natta polymerization using a two-site model. Chem. Eng. Sci. 41: 2385–2393, https://doi.org/10.1016/0009-2509(86)85088-6. Search in Google Scholar

Galvan, R. and Tirrell, M. (1986b). Orthogonal collocation applied to analysis of heterogeneous Ziegler–Natta polymerization. Comput. Chem. Eng. 10: 77–85, https://doi.org/10.1016/0098-1354(86)85048-7. Search in Google Scholar

Gao, X., Shi, D.P., Chen, X.Z., and Luo, Z.H. (2010). Three-dimensional CFD model of the temperature field for a pilot-plant tubular loop polymerization reactor. Powder Technol. 203: 574–590, https://doi.org/10.1016/j.powtec.2010.06.025. Search in Google Scholar

Gemoets, F., Zhang, M., Karjala, T.W., and Kolthammer, B.W.S. (2010). Kinetic study of ethylene homopolymerization in slurry using a Ziegler–Natta catalyst. Macromol. React. Eng. 4: 109–122, https://doi.org/10.1002/mren.200900055. Search in Google Scholar

Gidaspow, D. (2019). High production circulating fluidized bed polymerization reactors. Powder Technol. 357: 108–116. Search in Google Scholar

Global Polyolefin Market (2020a). Trends, share, size, analysis 2018–2026, Available at: https://www.inkwoodresearch.com/reports/polyolefin-market/#report-summary (Accessed 18 Mar 2020). Search in Google Scholar

Grof, Z., Kosek, J., Marek, M., and Adler, P.M. (2003). Modeling of morphogenesis of polyolefin particles: catalyst fragmentation. AIChE J. 49: 1002–1013, https://doi.org/10.1002/aic.690490417. Search in Google Scholar

Gulrez, S. K. H., Mohsin, M.E.A., Shaikh, H., Anis, A., Pulose, A.M., Yadav, M.K., Qua, E.H., and Al‐Zahrani, S.M. (2014). A review on electrically conductive polypropylene and polyethylene. Polym. Compos. 35: 900–914, https://doi.org/10.1002/pc.22734. Search in Google Scholar

Gupta, S.K. (2019). Numerical methods for engineers, 4th ed. New Age International publishers, New Delhi, India. Search in Google Scholar

Gupta, S. K. (1987). Low density polyethylene (LDPE) polymerization – a review. Curr. Sci. 56: 979–984. Search in Google Scholar

Ha, K., Yoo, K., and Rhee, H. (2001). Modeling and analysis of a slurry reactor system for heterogeneous olefin polymerization: the effects of hydrogen concentration and initial catalyst size. J. Appl. Polym. Sci. 79: 2480–2493, https://doi.org/10.1002/1097-4628(20010328)79:13<2480::aid-app1056>3.0.co;2-f. Search in Google Scholar

Hamielec, A. E. and Soares, J.B.P. (1996). Polymerization reaction engineering - metallocene catalysts. Prog. Polym. Sci. 21: 651–706, https://doi.org/10.1016/0079-6700(96)00001-9. Search in Google Scholar

Hamielec, A.E., MacGregor, J.F., and Penlidis, A. (1987). Multicomponent free-radical polymerization in batch, semi- batch and continuous reactors. Makromol. Chem. Macromol. Symp. 10–11: 521–570, https://doi.org/10.1002/masy.19870100126. Search in Google Scholar

Hock, C.W. (1966). How Ticl3 catalysts control the texture of as-polymerized polypropylene. J. Polym. Sci. 1 Polym. Chem. 4: 3055–3064, https://doi.org/10.1002/pol.1966.150041212. Search in Google Scholar

Hoel, E.L., Cozewith, C., and Byrne, G.D. (1994). Effect of diffusion on heterogeneous ethylene propylene copolymerization. AIChE J. 40: 1669–1684, https://doi.org/10.1002/aic.690401009. Search in Google Scholar

Horáčková, B., Grof, Z., and Kosek, J. (2007). Dynamics of fragmentation of catalyst carriers in catalytic polymerization of olefins. Chem. Eng. Sci. 62: 5264–5270. Search in Google Scholar

Huang, X. (2011). CFD modeling of liquid-solid fluidization: effect of drag correlation and added mass force. Particuology 9: 441–445, https://doi.org/10.1016/j.partic.2011.03.005. Search in Google Scholar

Hui, P., Yuan‐Xing, L., and Zheng‐Hong, L. (2019). Computational fluid dynamics simulation of gas–liquid–solid polyethylene fluidized bed reactors incorporating with a dynamic polymerization kinetic model. Asia Pac. J. Chem. Eng. 14: 2265, https://doi.org/10.1002/apj.2265. Search in Google Scholar

Hutchinson, R.A., Chen, C.M., and Ray, W.H. (1992). Polymerization of olefins through heterogeneous catalysis X: modeling of particle growth and morphology. J. Appl. Polym. Sci. 44: 1389–1414, https://doi.org/10.1002/app.1992.070440811. Search in Google Scholar

Hutchinson, R.A. and Ray, W.H. (1990). Polymerization of olefins through heterogeneous catalysis. VIII. Monomer sorption effects. J. Appl. Polym. Sci. 41: 51–81, https://doi.org/10.1002/app.1990.070410106. Search in Google Scholar

Isaeva, V. I., Aizenshtein, É. M., and Soboleva, O. N. (1997). World production and use of polypropylene fibres and thread. A review. Fibre Chem. 29: 269–281, https://doi.org/10.1007/bf02408148. Search in Google Scholar

Jäntschi, L., Bálint, D., and Bolboaca, S.D. (2016). Multiple linear regressions by maximizing the likelihood under assumption of generalized gauss-laplace distribution of the error. Comput. Math. Methods. Med. 2016: 8578156, doi:https://doi.org/10.1155/2016/8578156. Search in Google Scholar

Kanellopoulos, V., Dompazis, G., Gustafsson, B., and Kiparissides, C. (2004). Comprehensive analysis of single-particle growth in heterogeneous olefin polymerization: the random-pore polymeric flow model. Ind. Eng. Chem. Res. 43: 5166–5180, https://doi.org/10.1021/ie030810u. Search in Google Scholar

Kawase, Y. and Hashiguchi, N. (1996). Gas-liquid mass transfer in external-loop airlift columns with Newtonian and non-Newtonian fluids. Chem. Eng. J. Biochem. Eng. J. 62: 35–42, https://doi.org/10.1016/0923-0467(95)03049-2. Search in Google Scholar

Kemeny, S., Manczinger, J., Skjold-Jørgensen, S., and Toth, K. (1982). Reduction of thermodynamic data by means of the multiresponse maximum likelihood principle. AIChE J. 28: 20–30, https://doi.org/10.1002/aic.690280105. Search in Google Scholar

Khan, M.J.H., Hussain, M.A., Mansourpour, Z., Mostoufi, N., Ghasem, N.M., and Abdullah, E.C. (2014). CFD simulation of fluidized bed reactors for polyolefin production - a review. J. Ind. Eng. Chem. 20: 3919–3946, https://doi.org/10.1016/j.jiec.2014.01.044. Search in Google Scholar

Khare, N.P., Seavey, K.C., Liu, Y.A., Ramanathan, S., Lingard, S., and Chen, C.C. (2002). Steady-state and dynamic modeling of commercial slurry high-density polyethylene (HDPE) processes. Ind. Eng. Chem. Res. 41: 5601–5618, https://doi.org/10.1021/ie020451n. Search in Google Scholar

Khare, N.P., Lucas, B., Seavey, K.C., Liu, Y. A., Sirohi, A., Ramanathan, S., Lingard, S., Song, Y., and Chen, C.C. (2004). Steady-state and dynamic modeling of gas-phase polypropylene processes using stirred-bed reactors. Ind. Eng. Chem. Res. 43: 884–900, https://doi.org/10.1021/ie030714t. Search in Google Scholar

Kiparissides, C. (1996). Polymerization reactor modeling : a review of recent developments and future directions classification by the molecular structure of polymers step-growth polymerization. Chem. Eng. Sci. 51: 1637–1659, https://doi.org/10.1016/0009-2509(96)00024-3. Search in Google Scholar

Kissin, Y.V. (2001). Main kinetic features of ethylene polymerization reactions with heterogeneous Ziegler–Natta catalysts in the light of a multicenter reaction mechanism. J. Polym. Sci. Part A Polym. Chem. 39: 1681–1695, https://doi.org/10.1002/pola.1146. Search in Google Scholar

Kissin, Y.V., Mink, R.I., Nowlin, T.E., and Brandolini, A.J. (1999). Kinetics and mechanism of ethylene homopolymerization and copolymerization reactions with heterogeneous Ti-based Ziegler–Natta catalysts. Top. Catal. 7: 69–88, https://doi.org/10.1023/a:1019199330327. Search in Google Scholar

Kittilsen, P., McKenna, T.F., Svendsen, H., Jakobsen, H.A., and Fredriksen, S.B. (2001). The interaction between mass transfer effects and morphology in heterogeneous olefin polymerization. Chem. Eng. Sci. 56: 4015–4028, https://doi.org/10.1016/s0009-2509(01)00074-4. Search in Google Scholar

Kong, J., J., Eason, J.P., Chen, X., and Biegler, L.T. (2020). Operational optimization of polymerization reactors with computational fluid dynamics and embedded molecular weight distribution using the iterative surrogate model method. Ind. Eng. Chem. Res. 59: 9165–9179, https://doi.org/10.1021/acs.iecr.0c00367. Search in Google Scholar

Krallis, A., Kanellopoulos, V., and Ali, M.A.H. (2015). Comprehensive study of reactants depletion in catalytic olefin polymerization industrial loop reactors. Ind. Eng. Chem. Res. 54: 8247–8254, https://doi.org/10.1021/acs.iecr.5b02228. Search in Google Scholar

Kulkarni, S., Mishra, V., and Bontu, N.M. (2019). A comprehensive model for the micro and meso-scale level olefin polymerization: framework and predictions. Iran. Polym. J. 28: 597–609, https://doi.org/10.1007/s13726-019-00727-1. Search in Google Scholar

Lamont, J.C. and Scott, D.S. (1970). An eddy cell model of mass transfer into the surface of a turbulent liquid. AIChE J. 4: 513–519, https://doi.org/10.1002/aic.690160403. Search in Google Scholar

Laurence, R.L. and Chiovetta, M.G. (1983). Heat and mass transfer during olefin polymerization from the gas phase. In: Reichert, K.H., and Geisler, W. (Eds.), Polymer reaction engineering: influence of reaction engineering on polymer properties. Hanser, Munich, pp. 74–111. Search in Google Scholar

Lettieri, P., Renzo Di Felice, D.R., Pacciani, R., and Owoyemi, O. (2006). CFD modelling of liquid fluidized beds in slugging mode. Powder Technol. 167: 94–103, https://doi.org/10.1016/j.powtec.2006.06.012. Search in Google Scholar

Li, Y., Ma, Y., Reddy, R.K., Vijay, S., Elovainio, E., Wurnitsch, C., and Nandakumar, K. (2015). CFD investigations of particle segregation and dispersion mechanisms inside a polyolefin 8-leg loop reactor of industrial scale. Powder Technol. 284: 95–111, https://doi.org/10.1016/j.powtec.2015.06.031. Search in Google Scholar

Li, Y., Yu, J., Reddy, R.K., Vijay, S., Elovainio, E., Wurnisch, C., and Nandakumar, K. (2017). Computational study on the effect of slug dynamics on the operation of a polyolefin 8-leg loop reactor of industrial scale. Powder Technol. 319: 452–462, https://doi.org/10.1016/j.powtec.2017.07.014. Search in Google Scholar

Li, Y., Yu, J., Rao, A., Reddy, R.K., Vijay, S., Elovainio, E., Wurnitsch, C., and Nandakumar, K. (2018). Optimal design of bypass line for an industrial-scale 8-leg polyolefin loop reactor to manage slurry dispersion using hydraulic and CFD simulations. Ind. Eng. Chem. Res. 57: 6068–6079, https://doi.org/10.1021/acs.iecr.8b00100. Search in Google Scholar

Liu, P., Liu, W., Wang, W.J., Li, B.G., and Zhu, S. (2016). A comprehensive review on controlled synthesis of long-chain branched polyolefins. Part 1. Single catalyst systems. Macromol. React. Eng. 10: 156–179, https://doi.org/10.1002/mren.201500053. Search in Google Scholar

Liu, X. (2007). Modeling and simulation of heterogeneous catalyzed propylene polymerization. Chin. J. Chem. Eng. 15: 545–553, https://doi.org/10.1016/s1004-9541(07)60122-0. Search in Google Scholar

Lu, R., Zhang, L., Philippe, R.P., and Wang, L. (2019). Experiments and CFD-DEM simulations of cohesive particles sedimentation in stilled fluid. Powder Technol. 356: 222–230, https://doi.org/10.1016/j.powtec.2019.05.018. Search in Google Scholar

Luo, Z.H., Su, P.L., You, X.Z., Shi, D.P., and Wu, J.C. (2009a). Steady-state particle size distribution modeling of polypropylene produced in tubular loop reactors. Chem. Eng. J. 146: 466–476, https://doi.org/10.1016/j.cej.2008.10.023. Search in Google Scholar

Luo, Z.H., Wen, S.H., and Zheng, Z.W. (2009b). Modeling the effect of polymerization rate on the intraparticle mass and heat transfer during propylene polymerization in a loop reactor. J. Chem. Eng. Jpn. 42: 576–580, https://doi.org/10.1252/jcej.09we115. Search in Google Scholar

Mantzaris, N.V., Kelley, A.S., Daoutidis, P., and Srienc, F. (2002). A population balance model describing the dynamics of molecular weight distributions and the structure of PHA copolymer chains. Chem. Eng. Sci. 57: 4643–4663, https://doi.org/10.1016/s0009-2509(02)00370-6. Search in Google Scholar

Matos, V., Neto, A.G.M., and Pinto, J.C. (2001). Method for quantitative evaluation of kinetic constants in olefin polymerizations. I. Kinetic study of a conventional Ziegler–Natta catalyst used for propylene polymerizations. J. Appl. Polym. Sci. 79: 2076–2108, https://doi.org/10.1002/1097-4628(20010314)79:11<2076::aid-app1017>3.0.co;2-#. Search in Google Scholar

Matos, V., Neto, A.G.M., Nele, M., and Pinto, J.C. (2002). Method for quantitative evaluation of kinetic constants in olefin polymerizations. II. Kinetic study of a high-activity Ziegler–Natta catalyst used for bulk propylene polymerizations. J. Appl. Polym. Sci. 86: 3226–3245, https://doi.org/10.1002/app.11055. Search in Google Scholar

Matos, V., Moreira, M., Neto, A.G.M., Nele, M., Melo, P.A., and Pinto, J.C. (2007). Method for quantitative evaluation of kinetic constants in olefin polymerizations, 3 kinetic study of the hipp synthesis. Macromol. React. Eng. 1: 137–159, https://doi.org/10.1002/mren.200600003. Search in Google Scholar

McAuley, K.B., MacGregor, J.F., and Hamielec, A.E. (1990). A kinetic model for industrial gas‐phase ethylene copolymerization. AIChE J. 36: 837–850, https://doi.org/10.1002/aic.690360605. Search in Google Scholar

McCoy, J.T. and Rawatlal, R. (2012). A more efficient simulator of particle size distribution in slurry phase polyolefin systems. Comput. Chem. Eng. 36: 68–78, https://doi.org/10.1016/j.compchemeng.2011.06.003. Search in Google Scholar

McDaniel, M.P. (1981). Fracturing silica-based catalysts during ethylene polymerization. J. Polym. Sci. Polym. Chem. Ed. 19: 1967–1976, https://doi.org/10.1002/pol.1981.170190809. Search in Google Scholar

McKenna, T.F.L., Martino, A.D., Weickert, G., and Soares, J.B.P. (2010). Particle growth during the polymerisation of olefins on supported catalysts, 1 - nascent polymer structures. Macromol. React. Eng. 4: 40–64, https://doi.org/10.1002/mren.200900025. Search in Google Scholar

McKenna, T.F. and Soares, J.B.P. (2001). Single particle modelling for olefin polymerization on supported catalysts: a review and proposals for future developments. Chem. Eng. Sci. 56: 3931–3949, https://doi.org/10.1016/s0009-2509(01)00069-0. Search in Google Scholar

McKenna, T.F., Soares, J.B.P., and Simon, L.C. (2005). Polyolefin reaction engineering - an overview of recent developments. Macromol. React. Eng. 290: 499–502, https://doi.org/10.1002/mame.200500088. Search in Google Scholar

Michaels, A.S. and Parker, R.B. (1959). Sorption and flow of gases in polyethylene. J. Polym. Sci. 41: 53–71, https://doi.org/10.1002/pol.1959.1204113805. Search in Google Scholar

Michaels, A.S. and Bixler, H.J. (1961a). Flow of gases through polyethylene. J. Polym. Sci. 50: 413–439, https://doi.org/10.1002/pol.1961.1205015412. Search in Google Scholar

Michaels, A.S. and Bixler, H.J. (1961b). Solubility of gases in polyethylene. J. Polym. Sci. 50: 393–412, https://doi.org/10.1002/pol.1961.1205015411. Search in Google Scholar

Mohebbi, A., Mighri, F., Ajji, A., and Rodrigue, D. (2015). Current issues and challenges in polypropylene foaming: a review. Cell. Polym. 34: 299–338, https://doi.org/10.1177/026248931503400602. Search in Google Scholar

Naderpour, N., Vasheghani-farahani, E., Famili, M.H.N., and Vatankhah, M. (2010). Kinetics of slurry and gas phase polymerizations of ethylene using a novel heterogeneous Ziegler–Natta catalyst of specific morphology. Iran. Polym. J. 19: 895–906. Search in Google Scholar

Nagel, E.J., Kirillov, V.A., and Ray, W.H. (1980). Prediction of molecular weight distributions for high-density polyolefins. Ind. Eng. Chem. Prod. Res. Dev. 19: 372–379, https://doi.org/10.1021/i360075a016. Search in Google Scholar

Najafi, M. and Parvazinia, M. (2015). Computational modeling of particle fragmentation in the heterogeneous olefin polymerization. Macromol. Theory Simul. 24: 28–40, https://doi.org/10.1002/mats.201400069. Search in Google Scholar

Najafi, M., Parvazinia, M., and Ghoreishy, M.H.R. (2014). Modelling the catalyst fragmentation pattern in relation to molecular properties and particle overheating in olefin polymerization. Polyolefins J. 1: 77–91. Search in Google Scholar

Nanthapoolsub, U., Anantawaraskul, S., and Saengkhamkhom, K. (2013). Simultaneous deconvolution of MWD and CCD of ethylene/1-olefin copolymers using genetic algorithm. Macromol. Symp. 330: 142–149, https://doi.org/10.1002/masy.201300035. Search in Google Scholar

Neto, A.G.M., Freitas, M.F., Nele, M., and Pinto, J.C. (2005). Modeling ethylene/1-butene copolymerizations in industrial slurry reactors. Ind. Eng. Chem. Res. 44: 2697–2715. Search in Google Scholar

Neto, A.G.M. and Pinto, J.C. (2001). Steady-state modeling of slurry and bulk propylene polymerizations. Chem. Eng. Sci. 56: 4043–4057. Search in Google Scholar

Nomura, K. and Kitiyanan, B. (2008). Recent progress in precise synthesis of polyolefins containing polar functionalities by transition metal catalysis. Curr. Org. Synth. 5: 217–226, https://doi.org/10.2174/157017908785133456. Search in Google Scholar

Noristi, L., Marchetti, E., Baruzzi, G., and Sgarzi, P. (1994). Investigation on the particle growth mechanism in propylene polymerization with MgCl2-supported Ziegler–Natta catalysts. J. Polym. Sci. Part A Polym. Chem. 32: 3047–3059, https://doi.org/10.1002/pola.1994.080321606. Search in Google Scholar

Nouri, M., Parvazinia, M., and Arabi, H. (2015). Effect of fragment size distribution on reaction rate and molecular weight distribution in heterogeneous olefin polymerization. Iran. Polym. J. 24: 437–448, https://doi.org/10.1007/s13726-015-0335-2. Search in Google Scholar

Nowlin, T.E. (1985). Low pressure manufacture of polyethylene. Prog. Polym. Sci. 11: 29–55, https://doi.org/10.1016/0079-6700(85)90007-3. Search in Google Scholar

Phillips, A.M.F., Suo, H., da Silva, M.F.C.G., Pombeiro, A.J.L., and Sun, W.H. (2020). Recent developments in vanadium-catalyzed olefin coordination polymerization. Coord. Chem. Rev., https://doi.org/10.1016/j.ccr.2020.213332 (Epub ahead of print). Search in Google Scholar

Pladis, P., Baltsas, A., Meimaroglou, D., and Kiparissides, C. (2018). A dynamic simulator for slurry-phase catalytic olefin copolymerization in a series of CSTRS: prediction of distributed molecular and rheological properties. Macromol. React. Eng. 12: 1800017, https://doi.org/10.1002/mren.201800017. Search in Google Scholar

Polyolefins Market (2020b). Size, share, outlook, forecast & industry report 2023, Available at: https://www.marketresearchfuture.com/reports/polyolefins-market-2949 (Accessed 18 Mar 2020). Search in Google Scholar

Pontes, K.V., Cavalcanti, M., Filho, R.M., and Embiruçu, M. (2010). Modeling and simulation of ethylene and 1-butene copolymerization in solution with a Ziegler–Natta catalyst. Int. J. Chem. React. Eng. 8: 1, https://doi.org/10.2202/1542-6580.2023. Search in Google Scholar

Qiao, J., Guo, M., Wang, L., Liu, D., Zhang, X., Yu, L., Song, W., and Liu, Y. (2011). Recent advances in polyolefin technology. Polym. Chem. 2: 1611–1623, https://doi.org/10.1039/c0py00352b. Search in Google Scholar

Qu, S., Zhang, T., and Wang, W. (2019). Olefin polymerization with nitrogen-coordinated half-metallocene catalyst systems. Prog. Chem. 31: 929–938. Search in Google Scholar

Ramteke, M. and Gupta, S.K. (2011). Kinetic modeling and reactor simulation and optimization of industrially important polymerization processes: a perspective. Int. J. Chem. React. Eng. 9: 1, https://doi.org/10.1515/1542-6580.2594. Search in Google Scholar

Ray, A.K. and Gupta, S.K. (2003). In: Mathematical methods in chemical & environmental engineering, 2nd ed. Cengage Learning, Singapore. Search in Google Scholar

Ray, W.H. (1991). Modelling of addition polymerization processes- free radical, ionic, group transfer, and Ziegler–Natta kinetics. Can. J. Chem. Eng. 69: 626–629, https://doi.org/10.1002/cjce.5450690304. Search in Google Scholar

Ray, W.H. (1972). On the mathematical modeling of polymerization reactors. J. Macromol. Sci. Part C 8: 1–56, https://doi.org/10.1080/15321797208068168. Search in Google Scholar

Reginato, A.S., Zacca, J.J., and Secchi, A.R. (2003). Modeling and simulation of propylene polymerization in nonideal loop reactors. AIChE J. 49: 2642–2654, https://doi.org/10.1002/aic.690491017. Search in Google Scholar

Salas, S.D., Brandão, A.L.T., Soares, J.B.P., and Romagnoli, J.A (2019). Data-driven estimation of significant kinetic parameters applied to the synthesis of polyolefins. Processes 7: 309, https://doi.org/10.3390/pr7050309. Search in Google Scholar

Sarkar, P. and Gupta, S.K. (1991). Modelling of propylene polymerization in an isothermal slurry reactor. Polymer 32: 2842–2852, https://doi.org/10.1016/0032-3861(91)90117-2. Search in Google Scholar

Sarkar, P. and Gupta, S.K. (1992a). Simulation of propylene polymerization: an efficient algorithm. Polymer 33: 1477–1485, https://doi.org/10.1016/0032-3861(92)90125-g. Search in Google Scholar

Sarkar, P. and Gupta, S.K. (1992b). Steady state simulation of continuous-flow stirred-tank slurry propylene polymerization reactors. Polym. Eng. Sci. 32: 732–742, https://doi.org/10.1002/pen.760321105. Search in Google Scholar

Sau, M. and Gupta, S.K. (1993). Modelling of a semibatch polypropylene slurry reactor. Polymer 34: 4417–4426, https://doi.org/10.1016/0032-3861(93)90148-4. Search in Google Scholar

Sauter, D. W., Taoufik, M., and Boisson, C. (2017). Polyolefins, a success story. Polymers 9: 185. Search in Google Scholar

Schmeal, W.R. and Street, J.R. (1971). Polymerization in expanding catalyst particles. AIChE J. 17: 1188–1197, https://doi.org/10.1002/aic.690170526. Search in Google Scholar

Schneiderbauer, S., Puttinger, S., Pirker, S., Aguayo, P., and Kanellopoulos, V. (2015). CFD modeling and simulation of industrial scale olefin polymerization fluidized bed reactors. Chem. Eng. J. 264: 99–112, https://doi.org/10.1016/j.cej.2014.11.058. Search in Google Scholar

Shamiri, A., Hussain, M.A., Mjalli, F.S., Mostoufi, N., and Shafeeyan, M.S. (2011). Dynamic modeling of gas phase propylene homopolymerization in fluidized bed reactors. Chem. Eng. Sci. 66: 1189–1199, https://doi.org/10.1016/j.ces.2010.12.030. Search in Google Scholar

Shi, D. P., Luo, Z. H., and Zheng, Z. W. (2010). Numerical simulation of liquid-solid two-phase flow in a tubular loop polymerization reactor. Powder Technol. 198: 135–143, https://doi.org/10.1016/j.powtec.2009.11.002. Search in Google Scholar

Singh, D. and Merrill, R.P. (1971). Molecular weight distribution of polyethylene produced by Ziegler–Natta catalysts. Macromolecules 4: 599–604, https://doi.org/10.1021/ma60023a017. Search in Google Scholar

Singh, P.P., Cushman, J.H., and Maier, D.E. (2003). Three scale thermomechanical theory for swelling biopolymeric systems. Chem. Eng. Sci. 58: 4017–4035, https://doi.org/10.1016/s0009-2509(03)00084-8. Search in Google Scholar

Sirohi, A. and Choi, K.Y. (1996). On-line parameter estimation in a continuous polymerization process. Ind. Eng. Chem. Res. 35: 1332–1343, https://doi.org/10.1021/ie950487y. Search in Google Scholar

Smith, M. (2005). Chevron Phillips slurry-loop-reactor process for polymerizing linear polyethylene. In: Meyers, R.A. (Ed.), Handbook of petrochemicals production processes. McGraw-Hill Education, New York, USA. Search in Google Scholar

Soni, N.J. and Bhagwat, S.S. (2008). Simulation of slurry polymerization of ethylene. Int. J. Chem. React. Eng. 6: A107, https://doi.org/10.2202/1542-6580.1654. Search in Google Scholar

Soares, J.B.P. (2001). Mathematical modelling of the microstructure of polyolefins made by coordination polymerization: a review. Chem. Eng. Sci. 56: 4131–4153, https://doi.org/10.1016/s0009-2509(01)00083-5. Search in Google Scholar

Soares, J.B.P. and Hamielec, A.E. (1995a). Metallocene/aluminoxane catalysts for olefin polymerization. A review. Polym. React. Eng. 3: 131–200, https://doi.org/10.1080/10543414.1995.11671695. Search in Google Scholar

Soares, J.B.P., and Hamielec, A.E. (1995b). General dynamic mathematical modelling of heterogeneous Ziegler–Natta and metallocene catalyzed copolymerization with multiple site types and mass and heat transfer resistances. Polym. React. Eng. 3: 261–324. Search in Google Scholar

Soares, J.B.P. and McKenna, T.F.L. (2012). Polyolefin reaction engineering. Wiley, Weinheim. Search in Google Scholar

Soares, J.B.P. and Romero, J. (2017). A Monte Carlo method to quantify the effect of reactor residence time distribution on polyolefins made with heterogeneous catalysts: part I-catalyst/polymer particle size distribution effects. Macromol. React. Eng. 12: 1–16, https://doi.org/10.1002/mren.201700031. Search in Google Scholar

Thakur, A.K., Gupta, S.K., and Chaudhari, P. (2020). Modeling and simulation of an industrial slurry phase ethylene polymerization reactor: effect of reactor operating variables. Iran. Polym. J. 29: 811–825, https://doi.org/10.1007/s13726-020-00840-6. Search in Google Scholar

Thompson, D.E., McAuley, K.B., and McLellan, P.J. (2007). A simplified model for prediction of molecular weight distributions in ethylene-hexene copolymerization using Ziegler–Natta catalysts. Macromol. React. Eng. 1: 523–536, https://doi.org/10.1002/mren.200700018. Search in Google Scholar

Tolinski, M. (2015). Global resin trends 2015: an expert roundtable. Plast. Eng. 71: 6–12, https://doi.org/10.1002/j.1941-9635.2015.tb01280.x. Search in Google Scholar

Touloupidis, V. (2014). Catalytic olefin polymerization process modeling: multi-scale approach and modeling guidelines for micro-scale/kinetic modeling. Macromol. React. Eng. 8: 508–527, https://doi.org/10.1002/mren.201300188. Search in Google Scholar

Touloupides, V., Kanellopoulos, V., Pladis, P., Kiparissides, C., Mignon, D., and Van-Grambezen, P. (2010a). Modeling and simulation of an industrial slurry-phase catalytic olefin polymerization reactor series. Chem. Eng. Sci. 65: 3208–3222, https://doi.org/10.1016/j.ces.2010.02.014. Search in Google Scholar

Touloupides, V., Kanellopoulos, V., Krallis, A., Prokopis, P.P., and Kiparissides, C. (2010b). Modeling and simulation of particle size distribution in slurry-phase olefin catalytic polymerization industrial loop reactors. Comput. Aided Chem. Eng. 28: 43–48, https://doi.org/10.1016/s1570-7946(10)28008-2. Search in Google Scholar

Touloupidis, V., Albrecht, A., and Soares, J.B.P. (2018). A methodology for estimating kinetic parameters and reactivity ratios of multi-site type catalysts using polymerization, fractionation, and spectroscopic techniques. Macromol. React. Eng. 12: 1700056. Search in Google Scholar

Treybal, R.E. (1980). Mass transfer operations. New York: McGraw-Hill. Search in Google Scholar

Varshney, P., Kunzru, D., and Gupta, S.K. (2015). Modelling of the riser reactor in a resid fluidised-bed catalytic cracking unit using a multigrain model for an active matrix-zeolite catalyst. Indian Chem. Eng. 57: 115–135, https://doi.org/10.1080/00194506.2014.975754. Search in Google Scholar

Veera, U.P., Weickert, G, and Agarwal, U.S. (2002). Modeling monomer transport by convection during olefin polymerization. AIChE J. 48: 1062–1070. Search in Google Scholar

Wakao, N. and Smith, J.M. (1964). Diffusion and reaction in porous catalysts. Ind. Eng. Chem. Fundam. 3: 123–127, https://doi.org/10.1021/i160010a007. Search in Google Scholar

Wang, Q., Murayama, N., Liu, B., and Terano, M. (2005). Effects of electron donors on active sites distribution of MgCl2-supported Ziegler–Natta catalysts investigated by multiple active sites model. Macromol. Chem. Phys. 206: 961–966, https://doi.org/10.1002/macp.200400502. Search in Google Scholar

Weijuan, M., Jianwei, L.I., Biaohua, C., and Hongbo, L.I. (2013). Modeling and simulation of ethylene polymerization in industrial slurry reactor series. Chin. J. Chem. Eng. 21: 850–859. Search in Google Scholar

Weist, E.L., Ali, A.H., Naik, B.G., and Conner, W.C. (1989). Morphological study of supported chromium polymerization catalysts. 2. Initial stages of polymerization. Macromolecules 22: 3244–3250, https://doi.org/10.1021/ma00198a009. Search in Google Scholar

Wen, C.Y. and Yu, Y.H. (1966). Mechanics of fluidization. Chem. Eng. Prog. Symp. Ser. 62: 100–111. Search in Google Scholar

Wilchinsky, Z.W., Looney, R.W., and Tornqvist, E.G.M. (1973). Dependence of polymerization activity on particle and crystallite dimensions in ball milled TiCl3 and TiCl3⋯0.33AlCl3 catalyst components. J. Catal. 28: 351–367, https://doi.org/10.1016/0021-9517(73)90128-0. Search in Google Scholar

Wu, L., Bu, N., and Wanke, S.E. (2005). Kinetic behavior of ethylene/1-hexene copolymerization in slurry and solution reactors. J. Polym. Sci. Part A Polym. Chem. 43: 2248–2257, https://doi.org/10.1002/pola.20705. Search in Google Scholar

Xie, T., McAuley, K.B., Hsu, J.C.C., and Bacon, D.W. (1994). Gas phase ethylene polymerization: production processes, polymer properties, and reactor modeling. Ind. Eng. Chem. Res. 33: 449–479, https://doi.org/10.1021/ie00027a001. Search in Google Scholar

Yan, W. C., Luo, Z. H., and Guo, A. Y. (2011). Coupling of CFD with PBM for a pilot-plant tubular loop polymerization reactor. Chem. Eng. Sci. 66: 5148–5163, https://doi.org/10.1016/j.ces.2011.07.004. Search in Google Scholar

Yiagopoulos, A., Yiannoulakis, H., Dimos, V., and Kiparissides, C. (2001). Heat and mass transfer phenomena during the early growth of a catalyst particle in gas-phase olefin polymerization: the effect of prepolymerization temperature and time. Chem. Eng. Sci. 56: 3979–3995, https://doi.org/10.1016/s0009-2509(01)00071-9. Search in Google Scholar

Zacca, J.J., Debling, J.A., and Ray, W.H. (1996). Reactor residence time distribution effects on the multistage polymerization of olefins - I. Basic principles and illustrative examples, polypropylene. Chem. Eng. Sci. 51: 4859–4886, https://doi.org/10.1016/0009-2509(96)00258-8. Search in Google Scholar

Zacca, J.J., Debling, J.A., and Ray, W.H. (1997). Reactor residence-time distribution effects on the multistage polymerization of olefins - II. Polymer properties: bimodal polypropylene and linear low-density polyethylene. Chem. Eng. Sci. 52: 1941–1967, https://doi.org/10.1016/s0009-2509(97)00026-2. Search in Google Scholar

Zacca, J.J. and Ray, W.H. (1993). Modelling of the liquid phase polymerization of olefins in loop reactors. Chem. Eng. Sci. 48: 3743–3765, https://doi.org/10.1016/0009-2509(93)80218-f. Search in Google Scholar

Zakharov, V., Matsko, M., Echevskaya, L., and Mikenas, T. (2007). Ethylene polymerization over supported titanium-magnesium catalysts: heterogeneity of active centers and effect of catalyst composition on the molecular mass distribution of polymer. Macromol. Symp. 260: 184–188, https://doi.org/10.1002/masy.200751427. Search in Google Scholar

Zhou, R., Chen, J., Yang, N., Jinghai, L.J., Fernandez, A., and Ricoux, P. (2018). Modeling of complex liquid-solid flow of particle swelling in slurry loop reactors. Chem. Eng. Sci. 176: 476–490, https://doi.org/10.1016/j.ces.2017.11.012. Search in Google Scholar

Zhou, Y., Zhang, R., Ren, H., He, X., Liu, B., Zhao, N., and Liu, B. (2020). Ethylene polymerization over novel organic magnesium based V/Ti bimetallic Ziegler–Natta catalysts. J. Organomet. Chem. 908: 121066, https://doi.org/10.1016/j.jorganchem.2019.121066. Search in Google Scholar

Received: 2020-07-03
Accepted: 2020-10-26
Published Online: 2020-12-24

© 2020 Walter de Gruyter GmbH, Berlin/Boston