Abstract
Although aqueous foam is composed of simple fluids, air and water, it shows a complex rheological behavior. It exhibits solid-like behavior at low shear and fluid-like behavior at high shear rate. Therefore, understanding such behavior is important for many industrial applications in foods, pharmaceuticals, and cosmetics. Additionally, air–water interface of bubble surface plays an important role in the stabilizing mechanism of foams. Therefore, the rheological properties associated with the aqueous foam highly depend on its interfacial properties. In this review, a systematic study of aqueous foam are presented primarily from rheology point of view. Firstly, foaming agents, surfactants and particles are described; then foam structure was explained, followed by change in structure under applied shear. Finally, foam rheology was linked to interfacial rheology for the interface containing particles whose surface properties were altered by surfactants.
-
Author contributions: The author has accepted responsibility for the entire content of this submitted manuscript and approved submission.
-
Research funding: None declared.
-
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
References
Abdel-Fattah, A.I. and El-Genk, M.S. (1998). On colloidal particle sorption onto a stagnant air–water interface. Adv. Colloid Interface Sci. 78: 237–266, https://doi.org/10.1016/s0001-8686(98)00066-9.Search in Google Scholar
Anjali, T.G. and Basavaraj, M.G. (2017). Shape-induced deformation, capillary bridging, and self-assembly of cuboids at the fluid–fluid interface. Langmuir 33: 791–801, https://doi.org/10.1021/acs.langmuir.6b03866.Search in Google Scholar PubMed
Arriaga, L.R., Drenckhan, W., Salonen, A., Rodrigues, J.A., Iniguez-Palomares, R., Rio, E., and Langevin, D. (2012). On the long-term stability of foams stabilised by mixtures of nano-particles and oppositely charged short chain surfactants. Soft Matter 8: 11085–11097, https://doi.org/10.1039/c2sm26461g.Search in Google Scholar
Asakura, S. and Oosawa, F. (1954). On interaction between two bodies immersed in a solution of macromolecules. J. Chem. Phys. 22: 1255–1256, https://doi.org/10.1063/1.1740347.Search in Google Scholar
Aveyard, R., Binks, B.P., and Clint, J.H. (2003). Emulsions stabilised solely by colloidal particles. Adv. Colloid Interface Sci. 100: 503–546, https://doi.org/10.1016/s0001-8686(02)00069-6.Search in Google Scholar
Ballesta, P., Petekidis, G., Isa, L., Poon, W., and Besseling, R. (2012). Wall slip and flow of concentrated hard-sphere colloidal suspensions. J. Rheol. 56: 1005–1037, https://doi.org/10.1122/1.4719775.Search in Google Scholar
Barnes, H.A. (1995). A review of the slip (wall depletion) of polymer solutions, emulsions and particle suspensions in viscometers: its cause, character, and cure. J. Non-Newtonian Fluid Mech. 56: 221–251, https://doi.org/10.1016/0377-0257(94)01282-m.Search in Google Scholar
Barnes, H.A. (2000). Measuring the viscosity of large-particle (and flocculated) suspensions – a note on the necessary gap size of rotational viscometers. J. Non-Newtonian Fluid Mech. 94: 213–217, https://doi.org/10.1016/s0377-0257(00)00162-2.Search in Google Scholar
Batchelor, G.K. (1970). The stress system in a suspension of force-free particles. J. Fluid Mech. 41: 545–570, https://doi.org/10.1017/s0022112070000745.Search in Google Scholar
Bergeron, V. and Radke, C.J. (1992). Equilibrium measurements of oscillatory disjoining pressures in aqueous foam films. Langmuir 8: 3020–3026, https://doi.org/10.1021/la00048a028.Search in Google Scholar
Biesterbos, J.W., Dudzina, T., Delmaar, C.J., Bakker, M.I., Russel, F.G., von Goetz, N., Scheepers, P.T., and Roeleveld, N. (2013). Usage patterns of personal care products: important factors for exposure assessment. Food Chem. Toxicol. 55: 8–17, https://doi.org/10.1016/j.fct.2012.11.014.Search in Google Scholar PubMed
Bingham, E. (1916). An investigation of the laws of plastic flow. Bull. Bur. Stand. 13: 309–353, https://doi.org/10.6028/bulletin.304.Search in Google Scholar
Binks, B.P. (2002). Particles as surfactants–similarities and differences. Curr. Opin. Colloid Interface Sci. 7: 21–41, https://doi.org/10.1016/s1359-0294(02)00008-0.Search in Google Scholar
Binks, B.P. and Horozov, T.S. (2006). Colloidal particles at liquid interfaces. Cambridge University Press, Cambridge.10.1017/CBO9780511536670Search in Google Scholar
Binks, B.P. and Lumsdon, S.O. (2000a). Catastrophic phase inversion of water-in-oil emulsions stabilized by hydrophobic silica. Langmuir 16: 2539–2547, https://doi.org/10.1021/la991081j.Search in Google Scholar
Binks, B.P. and Lumsdon, S.O. (2000b). Influence of particle wettability on the type and stability of surfactant-free emulsions. Langmuir 16: 8622–8631, https://doi.org/10.1021/la000189s.Search in Google Scholar
Binks, B.P. and Murakami, R. (2006). Phase inversion of particle-stabilized materials from foams to dry water. Nat. Mater. 5: 865–869, https://doi.org/10.1038/nmat1757.Search in Google Scholar PubMed
Binks, B.P., Kirkland, M., and Rodrigues, J.A. (2008). Origin of stabilisation of aqueous foams in nanoparticle–surfactant mixtures. Soft Matter 4: 2373–2382, https://doi.org/10.1039/b811291f.Search in Google Scholar
Birbaum, F.C., Haavisto, S., Koponen, A., Windhab, E.J., and Fischer, P. (2016). Shear localisation in interfacial particle layers and its influence on Lissajous-plots. Rheol. Acta 55: 267–278, https://doi.org/10.1007/s00397-016-0912-0.Search in Google Scholar
Bird, R.B., Armstrong, R.C., and Hassager, O. (1987). Dynamics of polymeric liquids: volume 1 fluid mechanics. Wiley, New York.Search in Google Scholar
Blanco, E., Lam, S., Smoukov, S.K., Velikov, K.P., Khan, S.A., and Velev, O.D. (2013). Stability and viscoelasticity of magneto-pickering foams. Langmuir 29: 10019–10027, https://doi.org/10.1021/la4014224.Search in Google Scholar PubMed
Bournival, G., Ata, S., and Wanless, E.J. (2015). The roles of particles in multiphase processes: particles on bubble surfaces. Adv. Colloid Interface Sci. 225: 114–133, https://doi.org/10.1016/j.cis.2015.08.008.Search in Google Scholar PubMed
Briggs, T. (1995). Foams for firefighting. In: Prud’homme, R.K. and Khan, S.A. (Eds.), Foams: theory, measurements and applications, Vol. 57. New York: Dekker, pp. 465–509.10.1201/9780203755709-12Search in Google Scholar
Brooks, C.F., Fuller, G.G., Frank, C.W., and Robertson, C.R. (1999). An interfacial stress rheometer to study rheological transitions in monolayers at the air–water interface. Langmuir 15: 2450–2459, https://doi.org/10.1021/la980465r.Search in Google Scholar
Bureiko, A., Trybala, A., Kovalchuk, N., and Starov, V. (2015). Current applications of foams formed from mixed surfactant–polymer solutions. Adv. Colloid Interface Sci. 222: 670–677, https://doi.org/10.1016/j.cis.2014.10.001.Search in Google Scholar PubMed
Carballido, L., Lucia Dabrowski, M., Dehli, F., Koch, L., and Stubenrauch, C. (2020). Monodisperse liquid foams via membrane foaming. J. Colloid Interface Sci. 568: 46–53, https://doi.org/10.1016/j.jcis.2020.02.036.Search in Google Scholar PubMed
Carl, A., Bannuscher, A., and von Klitzing, R. (2015). Particle stabilized aqueous foams at different length scales: synergy between silica particles and alkylamines. Langmuir 31: 1615–1622, https://doi.org/10.1021/la503321m.Search in Google Scholar PubMed
Carn, F., Colin, A., Pitois, O., Vignes-Adler, M.L., and Backov, R. (2009). Foam drainage in the presence of nanoparticle−surfactant mixtures. Langmuir 25: 7847–7856, https://doi.org/10.1021/la900414q.Search in Google Scholar PubMed
Carvalho, M., Padmanabhan, M., and Macosko, C. (1994). Single‐point correction for parallel disks rheometry. J. Rheol. 38: 1925–1936, https://doi.org/10.1122/1.550532.Search in Google Scholar
Cho, K.S., Hyun, K., Ahn, K.H., and Lee, S.J. (2005). A geometrical interpretation of large amplitude oscillatory shear response. J. Rheol. 49: 747–758, https://doi.org/10.1122/1.1895801.Search in Google Scholar
Chu, X., Nikolov, A., and Wasan, D. (1996). Effects of particle size and polydispersity on the depletion and structural forces in colloidal dispersions. Langmuir 12: 5004–5010, https://doi.org/10.1021/la960359u.Search in Google Scholar
Chu, X.L., Nikolov, A.D., and Wasan, D.T. (1995). Thin liquid film structure and stability: the role of depletion and surface‐induced structural forces. J. Chem. Phys. 103: 6653–6661, https://doi.org/10.1063/1.470395.Search in Google Scholar
Cicuta, P., Stancik, E.J., and Fuller, G.G. (2003). Shearing or compressing a soft glass in 2D: time-concentration superposition. Phys. Rev. Lett. 90: 236101, https://doi.org/10.1103/physrevlett.90.236101.Search in Google Scholar
Clint, J.H. and Taylor, S.E. (1992). Particle size and interparticle forces of overbased detergents: a Langmuir trough study. Colloids Surf. A 65: 61–67, https://doi.org/10.1016/0166-6622(92)80175-2.Search in Google Scholar
Cloitre, M. and Bonnecaze, R.T. (2017). A review on wall slip in high solid dispersions. Rheol. Acta 56: 283–305, https://doi.org/10.1007/s00397-017-1002-7.Search in Google Scholar
Coertjens, S., De Dier, R., Moldenaers, P., Isa, L., and Vermant, J. (2017). Adsorption of ellipsoidal particles at liquid–liquid interfaces. Langmuir 33: 2689–2697, https://doi.org/10.1021/acs.langmuir.6b03534.Search in Google Scholar PubMed
Cohen-Addad, S. and Höhler, R. (2014). Rheology of foams and highly concentrated emulsions. Curr. Opin. Colloid Interface Sci. 19: 536–548, https://doi.org/10.1016/j.cocis.2014.11.003.Search in Google Scholar
Cohen-Addad, S., Höhler, R., and Khidas, Y. (2004). Origin of the slow linear viscoelastic response of aqueous foams. Phys. Rev. Lett. 93: 028302, https://doi.org/10.1103/PhysRevLett.93.028302.Search in Google Scholar PubMed
Cohen-Addad, S., Höhler, R., and Pitois, O. (2013). Flow in foams and flowing foams. Annu. Rev. Fluid Mech. 45, https://doi.org/10.1146/annurev-fluid-011212-140634.Search in Google Scholar
Cooke, T.F. (1983). Formaldehyde release from durable press fabrics. Text. Chem. Colorist 15: 13–34.Search in Google Scholar
Cooke, T.F., and Hirt, D.E. (1995). Foam wet processing in the textile industry. In: Prud’homme, R.K., and Khan, S.A. (Eds.), Foams: theory, measurements and applications, Vol. 57. Marcel Dekker, New York, pp. 339–380.10.1201/9780203755709-9Search in Google Scholar
Cox, S., Weaire, D., and Glazier, J.A. (2004). The rheology of two-dimensional foams. Rheol. Acta 43: 442–448, https://doi.org/10.1007/s00397-004-0378-3.Search in Google Scholar
Danov, K.D., Ivanov, I.B., Ananthapadmanabhan, K.P., and Lips, A. (2006). Disjoining pressure of thin films stabilized by nonionic surfactants. Adv. Colloid Interface Sci. 128: 185–215, https://doi.org/10.1016/j.cis.2006.11.011.Search in Google Scholar PubMed
Denkov, N.D., Ivanov, I.B., Kralchevsky, P.A., and Wasan, D.T. (1992). A possible mechanism of stabilization of emulsions by solid particles. J. Colloid Interface Sci. 150: 589–593, https://doi.org/10.1016/0021-9797(92)90228-e.Search in Google Scholar
Denkov, N.D., Subramanian, V., Gurovich, D., and Lips, A. (2005). Wall slip and viscous dissipation in sheared foams: effect of surface mobility. Colloids Surf. A 263: 129–145, https://doi.org/10.1016/j.colsurfa.2005.02.038.Search in Google Scholar
Derec, C., Ducouret, G., Ajdari, A., and Lequeux, F. (2003). Aging and nonlinear rheology in suspensions of polyethylene oxide–protected silica particles. Phys. Rev. E. 67: 061403, https://doi.org/10.1103/PhysRevE.67.061403.Search in Google Scholar PubMed
Derjaguin, B.V. and Churaev, N.V. (1974). Structure component of disjoining pressure. J. Colloid Interface Sci. 49: 249–255, https://doi.org/10.1016/0021-9797(74)90358-0.Search in Google Scholar
Deshpande, N.S. and Barigou, M. (2000). The flow of gas–liquid foams in vertical pipes. Chem. Eng. Sci. 55: 4297–4309, https://doi.org/10.1016/s0009-2509(00)00057-9.Search in Google Scholar
Dickinson, E. (2010). Food emulsions and foams: stabilization by particles. Curr. Opin. Colloid Interface Sci. 15: 40–49, https://doi.org/10.1016/j.cocis.2009.11.001.Search in Google Scholar
Dickinson, E. (2015). Structuring of colloidal particles at interfaces and the relationship to food emulsion and foam stability. J. Colloid Interface Sci. 449: 38–45, https://doi.org/10.1016/j.jcis.2014.09.080.Search in Google Scholar PubMed
Dickinson, E., Ettelaie, R., Kostakis, T., and Murray, B.S. (2004). Factors controlling the formation and stability of air bubbles stabilized by partially hydrophobic silica nanoparticles. Langmuir 20: 8517–8525, https://doi.org/10.1021/la048913k.Search in Google Scholar PubMed
Dominguez, C., Leyes, M.F.N., Cuenca, V.E., and Ritacco, H.A. (2020). Scaling laws in the dynamics of collapse of single bubbles and 2D foams. Langmuir 36: 15386–15395, https://doi.org/10.1021/acs.langmuir.0c02971.Search in Google Scholar PubMed
Drenckhan, W. and Saint-Jalmes, A. (2015). The science of foaming. Adv. Colloid Interface Sci. 222: 228–259, https://doi.org/10.1016/j.cis.2015.04.001.Search in Google Scholar PubMed
Durian, D., Weitz, D., and Pine, D. (1990). Dynamics and coarsening in three-dimensional foams. J. Phys. Condens. Matter 2: SA433, https://doi.org/10.1088/0953-8984/2/s/069.Search in Google Scholar
Edwards, D.A., Brenner, H., and Wasan, D.T. (1991). Interfacial transport processes and rheology. Butterworth–Heinemann, Stonheam, MA.Search in Google Scholar
Erni, P. and Parker, A. (2012). Nonlinear viscoelasticity and shear localization at complex fluid interfaces. Langmuir 28: 7757–7767, https://doi.org/10.1021/la301023k.Search in Google Scholar PubMed
Erni, P., Fischer, P., Windhab, E.J., Kusnezov, V., Stettin, H., and Laüger, J. (2003). Stress- and strain-controlled measurements of interfacial shear viscosity and viscoelasticity at liquid/liquid and gas/liquid interfaces. Rev. Sci. Instrum. 74: 4916–4924, https://doi.org/10.1063/1.1614433.Search in Google Scholar
Ewoldt, R.H., Hosoi, A.E., and McKinley, G.H. (2008). New measures for characterizing nonlinear viscoelasticity in large amplitude oscillatory shear. J. Rheol. 52: 1427–1458, https://doi.org/10.1122/1.2970095.Search in Google Scholar
Fahimi, Z., Broedersz, C.P., van Kempen, T.H., Florea, D., Peters, G.W., and Wyss, H.M. (2014). A new approach for calculating the true stress response from large amplitude oscillatory shear (LAOS) measurements using parallel plates. Rheol. Acta 53: 75–83, https://doi.org/10.1007/s00397-013-0738-y.Search in Google Scholar
Falls, A., Hirasaki, G., Patzek, T.E.A., Gauglitz, D., Miller, D., and Ratulowski, T. (1988). Development of a mechanistic foam simulator: the population balance and generation by snap-off. SPE Reservoir Eng. 3: 884–892, https://doi.org/10.2118/14961-pa.Search in Google Scholar
Fameau, A.-L. and Fujii, S. (2020). Stimuli-responsive liquid foams: from design to applications. Curr. Opin. Colloid Interface Sci. 50: 101380, https://doi.org/10.1016/j.cocis.2020.08.005.Search in Google Scholar
Farajzadeh, R., Andrianov, A., Krastev, R., Hirasaki, G., and Rossen, W.R. (2012). Foam–oil interaction in porous media: implications for foam assisted enhanced oil recovery. Adv. Colloid Interface Sci. 183: 1–13, https://doi.org/10.1016/j.cis.2012.07.002.Search in Google Scholar PubMed
Feitosa, K., Halt, O.L., Kamien, R.D., and Durian, D.J. (2006). Bubble kinetics in a steady-state column of aqueous foam. Europhys. Lett. 76: 683, https://doi.org/10.1209/epl/i2006-10304-5.Search in Google Scholar
Fernandez-Rodriguez, M.A., Rodriguez-Valverde, M.A., Cabrerizo-Vilchez, M.A., and Hidalgo-Alvarez, R. (2016). Surface activity of Janus particles adsorbed at fluid–fluid interfaces: theoretical and experimental aspects. Adv. Colloid Interface Sci. 233: 240–254, https://doi.org/10.1016/j.cis.2015.06.002.Search in Google Scholar PubMed
Friedmann, F., and Jensen, J. (1986). Some parameters influencing the formation and propagation of foams in porous media. Translated by Society of Petroleum Engineers. SPE California Regional Meeting, OnePetro.10.2118/15087-MSSearch in Google Scholar
Frye, G.C. and Berg, J.C. (1989). Antifoam action by solid particles. J. Colloid Interface Sci. 127: 222–238, https://doi.org/10.1016/0021-9797(89)90023-4.Search in Google Scholar
Fuller, G.G. and Vermant, J. (2012). Complex fluid–fluid interfaces: rheology and structure. Annu. Rev. Chem. Biomol. Eng. 3: 519–543, https://doi.org/10.1146/annurev-chembioeng-061010-114202.Search in Google Scholar PubMed
Gauglitz, P.A., Friedmann, F., Kam, S.I., and Rossen, W.R. (2002). Foam generation in homogeneous porous media. Chem. Eng. Sci. 57: 4037–4052, https://doi.org/10.1016/s0009-2509(02)00340-8.Search in Google Scholar
Ghosh, P. (2009). Colloid and interface science. PHI Learning Pvt. Ltd, New Delhi.Search in Google Scholar
Giacomin, A.J., Gilbert, P.H., Merger, D., and Wilhelm, M. (2015). Large-amplitude oscillatory shear: comparing parallel-disk with cone-plate flow. Rheol. Acta 54: 263–285, https://doi.org/10.1007/s00397-014-0819-6.Search in Google Scholar
Giesekus, H. (1982). A simple constitutive equation for polymer fluids based on the concept of deformation-dependent tensorial mobility. J. Non-Newtonian Fluid Mech. 11: 69–109, https://doi.org/10.1016/0377-0257(82)85016-7.Search in Google Scholar
Glazier, J.A. (1993). Grain growth in three dimensions depends on grain topology. Phys. Rev. Lett. 70: 2170, https://doi.org/10.1103/physrevlett.70.2170.Search in Google Scholar
Glazier, J.A., Gross, S.P., and Stavans, J. (1987). Dynamics of two-dimensional soap froths. Phys. Rev. A 36: 306, https://doi.org/10.1103/physreva.36.306.Search in Google Scholar PubMed
Gonatas, C.P., Leigh, J.S., Yodh, A.G., Glazier, J.A., and Prause, B. (1995). Magnetic resonance images of coarsening inside a foam. Phys. Rev. Lett. 75: 573, https://doi.org/10.1103/physrevlett.75.573.Search in Google Scholar
Gonzenbach, U.T., Studart, A.R., Tervoort, E., and Gauckler, L.J. (2006a). Stabilization of foams with inorganic colloidal particles. Langmuir 22: 10983–10988, https://doi.org/10.1021/la061825a.Search in Google Scholar PubMed
Gonzenbach, U.T., Studart, A.R., Tervoort, E., and Gauckler, L.J. (2006b). Ultrastable particle-stabilized foams. Angew. Chem. Int. Ed. 45: 3526–3530, https://doi.org/10.1002/anie.200503676.Search in Google Scholar PubMed
Gopal, A.D. and Durian, D.J. (2003). Relaxing in foam. Phys. Rev. Lett. 91: 188303, https://doi.org/10.1103/physrevlett.91.188303.Search in Google Scholar
Gupta, M., Van Hooghten, R., Fischer, P., Gunes, D.Z., and Vermant, J. (2016). Limiting coalescence by interfacial rheology: over-compressed polyglycerol ester layers. Rheol. Acta 55: 537–546, https://doi.org/10.1007/s00397-016-0934-7.Search in Google Scholar
Gittens, G.J. (1968). Variation of surface tension of water with temperature. J. Colloid Interface Sci. 30: 406–412.10.1016/0021-9797(69)90409-3Search in Google Scholar
Gurnon, A.K. and Wagner, N.J. (2012). Large amplitude oscillatory shear (LAOS) measurements to obtain constitutive equation model parameters: Giesekus model of banding and nonbanding wormlike micelles. J. Rheol. 56: 333–351, https://doi.org/10.1122/1.3684751.Search in Google Scholar
Habibi, M., Dinkgreve, M., Paredes, J., Denn, M.M., and Bonn, D. (2016). Normal stress measurement in foams and emulsions in the presence of slip. J. Non-Newtonian Fluid Mech. 238: 33–43, https://doi.org/10.1016/j.jnnfm.2016.06.008.Search in Google Scholar
Haffner, B., Khidas, Y., and Pitois, O. (2015). The drainage of foamy granular suspensions. J. Colloid Interface Sci. 458: 200–208, https://doi.org/10.1016/j.jcis.2015.07.051.Search in Google Scholar PubMed
Hebraud, P., Lequeux, F., and Palierne, J.F. (2000). Role of permeation in the linear viscoelastic response of concentrated emulsions. Langmuir 16: 8296–8299, https://doi.org/10.1021/la001091g.Search in Google Scholar
Herschel, W.H. and Bulkley, R. (1926). Konsistenzmessungen von gummi-benzollösungen. Colloid Polym. Sci. 39: 291–300, https://doi.org/10.1007/bf01432034.Search in Google Scholar
Herzhaft, B. (1999). Rheology of aqueous foams: a literature review of some experimental works. Oil Gas Sci. Technol. 54: 587–596, https://doi.org/10.2516/ogst:1999050.10.2516/ogst:1999050Search in Google Scholar
Heuman, D.M. (1989). Quantitative estimation of the hydrophilic–hydrophobic balance of mixed bile salt solutions. J. Lipid Res. 30: 719–730, https://doi.org/10.1016/s0022-2275(20)38331-0.Search in Google Scholar
Hill, C. and Eastoe, J. (2017). Foams: from nature to industry. Adv. Colloid Interface Sci. 247: 496–513, https://doi.org/10.1016/j.cis.2017.05.013.Search in Google Scholar PubMed
Höhler, R. and Cohen-Addad, S. (2005). Rheology of liquid foam. J. Phys. Condens. Matter 17: 1041–1069, https://doi.org/10.1088/0953-8984/17/41/r01.Search in Google Scholar
Höhler, R., Cohen-Addad, S., and Hoballah, H. (1997). Periodic nonlinear bubble motion in aqueous foam under oscillating shear strain. Phys. Rev. Lett. 79: 1154, https://doi.org/10.1103/physrevlett.79.1154.Search in Google Scholar
Hua, X.Y. and Rosen, M.J. (1988). Dynamic surface-tension of aqueous surfactant solution: 1. Basic parameters. J. Colloid Interface Sci. 124: 652–659, https://doi.org/10.1016/0021-9797(88)90203-2.Search in Google Scholar
Hunter, T.N., Pugh, R.J., Franks, G.V., and Jameson, G.J. (2008). The role of particles in stabilising foams and emulsions. Adv. Colloid Interface Sci. 137: 57–81, https://doi.org/10.1016/j.cis.2007.07.007.Search in Google Scholar PubMed
Hyun, K., Kim, S.H., Ahn, K.H., and Lee, S.J. (2002). Large amplitude oscillatory shear as a way to classify the complex fluids. J. Non-Newtonian Fluid Mech. 107: 51–65, https://doi.org/10.1016/s0377-0257(02)00141-6.Search in Google Scholar
Hyun, K., Wilhelm, M., Klein, C.O., Cho, K.S., Nam, J.G., Ahn, K.H., Lee, S.J., Ewoldt, R.H., and McKinley, G.H. (2011). A review of nonlinear oscillatory shear tests: analysis and application of large amplitude oscillatory shear (LAOS). Prog. Polym. Sci. 36: 1697–1753, https://doi.org/10.1016/j.progpolymsci.2011.02.002.Search in Google Scholar
Israelachvili, J.N. (2011). Intermolecular and surface forces. Academic Press, New York.Search in Google Scholar
Ivanov, I.B. (1980). Effect of surface mobility on the dynamic behavior of thin liquid films. Pure Appl. Chem. 52: 1241–1262, https://doi.org/10.1351/pac198052051241.Search in Google Scholar
Jacob, A.R., Deshpande, A.P., and Bouteiller, L. (2014). Large amplitude oscillatory shear of supramolecular materials. J. Non-Newtonian Fluid Mech. 206: 40–56, https://doi.org/10.1016/j.jnnfm.2014.03.001.Search in Google Scholar
Jiang, S., Chen, Q., Tripathy, M., Luijten, E., Schweizer, K.S., and Granick, S. (2010). Janus particle synthesis and assembly. Adv. Mater. 22: 1060–1071, https://doi.org/10.1002/adma.200904094.Search in Google Scholar PubMed
Jing, J., Sun, J., Zhang, M., Wang, C., Xiongd, X., and Hue, K. (2017). Preparation and rheological properties of a stable aqueous foam system. RSC Adv. 7: 39258–39269, https://doi.org/10.1039/c7ra06799b.Search in Google Scholar
Joye, J.-L., Miller, C.A., and Hirasaki, G.J. (1992). Dimple formation and behavior during axisymmetrical foam film drainage. Langmuir 8: 3083–3092, https://doi.org/10.1021/la00048a038.Search in Google Scholar
Kaptay, G. (2004). Interfacial criteria for stabilization of liquid foams by solid particles. Colloids Surf. A 230: 67–80.10.1016/j.colsurfa.2003.09.016Search in Google Scholar
Kaptay, G. (2006). On the equation of the maximum capillary pressure induced by solid particles to stabilize emulsions and foams and on the emulsion stability diagrams. Colloids Surf. A 282: 387–401, https://doi.org/10.1016/j.colsurfa.2005.12.021.Search in Google Scholar
Karakashev, S.I. and Grozdanova, M.V. (2012). Foams and antifoams. Adv. Colloid Interface Sci. 176: 1–17, https://doi.org/10.1016/j.cis.2012.04.001.Search in Google Scholar PubMed
Karbaschi, M., Lotfi, M., Krägel, J., Javadi, A., Bastani, D., and Miller, R. (2014). Rheology of interfacial layers. Curr. Opin. Colloid Interface Sci. 19: 514–519, https://doi.org/10.1016/j.cocis.2014.08.003.Search in Google Scholar
Khair, A.S. (2016). Large amplitude oscillatory shear of the Giesekus model. J. Rheol. 60: 257–266, https://doi.org/10.1122/1.4941423.Search in Google Scholar
Khan, S.A. and Armstrong, R.C. (1986). Rheology of foams: 1. Theory for dry foams. J. Non-Newtonian Fluid Mech. 22: 1–22, https://doi.org/10.1016/0377-0257(86)80001-5.Search in Google Scholar
Khan, S.A., Schnepper, C.A., and Armstrong, R.C. (1988). Foam rheology: III. Measurement of shear flow properties. J. Rheol. 32: 69–92, https://doi.org/10.1122/1.549964.Search in Google Scholar
Koehler, S.A., Hilgenfeldt, S., and Stone, H.A. (2000). A generalized view of foam drainage: experiment and theory. Langmuir 16: 6327–6341, https://doi.org/10.1021/la9913147.Search in Google Scholar
Krägel, J. and Derkatch, S.R. (2010). Interfacial shear rheology. Curr. Opin. Colloid Interface Sci. 15: 246–255, https://doi.org/10.1016/j.cocis.2010.02.001.Search in Google Scholar
Kraynik, A.M. (1988). Foam flows. Annu. Rev. Fluid Mech. 20: 325–357, https://doi.org/10.1146/annurev.fl.20.010188.001545.Search in Google Scholar
Kraynik, A.M. and Hansen, M.G. (1987). Foam rheology: a model of viscous phenomena. J. Rheol. 31: 175–205, https://doi.org/10.1122/1.549940.Search in Google Scholar
Kulkarni, R.D. and Somasundaran, P. (1976). Mineralogical heterogeneity of ore particles tid its effects on their interfacial characteristics. Powder Technol. 14: 279–285, https://doi.org/10.1016/0032-5910(76)80076-9.Search in Google Scholar
Langevin, D. (2000). Influence of interfacial rheology on foam and emulsion properties. Adv. Colloid Interface Sci. 88: 209–222, https://doi.org/10.1016/s0001-8686(00)00045-2.Search in Google Scholar PubMed
Langevin, D. (2017). Aqueous foams and foam films stabilised by surfactants. Gravity-free studies. C. R. Mec. 345: 47–55, https://doi.org/10.1016/j.crme.2016.10.009.Search in Google Scholar
Larson, R.G. (1999). The structure and rheology of complex fluids. Oxford University Press, New York.Search in Google Scholar
Lexis, M. and Willenbacher, N. (2014). Yield stress and elasticity of aqueous foams from protein and surfactant solutions – the role of continuous phase viscosity and interfacial properties. Colloids Surf. A 459: 177–185, https://doi.org/10.1016/j.colsurfa.2014.06.030.Search in Google Scholar
Lounis, M. and Bekkour, K. (2002). Rheological characterization of SDS/PEO based foams. J. Mater. Sci. Lett. 21: 1573–1575, https://doi.org/10.1023/a:1020353112624.10.1023/A:1020353112624Search in Google Scholar
Macosko, C.W. (1994). Rheology: principles, measurements, and applications. Wiley, New York.Search in Google Scholar
MacPherson, R.D. and Srolovitz, D.J. (2007). The von Neumann relation generalized to coarsening of three-dimensional microstructures. Nature 446: 1053, https://doi.org/10.1038/nature05745.Search in Google Scholar PubMed
Madivala, B., Fransaer, J., and Vermant, J. (2009). Self-assembly and rheology of ellipsoidal particles at interfaces. Langmuir 25: 2718–2728, https://doi.org/10.1021/la803554u.Search in Google Scholar PubMed
Maestro, A., Guzmán, E., Ortega, F., and Rubio, R.G. (2014a). Contact angle of micro-and nanoparticles at fluid interfaces. Curr. Opin. Colloid Interface Sci. 19: 355–367, https://doi.org/10.1016/j.cocis.2014.04.008.Search in Google Scholar
Maestro, A., Rio, E., Drenckhan, W., Langevin, D., and Salonen, A. (2014b). Foams stabilised by mixtures of nanoparticles and oppositely charged surfactants: relationship between bubble shrinkage and foam coarsening. Soft Matter 10: 6975–6983, https://doi.org/10.1039/c4sm00047a.Search in Google Scholar PubMed
Manev, E.D., Sazdanova, S.V., and Wasan, D.T. (1984). Stratification in emulsion films. J. Dispersion Sci. Technol. 5: 111–117, https://doi.org/10.1080/01932698408943212.Search in Google Scholar
Manglik, R.M., Wasekar, V.M., and Zhang, J.T. (2001). Dynamic and equilibrium surface tension of aqueous surfactant and polymeric solutions. Exp. Therm. Fluid Sci. 25: 55–64, https://doi.org/10.1016/s0894-1777(01)00060-7.Search in Google Scholar
Marze, S., Guillermic, R.M., and Saint-Jalmes, A. (2009). Oscillatory rheology of aqueous foams: surfactant, liquid fraction, experimental protocol and aging effects. Soft Matter 5: 1937–1946, https://doi.org/10.1039/b817543h.Search in Google Scholar
Mason, T.G., Bibette, J., and Weitz, D.A. (1996). Yielding and flow of monodisperse emulsions. J. Colloid Interface Sci. 179: 439–448, https://doi.org/10.1006/jcis.1996.0235.Search in Google Scholar
Maxwell, J.C. (1867). On the dynamical theory of gases. Phil. Trans. Roy. Soc. Lond. 157: 49–88, https://doi.org/10.1098/rstl.1867.0004.Search in Google Scholar
Meinders, M.B. and van Vliet, T. (2004). The role of interfacial rheological properties on Ostwald ripening in emulsions. Adv. Colloid Interface Sci. 108: 119–126, https://doi.org/10.1016/j.cis.2003.10.005.Search in Google Scholar PubMed
Mendoza, A.J., Guzman, E., Martinez-Pedrero, F., Ritacco, H., Rubio, R.G., Ortega, F., Starov, V.M., and Miller, R. (2014). Particle laden fluid interfaces: dynamics and interfacial rheology. Adv. Colloid Interface Sci. 206: 303–319, https://doi.org/10.1016/j.cis.2013.10.010.Search in Google Scholar PubMed
Miller, R., Ferri, J.K., Javadi, A., Krägel, J., Mucic, N., and Wüstneck, R. (2010). Rheology of interfacial layers. Colloid Polym. Sci. 288: 937–950, https://doi.org/10.1007/s00396-010-2227-5.Search in Google Scholar
Mitra, T. and Ghosh, P. (2007). Binary coalescence of water drops in organic media in presence of ionic surfactants and salts. J. Dispersion Sci. Technol. 28: 785–792, https://doi.org/10.1080/01932690701345810.Search in Google Scholar
Moody, C.A., Martin, J.W., Kwan, W.C., Muir, D.C., and Mabury, S.A. (2002). Monitoring perfluorinated surfactants in biota and surface water samples following an accidental release of fire-fighting foam into Etobicoke Creek. Environ. Sci. Technol. 36: 545–551, https://doi.org/10.1021/es011001+.10.1021/es011001+Search in Google Scholar PubMed
Mooney, M. (1931). Explicit formulas for slip and fluidity. J. Rheol. 210: 210–222, https://doi.org/10.1122/1.2116364.Search in Google Scholar
Mullins, W.W. (1986). The statistical self‐similarity hypothesis in grain growth and particle coarsening. J. Appl. Phys. 59: 1341–1349, https://doi.org/10.1063/1.336528.Search in Google Scholar
Narsimhan, G. (2016). Drainage of particle stabilized foam film. Colloids Surf. A 495: 20–29, https://doi.org/10.1016/j.colsurfa.2016.01.044.Search in Google Scholar
Narsimhan, G. and Ruckenstein, E. (1986). Effect of bubble size distribution on the enrichment and collapse in foams. Langmuir 2: 494–508, https://doi.org/10.1021/la00070a020.Search in Google Scholar
Nikolov, A.D. and Wasan, D.T. (1989). Ordered micelle structuring in thin films formed from anionic surfactant solutions: I. Experimental. J. Colloid Interface Sci. 133: 1–12, https://doi.org/10.1016/0021-9797(89)90278-6.Search in Google Scholar
Nikolov, A.D. and Wasan, D.T. (1992). Dispersion stability due to structural contributions to the particle interaction as probed by thin liquid–film dynamics. Langmuir 8: 2985–2994, https://doi.org/10.1021/la00048a023.Search in Google Scholar
Ninham, B.W., Pashley, R.M., and Nostro, P.L. (2017). Surface forces: changing concepts and complexity with dissolved gas, bubbles, salt and heat. Curr. Opin. Colloid Interface Sci. 27: 25–32, https://doi.org/10.1016/j.cocis.2016.09.003.Search in Google Scholar
Okesanjo, O., Tennenbaum, M.J., Fernandez-Nieves, A., Meredith, J.C., and Behrens, S.H. (2020). Rheology of capillary foams. Soft Matter 16: 6725–6732, https://doi.org/10.1039/d0sm00384k.Search in Google Scholar PubMed
Ovarlez, G., Rodts, S., Ragouilliaux, A., Coussot, P., Goyon, J., and Colin, A. (2008). Wide-gap Couette flows of dense emulsions: local concentration measurements, and comparison between macroscopic and local constitutive law measurements through magnetic resonance imaging. Phys. Rev. E 78: 036307, https://doi.org/10.1103/PhysRevE.78.036307.Search in Google Scholar PubMed
Palmer, S.J. (1976). The effect of temperature on surface tension. Phys. Educ. 11: 119–120, https://doi.org/10.1088/0031-9120/11/2/009.Search in Google Scholar
Pickering, S.U. (1907). Cxcvi.—emulsions. J. Chem. Soc. Trans. 91: 2001–2021, https://doi.org/10.1039/ct9079102001.Search in Google Scholar
Pileni, M.P. (1993). Reverse micelles as microreactors. J. Phys. Chem. 97: 6961–6973, https://doi.org/10.1021/j100129a008.Search in Google Scholar
Pradilla, D., Simon, S., Sjöblom, J., Samaniuk, J., Skrzypiec, M., and Vermant, J. (2016). Sorption and interfacial rheology study of model asphaltene compounds. Langmuir 32: 2900–2911, https://doi.org/10.1021/acs.langmuir.6b00195.Search in Google Scholar PubMed
Prud’homme, R.K. and Khan, S.A. (Eds.) (1997). Foams: theory, measurements, and applications. Marcel Dekker Inc., New York.Search in Google Scholar
Pugh, R.J. (1996). Foaming, foam films, antifoaming and defoaming. Adv. Colloid Interface Sci. 64: 67–142, https://doi.org/10.1016/0001-8686(95)00280-4.Search in Google Scholar
Qiao, X., Miller, R., Schneck, E., and Sun, K. (2020). Foaming properties and the dynamics of adsorption and surface rheology of silk fibroin at the air/water interface. Colloids Surf. A 591: 124553, https://doi.org/10.1016/j.colsurfa.2020.124553.Search in Google Scholar
Rabinowitsch, B. (1929). Über die viskosität und elastizität von solen. Z. Phys. Chem. 145: 1–26, https://doi.org/10.1515/zpch-1929-14502.Search in Google Scholar
Ramsden, W. (1903). Separation of solids in the surface-layers of solutions and suspensions (observations on surface-membranes, bubbles, emulsions, and mechanical coagulation)–preliminary account. Proc. Roy. Soc. Lond. 72: 156–164.Search in Google Scholar
Reinelt, D.A. and Kraynik, A.M. (2000). Simple shearing flow of dry soap foams with tetrahedrally close-packed structure. J. Rheol. 44: 453–471, https://doi.org/10.1122/1.551096.Search in Google Scholar
Ritacco, H., Kurlat, D., and Langevin, D. (2003). Properties of aqueous solutions of polyelectrolytes and surfactants of opposite charge: surface tension, surface rheology, and electrical birefringence studies. J. Phys. Chem. B 107: 9146–9158, https://doi.org/10.1021/jp034033n.Search in Google Scholar
Rosen, M.J. and Kunjappu, J.T. (2004). Surfactants and interfacial phenomena. Wiley, New York.10.1002/0471670561Search in Google Scholar
Rossen, W.R. (1996). Foams in enhanced oil recovery. In: Prud’homme, R.K, Khan, S. (Eds.), Foams: theory measurement and applications. Marcel Dekker, New York.10.1201/9780203755709-11Search in Google Scholar
Rouyer, F., Haffner, B., Louvet, N., Khidas, Y., and Pitois, O. (2014). Foam clogging. Soft Matter 10: 6990–6998, https://doi.org/10.1039/c4sm00496e.Search in Google Scholar PubMed
Ruckenstein, E. (1978). The origin of thermodynamic stability of microemulsions. Chem. Phys. Lett. 57: 517–521, https://doi.org/10.1016/0009-2614(78)85311-1.Search in Google Scholar
Rühs, P.A., Affolter, C., Windhab, E.J., and Fischer, P. (2013). Shear and dilatational linear and nonlinear subphase controlled interfacial rheology of beta-lactoglobulin fibrils and their derivatives. J. Rheol. 57: 1003–1022, https://doi.org/10.1122/1.4802051.Search in Google Scholar
Safouane, M., Langevin, D., and Binks, B.P. (2007). Effect of particle hydrophobicity on the properties of silica particle layers at the air−water interface. Langmuir 23: 11546–11553, https://doi.org/10.1021/la700800a.Search in Google Scholar PubMed
Sagis, L.M.C. and Fischer, P. (2014). Nonlinear rheology of complex fluid–fluid interfaces. Curr. Opin. Colloid Interface Sci. 19: 520–529, https://doi.org/10.1016/j.cocis.2014.09.003.Search in Google Scholar
Saint-Jalmes, A. (2006). Physical chemistry in foam drainage and coarsening. Soft Matter 2: 836–849, https://doi.org/10.1039/b606780h.Search in Google Scholar PubMed
Saint-Jalmes, A. and Langevin, D. (2002). Time evolution of aqueous foams: drainage and coarsening. J. Phys. Condens. Matter 14: 9397–9412, https://doi.org/10.1088/0953-8984/14/40/325.Search in Google Scholar
Samanta, S. and Ghosh, P. (2011). Coalescence of bubbles and stability of foams in aqueous solutions of tween surfactants. Chem. Eng. Res. Des. 89: 2344–2355, https://doi.org/10.1016/j.cherd.2011.04.006.Search in Google Scholar
Schott, H. (1995). Hydrophilic–lipophilic balance, solubility parameter, and oil–water partition coefficient as universal parameters of nonionic surfactants. J. Pharmaceut. Sci. 84: 1215–1222, https://doi.org/10.1002/jps.2600841014.Search in Google Scholar PubMed
Sethumadhavan, G.N., Nikolov, A., and Wasan, D. (2001). Film stratification in the presence of colloidal particles. Langmuir 17: 2059–2062, https://doi.org/10.1021/la000936l.Search in Google Scholar
Sharma, V., Jaishankar, A., Wang, Y.-C., and McKinley, G.H. (2011). Rheology of globular proteins: apparent yield stress, high shear rate viscosity and interfacial viscoelasticity of bovine serum albumin solutions. Soft Matter 7: 5150–5160, https://doi.org/10.1039/c0sm01312a.Search in Google Scholar
Shiloach, A. and Blankschtein, D. (1998). Predicting micellar solution properties of binary surfactant mixtures. Langmuir 14: 1618–1636, https://doi.org/10.1021/la971151r.Search in Google Scholar
Sire, C. (1994). Growth laws for 3D soap bubbles. Phys. Rev. Lett. 72: 420, https://doi.org/10.1103/physrevlett.72.420.Search in Google Scholar PubMed
Slattery, J.C. (1990). Interfacial transport phenomena. Springer-Verlag, New York.10.1007/978-1-4757-2090-7Search in Google Scholar
Somasundaran, P. and Fuerstenau, W.D. (1972). Heat and entropy of adsorption and association of long-chain surfactants at the alumina-aqueous solution interface. Trans. SME AIME 252: 275–279.Search in Google Scholar
Soskey, P.R. and Winter, H.H. (1984). Large step shear strain experiments with parallel‐disk rotational rheometers. J. Rheol. 28: 625–645, https://doi.org/10.1122/1.549770.Search in Google Scholar
Stamenovic, D. (1991). A model of foam elasticity based upon the laws of Plateau. J. Colloid Interface Sci. 145: 255–259.10.1016/0021-9797(91)90116-PSearch in Google Scholar
Stamou, D., Duschl, C., and Johannsmann, D. (2000). Long-range attraction between colloidal spheres at the air–water interface: the consequence of an irregular meniscus. Phys. Rev. E 62: 5263–5272, https://doi.org/10.1103/physreve.62.5263.Search in Google Scholar PubMed
Stavans, J. (1993). The evolution of cellular structures. Rep. Prog. Phys. 56: 733–789, https://doi.org/10.1088/0034-4885/56/6/002.Search in Google Scholar
Stavans, J. and Glazier, J.A. (1989). Soap froth revisited: dynamic scaling in the two-dimensional froth. Phys. Rev. Lett. 62: 1318, https://doi.org/10.1103/physrevlett.62.1318.Search in Google Scholar
Stevenson, P. (2007). On the forced drainage of foam. Colloids Surf. A 305: 1–9, https://doi.org/10.1016/j.colsurfa.2007.04.032.Search in Google Scholar
Stocco, A., Rio, E., Binks, B.P., and Langevin, D. (2011). Aqueous foams stabilized solely by particles. Soft Matter 7: 1260–1267, https://doi.org/10.1039/c0sm01290d.Search in Google Scholar
Stubenrauch, C. and von Klitzing, R. (2003). Disjoining pressure in thin liquid foam and emulsion films – new concepts and perspectives. J. Phys. Condens. Matter 15: R1197–R1232, https://doi.org/10.1088/0953-8984/15/27/201.Search in Google Scholar
Tan, K., Cheng, S., Jugé, L., and Bilston, L.E. (2013). Characterising soft tissues under large amplitude oscillatory shear and combined loading. J. Biomech. 46: 1060–1066, https://doi.org/10.1016/j.jbiomech.2013.01.028.Search in Google Scholar PubMed
Trahar, W.J. (1981). A rational interpretation of the role of particle-size in flotation. Int. J. Miner. Process. 8: 289–327, https://doi.org/10.1016/0301-7516(81)90019-3.Search in Google Scholar
Vandebril, S., Franck, A., Fuller, G.G., Moldenaers, P., and Vermant, J. (2010). A double wall-ring geometry for interfacial shear rheometry. Rheol. Acta 49: 131–144, https://doi.org/10.1007/s00397-009-0407-3.Search in Google Scholar
Vignati, E., Piazza, R., and Lockhart, T.P. (2003). Pickering emulsions: interfacial tension, colloidal layer morphology, and trapped-particle motion. Langmuir 19: 6650–6656, https://doi.org/10.1021/la034264l.Search in Google Scholar
Vijayaraghavan, K., Nikolov, A., Wasan, D., and Henderson, D. (2009). Foamability of liquid particle suspensions: a modeling study. Ind. Eng. Chem. Res. 48: 8180–8185, https://doi.org/10.1021/ie801741q.Search in Google Scholar
Vishal, B. and Ghosh, P. (2018a). Foaming in aqueous solutions of hexadecyltrimethylammonium bromide and silica nanoparticles: measurement and analysis of rheological and interfacial properties. J. Dispersion Sci. Technol. 39: 62–70, https://doi.org/10.1080/01932691.2017.1295867.Search in Google Scholar
Vishal, B. and Ghosh, P. (2018b). Nonlinear viscoelastic behavior of aqueous foam under large amplitude oscillatory shear flow. Korea Aust. Rheol. J. 30: 147–159, https://doi.org/10.1007/s13367-018-0015-9.Search in Google Scholar
Vishal, B. and Ghosh, P. (2019). The effect of silica nanoparticles on the stability of aqueous foams. J. Dispersion Sci. Technol. 40: 206–218, https://doi.org/10.1080/01932691.2018.1467771.Search in Google Scholar
Vishal, B. and Ghosh, P. (2020). Nonlinear viscoelastic behavior of air–water interface containing surfactant–laden nanoparticles. Nihon Reoroji Gakkaishi 48: 15–25, https://doi.org/10.1678/rheology.48.15.Search in Google Scholar
Völp, A.R. and Willenbacher, N. (2021). Shear modulus and yield stress of foams: contribution of interfacial elasticity. Soft Matter 17: 3937–3944, https://doi.org/10.1039/d0sm02246b.Search in Google Scholar PubMed
Von Neumann, J. (1952). Metal interfaces. American Society for Metals, Cleveland.Search in Google Scholar
Vrij, A. (1966). Possible mechanism for the spontaneous rupture of thin, free liquid films. Discuss. Faraday Soc. 42: 23–33, https://doi.org/10.1039/df9664200023.Search in Google Scholar
Walther, A. and Müller, A.H. (2013). Janus particles: synthesis, self-assembly, physical properties, and applications. Chem. Rev. 113: 5194–5261, https://doi.org/10.1021/cr300089t.Search in Google Scholar PubMed
Wang, J. and Nguyen, A.V. (2016). Foam drainage in the presence of solid particles. Soft Matter 12: 3004–3012, https://doi.org/10.1039/c6sm00028b.Search in Google Scholar PubMed
Wasan, D.T., Nikolov, A.D., and Aimetti, F. (2004). Texture and stability of emulsions and suspensions: role of oscillatory structural forces. Adv. Colloid Interface Sci. 108: 187–195, https://doi.org/10.1016/j.cis.2003.10.021.Search in Google Scholar PubMed
Weaire, D. (2008). Kelvin’s foam structure: a commentary. Phil. Mag. Lett. 88: 91–102, https://doi.org/10.1080/09500830701697498.Search in Google Scholar
Weaire, D., Hutzler, S., Verbist, G., and Peters, E. (1997). A review of foam drainage. Adv. Chem. Phys. 102: 315–374.10.1002/9780470141618.ch5Search in Google Scholar
Weaire, D.L. and Hutzler, S. (2001). The physics of foams. Oxford University Press, Oxford.Search in Google Scholar
Wu, F.-Y. (1982). The potts model. Rev. Mod. Phys. 54: 235–268, https://doi.org/10.1103/revmodphys.54.235.Search in Google Scholar
Yanagisawa, N., Tani, M., and Kurita, R. (2021). Dynamics and mechanism of liquid film collapse in a foam. Soft Matter 17: 1738–1745, https://doi.org/10.1039/d0sm02153a.Search in Google Scholar PubMed
Yoshimura, A. and Prud’homme, R.K. (1988). Wall slip corrections for Couette and parallel disk viscometers. J. Rheol. 32: 53–67, https://doi.org/10.1122/1.549963.Search in Google Scholar
Yu, W., Wang, P., and Zhou, C. (2009). General stress decomposition in nonlinear oscillatory shear flow. J. Rheol. 53: 215–238, https://doi.org/10.1122/1.3037267.Search in Google Scholar
Yu, Y., Soukup, Z.A., and Saraji, S. (2019). An experimental study of in-situ foam rheology: effect of stabilizing and destabilizing agents. Colloids Surf. A 578: 123548, https://doi.org/10.1016/j.colsurfa.2019.06.014.Search in Google Scholar
Zaccagnino, F. and Cox, S. (2020). Micro-mechanical prediction of the effect of surfactant concentration and external friction on the visco-elasto-plastic response of an aqueous foam. Soft Matter 16: 8861–8870, https://doi.org/10.1039/d0sm00788a.Search in Google Scholar PubMed
Zang, D.Y., Rio, E., Langevin, D., Wei, B., and Binks, B.P. (2010). Viscoelastic properties of silica nanoparticle monolayers at the air–water interface. Eur. Phys. J. E 31: 125–134, https://doi.org/10.1140/epje/i2010-10565-7.Search in Google Scholar PubMed
Zhan, F., Chen, Y., Hu, J., Youssef, M., Korin, A., Li, J., and Li, B. (2020). Combining surface dilatational rheology and quantitative proteomics as a tool for understanding microstructures of air/water interfaces stabilized by sodium caseinate/tannic acid complex. Food Hydrocolloids 102: 105627, https://doi.org/10.1016/j.foodhyd.2019.105627.Search in Google Scholar
Zhang, Y., Chang, Z., Luo, W., Gu, S., Li, W., and An, J. (2015a). Effect of starch particles on foam stability and dilational viscoelasticity of aqueous foam. Chin. J. Chem. Eng. 23: 276–280, https://doi.org/10.1016/j.cjche.2014.10.015.Search in Google Scholar
Zhang, L., Mikhailovskaya, A., Yazhgur, P., Muller, F., Cousin, F., and Langevin, D. (2015b). Precipitating sodium dodecyl sulfate to create ultrastable and stimulable foams. Angew. Chem. Int. Ed. 54: 9533–9536, https://doi.org/10.1002/anie.201503236.Search in Google Scholar PubMed
Zhang, S.Y., Lan, Q., Liu, Q., Xu, H., and Sun, D.J. (2008). Aqueous foams stabilized by laponite and CTAB. Colloids Surf. A 317: 406–413, https://doi.org/10.1016/j.colsurfa.2007.11.010.Search in Google Scholar
Zhu, Y., Pei, X., Jiang, J., Cui, Z., and Binks, B.P. (2015). Responsive aqueous foams stabilized by silica nanoparticles hydrophobized in situ with a conventional surfactant. Langmuir 31: 12937–12943, https://doi.org/10.1021/acs.langmuir.5b03681.Search in Google Scholar PubMed
Ziegler, V.M. and Handy, L.L. (1981). Effect of temperature on surfactant adsorption in porous media. Soc. Petrol. Eng. J. 21: 218–228, https://doi.org/10.2118/8264-pa.Search in Google Scholar
© 2021 Walter de Gruyter GmbH, Berlin/Boston