Abstract
Aromatic hydrocarbons are essential compounds, that the presence of which in fuels can improve the octane number. The conversion of the light alkanes to high value aromatics is vital from theoretical and industrial standpoints. Zeolites such as ZSM-5 play an essential role in the aromatization of light alkanes. This paper highlights the mechanism of aromatization of light alkanes such as methane, ethane, propane, butane, and its isomers. Furthermore, effective factors on the aromatization of light alkanes including metal type, crystallinity, acidity, space velocity, pretreatment of zeolites, co-feeding of light hydrocarbon, and operating factors such as temperature have been investigated to determine how a system of zeolite with metals can be useful to reach aromatization with high conversion.
-
Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
-
Research funding: None declared.
-
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
References
Abedin, M.A., Kanitkar, S., Bhattar, S., and Spivey, J.J. (2020). Mo oxide supported on sulfated hafnia: novel solid acid catalyst for activation of ethane & propane. Appl. Catal. A: Gen.: 117696, https://doi.org/10.1016/j.apcata.2020.117696.Search in Google Scholar
Akolekar, D., Chaffee, A., and Howe, R.F. (1997). The transformation of kaolin to low-silica X zeolite. Zeolites 19: 359–365, https://doi.org/10.1016/s0144-2449(97)00132-2.Search in Google Scholar
Baradaran, S., Sohrabi, M., Bijani, P., Royaee, S., and Sahebdelfar, S. (2014). An investigation on isobutane aromatization over an H-Zsm-5 catalyst. Petrol. Sci. Technol. 32: 2889–2895, https://doi.org/10.1080/10916466.2014.913622.Search in Google Scholar
Baradaran, S., Sohrabi, M., Bijani, P.M., and Royaee, S.J. (2015a). Isobutane aromatization in the presence of propane as a co-reactant over H-Zsm-5 catalysts using different crystallization times. J. Ind. Eng. Chem. 27: 354–361, https://doi.org/10.1016/j.jiec.2015.01.014.Search in Google Scholar
Baradaran, S., Sohrabi, M., Moghimpour Bijani, P., Royaee, S.J., and Sahebdelfar, S. (2015b). Experimental and modelling study of propane aromatization over H-Zsm-5 catalysts prepared by different silica sources. Can. J. Chem. Eng. 93: 727–735, https://doi.org/10.1002/cjce.22160.Search in Google Scholar
Barthos, R., Bánsági, T., Zakar, T.S., and Solymosi, F. (2007). Aromatization of methanol and methylation of benzene over Mo2 C/Zsm-5 catalysts. J. Catal. 247: 368–378, https://doi.org/10.1016/j.jcat.2007.02.017.Search in Google Scholar
Bayense, C. and Van Hooff, J. (1991). Aromatization of propane over gallium-containing H-Zsm-5 zeolites: influence of the preparation method on the product selectivity and the catalytic stability. Appl. Catal. Gen. 79: 127–140, https://doi.org/10.1016/0926-860x(91)85011-l.Search in Google Scholar
Bhan, A. and Nicholas Delgass, W. (2008). Propane aromatization over Hzsm-5 and Ga/Hzsm-5 catalysts. Catal. Rev. 50: 19–151, https://doi.org/10.1080/01614940701804745.Search in Google Scholar
Bi, Y., Wang, Y., Chen, X., Yu, Z., and Xu, L. (2014). Methanol aromatization over Hzsm-5 catalysts modified with different zinc salts. Chin. J. Catal. 35: 1740–1751, https://doi.org/10.1016/s1872-2067(14)60145-5.Search in Google Scholar
Biscardi, J.A. and Iglesia, E. (1996). Structure and function of metal cations in light alkane reactions catalyzed by modified H-Zsm-5. Catal. Today 31: 207–231, https://doi.org/10.1016/s0920-5861(96)00028-4.Search in Google Scholar
Biscardi, J.A., Meitzner, G.D., and Iglesia, E. (1998). Structure and density of active Zn species in Zn/H-Zsm-5 propane aromatization catalysts. J. Catal. 179: 192–202, https://doi.org/10.1006/jcat.1998.2177.Search in Google Scholar
Borry, R.W., Kim, Y.H., Huffsmith, A., Reimer, J.A., and Iglesia, E. (1999). Structure and density of Mo and acid sites in Mo-exchanged H-Zsm-5 catalysts for nonoxidative methane conversion. J. Phys. Chem. B 103: 5787–5796, https://doi.org/10.1021/jp990866v.Search in Google Scholar
British, P. (2013). Bp statistical review of world energy. London: British Petroleum.Search in Google Scholar
Caeiro, G., Carvalho, R., Wang, X., Lemos, M., Lemos, F., Guisnet, M., and Ribeiro, F.R. (2006). Activation of C2–C4 alkanes over acid and bifunctional zeolite catalysts. J. Mol. Catal. Chem. 255: 131–158, https://doi.org/10.1016/j.molcata.2006.03.068.Search in Google Scholar
Chandrasekhar, S. (1996). Influence of metakaolinization temperature on the formation of zeolite 4a from kaolin. Clay Miner. 31: 253–261, https://doi.org/10.1180/claymin.1996.031.2.11.Search in Google Scholar
Chen, L., Lin, L., Xu, Z., Li, X., and Zhang, T. (1995). Dehydro-oligomerization of methane to ethylene and aromatics over molybdenum/Hzsm-5 catalyst. J. Catal. 157: 190–200, https://doi.org/10.1006/jcat.1995.1279.Search in Google Scholar
Cheng, C.-H. and Shantz, D.F. (2005). Silicalite-1 growth from clear solution: effect of the structure-directing agent on growth kinetics. J. Phys. Chem. B 109: 13912–13920, https://doi.org/10.1021/jp050733b.Search in Google Scholar
Choudhary, T., Kinage, A., Banerjee, S., and Choudhary, V. (2005). Influence of hydrothermal pretreatment on acidity and activity of H-Gaalmfi zeolite for the propane aromatization reaction. Microporous Mesoporous Mater. 87: 23–32, https://doi.org/10.1016/j.micromeso.2005.07.028.Search in Google Scholar
Choudhary, V., Kinage, A., and Choudhary, T. (1996a). Simultaneous aromatization of propane and higher alkanes or alkenes over H-Gaaimfi zeolite. Chem. Commun.: 2545–2546, https://doi.org/10.1039/cc9960002545.Search in Google Scholar
Choudhary, V., Kinage, A., Sivadinarayana, C., and Guisnet, M. (1996b). Pulse reaction studies on variations of initial activity/selectivity of O2 and H2 pretreated ga-modified Zsm-5 type zeolite catalysts in propane aromatization. J. Catal. 158: 23–33, https://doi.org/10.1006/jcat.1996.0003.Search in Google Scholar
Choudhary, V., Kinage, A., and Choudhary, T. (1997a). Direct aromatization of natural gas over H-gallosilicate (Mfi), H-galloaluminosilicate (Mfi) and Gah-Zsm-5 zeolites. Appl. Catal. Gen. 162: 239–248, https://doi.org/10.1016/s0926-860x(97)00102-6.Search in Google Scholar
Choudhary, V.R., Kinage, A.K., and Choudhary, T.V. (1997b). Effective low-temperature aromatization of ethane over H-galloaluminosilicate (Mfi) zeolites in the presence of higher alkanes or olefins. Angew. Chem. Int. Ed. 36: 1305–1308, https://doi.org/10.1002/anie.199713051.Search in Google Scholar
Choudhary, V.R., Mantri, K., and Sivadinarayana, C. (2000). Influence of zeolite factors affecting zeolitic acidity on the propane aromatization activity and selectivity of Ga/H–Zsm-5. Microporous Mesoporous Mater. 37: 1–8, https://doi.org/10.1016/s1387-1811(99)00185-7.Search in Google Scholar
Choudhary, V.R., Devadas, P., Banerjee, S., and Kinage, A.K. (2001). Aromatization of dilute ethylene over Ga-modified Zsm-5 type zeolite catalysts. Microporous Mesoporous Mater. 47: 253–267, https://doi.org/10.1016/s1387-1811(01)00385-7.Search in Google Scholar
Choudhary, V.R., Panjala, D., and Banerjee, S. (2002). Aromatization of propene and n-butene over H-galloaluminosilicate (Zsm-5 type) zeolite. Appl. Catal. Gen. 231: 243–251, https://doi.org/10.1016/s0926-860x(02)00061-3.Search in Google Scholar
Dauda, I.B., Yusuf, M., Gbadamasi, S., Bello, M., Atta, A.Y., Aderemi, B.O., and Jibril, B.Y. (2020). Highly selective hierarchical Zno/Zsm-5 catalysts for propane aromatization. ACS Omega 5: 2725–2733, https://doi.org/10.1021/acsomega.9b03343.Search in Google Scholar
Davis, B.H., Ertl, G., Knözinger, H., SchÜth, F., and Weitkamp, J. (2008). Handbook of heterogeneous catalysis. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, pp. 16–32.Search in Google Scholar
Erofeev, V.I., Medvedev, A., Khomyakov, I., and Erofeeva, E. (2013). Conversion of gas-condensate straight-run gasolines to high-octane gasolines over zeolite catalysts modified with metal nanopowders. Russ. J. Appl. Chem. 86: 979–985, https://doi.org/10.1134/s1070427213070069.Search in Google Scholar
Fan, Y., Lei, D., Shi, G., and Bao, X. (2006). Synthesis of Zsm-5/Sapo-11 composite and its application in Fcc gasoline hydro-upgrading catalyst. Catal. Today 114: 388–396, https://doi.org/10.1016/j.cattod.2006.02.050.Search in Google Scholar
Flanigen, E.M., Broach, R.W., and Wilson, S.T. (2010). Introduction. In: Kulprathipanja, S. (Ed.). Zeolites in industrial separation and catalysis. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Great Britain, pp. 1–26.10.1002/9783527629565.ch1Search in Google Scholar
Fling, J. and Wang, I. (1991). Dehydrocyclization of C6-C8 n-paraffins to aromatics over Tio2-Zro2 catalysts. J. Catal. 130: 577–587, https://doi.org/10.1016/0021-9517(91)90137-s.Search in Google Scholar
Frey, K., Lubango, L.M., Scurrell, M.S., and Guczi, L. (2011). Light alkane aromatization over modified Zn-Zsm-5 catalysts: characterization of the catalysts by hydrogen/deuterium isotope exchange. React. Kinet. Mech. Catal. 104: 303–309, https://doi.org/10.1007/s11144-011-0382-4.Search in Google Scholar
Fricke, R., Kosslick, H., Lischke, G., and Richter, M. (2000). Incorporation of gallium into zeolites: syntheses, properties and catalytic application. Chem. Rev. 100: 2303–2406, https://doi.org/10.1021/cr9411637.Search in Google Scholar
Fu, Z., Yin, D., Yang, Y., and Guo, X. (1995). Characterization of modified Zsm-5 catalysts for propane aromatization prepared by a solid state reaction. Appl. Catal. Gen. 124: 59–71, https://doi.org/10.1016/0926-860x(94)00243-6.Search in Google Scholar
Gnep, N., Doyemet, J., Seco, A., Ribeiro, F.R., and Guisnet, M. (1988). Conversion of light alkanes to aromatic hydrocarbons: Ii. Role of gallium species in propane transformation on Gazsm-5 catalysts. Appl. Catal. 43: 155–166, https://doi.org/10.1016/s0166-9834(00)80908-2.Search in Google Scholar
Godwin, O.G., Atta, A.Y., Bello, M., Yakubu, J.B., and Olorunfemi, A.B. (2020). Highly selective and stable Zn–Fe/Zsm-5 catalyst for aromatization of propane. Appl. Petrochem. Res. 10: 55–65.10.1007/s13203-020-00245-9Search in Google Scholar
Groen, J.C., Moulijn, J.A., and Pérez-Ramírez, J. (2007a). Alkaline posttreatment of Mfi zeolites. From accelerated screening to scale-up. Ind. Eng. Chem. Res. 46: 4193–4201, https://doi.org/10.1021/ie061146v.Search in Google Scholar
Groen, J.C., Zhu, W., Brouwer, S., Huynink, S.J., Kapteijn, F., Moulijn, J.A., and Pérez-Ramírez, J. (2007b). Direct demonstration of enhanced diffusion in mesoporous Zsm-5 zeolite obtained via controlled desilication. J. Am. Chem. Soc. 129: 355–360, https://doi.org/10.1021/ja065737o.Search in Google Scholar
Hagen, J. (2015). Industrial catalysis: a practical approach. John Wiley & Sons, Weinheim, Germany, pp. 267–319.10.1002/9783527684625Search in Google Scholar
He, T.-C., Cheng, X.-H., Li, L., and Meng, G.-Y. (2009). Study of methanol-to-gasoline process for production of gasoline from coal. J. Coal Sci. Eng. 15: 104–107, https://doi.org/10.1007/s12404-009-0121-x.Search in Google Scholar
Holmen, A. (2009). Direct conversion of methane to fuels and chemicals. Catal. Today 142: 2–8, https://doi.org/10.1016/j.cattod.2009.01.004.Search in Google Scholar
Iglesia, E., Baumgartner, J.E., and Price, G.L. (1992). Kinetic coupling and hydrogen surface fugacities in heterogeneous catalysis. I. Alkane reactions on Te/Nax, H-Zsm-5, and Ga/H-Zsm-5. J. Catal. 134: 549–571, https://doi.org/10.1016/0021-9517(92)90342-f.Search in Google Scholar
Inui, T., Makino, Y., Okazumi, F., Nagano, S., and Miyamoto, A. (1987). Selective aromatization of light paraffins on platinum-ion-exchanged gallium-silicate bifunctional catalysts. Ind. Eng. Chem. Res. 26: 647–652, https://doi.org/10.1021/ie00064a002.Search in Google Scholar
Ismagilov, Z.R., Matus, E.V., and Tsikoza, L.T. (2008). Direct conversion of methane on Mo/Zsm-5 catalysts to produce benzene and hydrogen: achievements and perspectives. Energy Environ. Sci. 1: 526–541, https://doi.org/10.1039/b810981h.Search in Google Scholar
Jiang, H., Wang, L., Cui, W., and Xu, Y. (1999). Study on the induction period of methane aromatization over Mo/Hzsm-5: partial reduction of Mo species and formation of carbonaceous deposit. Catal. Lett. 57: 95–102, https://doi.org/10.1023/a:1019087313679.10.1023/A:1019087313679Search in Google Scholar
Kanitkar, S.R. and Spivey, J.J. (2019). Light alkane aromatization: efficient use of natural gas. In: Elbashir, N.O., EL-Halwagi, M.M., Economou, I.G., and Hall, K.R. (Eds.). Natural gas processing from midstream to downstream, 1st ed. John Wiley and Sons Ltd, West Sussex, U.K., pp. 379–402.10.1002/9781119269618.ch14Search in Google Scholar
Kecskeméti, A., Barthos, R., and Solymosi, F. (2008). Aromatization of dimethyl and diethyl ethers on Mo2 C-promoted Zsm-5 catalysts. J. Catal. 258: 111–120, https://doi.org/10.1016/j.jcat.2008.06.003.Search in Google Scholar
Keipert, O.P., Wolf, D., Schulz, P., and Baerns, M. (1995). Kinetics of ethane aromatization over a gallium-doped H-Zsm-5 catalyst. Appl. Catal. Gen. 131: 347–365, https://doi.org/10.1016/0926-860x(95)00148-4.Search in Google Scholar
Kim, Y.H., Lee, K.H., Nam, C.M., and Lee, J.S. (2012). Formation of hierarchical pore structures in Zn/Zsm-5 to improve the catalyst stability in the aromatization of branched olefins. ChemCatChem 4: 1143–1153, https://doi.org/10.1002/cctc.201200007.Search in Google Scholar
Kitagawa, H., Sendoda, Y., and Ono, Y. (1986). Transformation of propane into aromatic hydrocarbons over Zsm-5 zeolites. J. Catal. 101: 12–18, https://doi.org/10.1016/0021-9517(86)90223-x.Search in Google Scholar
Kuhlmann, A., Roessner, F., Schwieger, W., Gravenhorst, O., and Selvam, T. (2004). New bifunctional catalyst based on Pt containing layered silicate Na-ilerite. Catal. Today 97: 303–306, https://doi.org/10.1016/j.cattod.2004.07.014.Search in Google Scholar
Kwak, B. and Sachtler, W. (1994). Effect of Ga/proton balance in Ga/Hzsm-5 catalysts on C3 conversion to aromatics. J. Catal. 145: 456–463, https://doi.org/10.1006/jcat.1994.1056.Search in Google Scholar
Lacheen, H.S. and Iglesia, E. (2005). Isothermal activation of Mo2O52+–Zsm-5 precursors during methane reactions: effects of reaction products on structural evolution and catalytic properties. Phys. Chem. Chem. Phys. 7: 538–547, https://doi.org/10.1039/b415166f.Search in Google Scholar
Lee, B.J., Hur, Y.G., Kim, D.H., Lee, S.H., and Lee, K.-Y. (2019). Non-oxidative aromatization and ethylene formation over Ga/Hzsm-5 catalysts using a mixed feed of methane and ethane. Fuel 253: 449–459, https://doi.org/10.1016/j.fuel.2019.05.014.Search in Google Scholar
Li, B., Li, S., Li, N., Chen, H., Zhang, W., Bao, X., and Lin, B. (2006). Structure and acidity of Mo/Zsm-5 synthesized by solid state reaction for methane dehydrogenation and aromatization. Microporous Mesoporous Mater. 88: 244–253, https://doi.org/10.1016/j.micromeso.2005.09.016.Search in Google Scholar
Liu, R.-L., Zhu, H.-Q., Wu, Z.-W., Qin, Z.-F., Fan, W.-B., and Wang, J.-G. (2015). Aromatization of propane over Ga-modified Zsm-5 catalysts. J. Fuel Chem. Technol. 43: 961–969, https://doi.org/10.1016/s1872-5813(15)30027-x.Search in Google Scholar
Liu, S., Wang, L., Ohnishi, R., and Lchikawa, M. (2000). Bifunctional catalysis of Mo/Hzsm-5 in the dehydroaromatization of methane with CO/CO2 to benzene and naphthalene. Kinet. Catal. 41: 132–144, https://doi.org/10.1007/bf02756152.Search in Google Scholar
Masiero, S.S., Marcilio, N.R., and Perez-Lopez, O.W. (2009). Aromatization of methane over Mo-Fe/Zsm-5 catalysts. Catal. Lett. 131: 194–202, https://doi.org/10.1007/s10562-009-0032-x.Search in Google Scholar
Matar, S. and Hatch, L. (2001). Chemistry of petrochemical processes, 2nd ed. Elsevier Houston, Texas, pp. 213–236.10.1016/B978-088415315-3/50009-2Search in Google Scholar
McCusker, L. B. and Baerlocher, C. (2007). Zeolite structures. In: Ejka, J.C., Bekkum, H.V., Corma, A., and Schüth, F. (Eds.). Introduction to zeolite science and practice, 3rd Revised ed. Elsevier B.V., Amsterdam, The Netherlands, pp. 13–36.10.1016/S0167-2991(07)80790-7Search in Google Scholar
Melian-Cabrera, I., Espinosa, S., Groen, J., Kapteijn, F., and Moulijn, J. (2006). Utilizing full-exchange capacity of zeolites by alkaline leaching: preparation of Fe-Zsm-5 and application in N2O decomposition. J. Catal. 238: 250–259, https://doi.org/10.1016/j.jcat.2005.11.034.Search in Google Scholar
Meriaudeau, P. and Naccache, C. (1990). The role of Ga2O3 and proton acidity on the dehydrogenating activity of Ga2O3-Hzsm-5 catalysts: evidence of a bifunctional mechanism. J. Mol. Catal. 59: L31–L36, https://doi.org/10.1016/0304-5102(90)85100-v.Search in Google Scholar
Miyamoto, M., Mabuchi, K., Kamada, J., Hirota, Y., Oumi, Y., Nishiyama, N., and Uemiya, S. (2015). Para-selectivity of silicalite-1 coated Mfi type galloaluminosilicate in aromatization of light alkanes. J. Porous Mater. 22: 769–778, https://doi.org/10.1007/s10934-015-9950-8.Search in Google Scholar
Montes, A. and Giannetto, G. (2000). A new way to obtain acid or bifunctional catalysts: V. Considerations on bifunctionality of the propane aromatization reaction over [Ga, Al]-Zsm-5 catalysts. Appl. Catal. A: Gen. 197: 31–39, https://doi.org/10.1016/s0926-860x(99)00530-x.Search in Google Scholar
Negelein, D.L., Lin, R., and White, R.L. (1998). Effects of catalyst acidity and structure on polymer cracking mechanisms. J. Appl. Polym. Sci. 67: 341–349.10.1002/(SICI)1097-4628(19980110)67:2<341::AID-APP15>3.0.CO;2-0Search in Google Scholar
Nguyen, L.H., Vazhnova, T., Kolaczkowski, S.T., and Lukyanov, D.B. (2006). Combined experimental and kinetic modelling studies of the pathways of propane and n-butane aromatization over H-Zsm-5 catalyst. Chem. Eng. Sci. 61: 5881–5894, https://doi.org/10.1016/j.ces.2006.05.017.Search in Google Scholar
Ogura, M., Shinomiya, S.-Y., Tateno, J., Nara, Y., Kikuchi, E., and Matsukata, M. (2000). Formation of uniform mesopores in Zsm-5 zeolite through treatment in alkaline solution. Chem. Lett.: 882–883, https://doi.org/10.1246/cl.2000.882.Search in Google Scholar
Ohnishi, R., Liu, S., Dong, Q., Wang, L., and Ichikawa, M. (1999). Catalytic dehydrocondensation of methane with CO and CO2 toward benzene and naphthalene on Mo/Hzsm-5 and Fe/Co-modified Mo/Hzsm-5. J. Catal. 182: 92–103, https://doi.org/10.1006/jcat.1998.2319.Search in Google Scholar
Ono, Y., Nakatani, H., Kitagawa, H., and Suzuki, E. (1989). The role of metal cations in the transformation of lower alkanes into aromatic hydrocarbons. Stud. Surf. Sci. Catal. 44: 279–290, https://doi.org/10.1016/s0167-2991(09)61303-3.Search in Google Scholar
Payra, P. and Dutta, P.K. (2003). Zeolites: a primer: In Auerbac, S., Carrad, K.A. and Dutta, P.K. (Eds.). Handbook of zeolite science and technology. CRC press, New York, USA, pp. 13–36.10.1201/9780203911167.pt1Search in Google Scholar
Perego, C., Bortolo, R., and Zennaro, R. (2009). Gas to liquids technologies for natural gas reserves valorization: the Eni experience. Catal. Today 142: 9–16, https://doi.org/10.1016/j.cattod.2009.01.006.Search in Google Scholar
Pidko, E.A., Hensen, E.J., and Van Santen, R.A. (2007). Dehydrogenation of light alkanes over isolated gallyl ions in Ga/Zsm-5 zeolites. J. Phys. Chem. C 111: 13068–13075, https://doi.org/10.1021/jp072110z.Search in Google Scholar
Rodrigues, V.D.O., Vasconcellos, F.J.Jr, and Júnior, A.D.C.F. (2016). Mechanistic studies through H–D exchange reactions: propane aromatization in Hzsm-5 and Ga/Hzsm-5 catalysts. J. Catal. 344: 252–262, https://doi.org/10.1016/j.jcat.2016.09.009.Search in Google Scholar
Roessner, F., Hagen, A., Mroczek, U., Karge, H., and Steinberg, K.-H. (1993). Conversion of ethane into aromatic compounds on Zsm-5 zeolites modified by zinc. Stud. Surf. Sci. Catal. 75: 1707–1710, https://doi.org/10.1016/s0167-2991(08)64515-2.Search in Google Scholar
Rostrup-Nielsen, J.R. (2002). Syngas in perspective. Catal. Today 71: 243–247, https://doi.org/10.1016/s0920-5861(01)00454-0.Search in Google Scholar
Rownaghi, A.A., Rezaei, F., and Hedlund, J. (2011). Yield of gasoline-range hydrocarbons as a function of uniform Zsm-5 crystal size. Catal. Commun. 14: 37–41, https://doi.org/10.1016/j.catcom.2011.07.015.Search in Google Scholar
Scire, S., Maggiore, R., Galvagno, S., Crisafulli, C., and Toscano, G. (1993). Propane aromatization over Pt-T1/Zsm-5. Appl. Catal. A: Gen. 103: 123–134, https://doi.org/10.1016/0926-860x(93)85178-r.Search in Google Scholar
Seddon, D. (1990). Paraffin oligomerisation to aromatics. Catal. Today 6: 351–372, https://doi.org/10.1016/0920-5861(90)85009-d.Search in Google Scholar
Shirazi, L., Jamshidi, E., and Ghasemi, M. (2008). The effect of Si/Al ratio of Zsm-5 zeolite on its morphology, acidity and crystal size. Cryst. Res. Technol.: J. Exp. Ind. Crystallogr. 43: 1300–1306, https://doi.org/10.1002/crat.200800149.Search in Google Scholar
Shu, J., Adnot, A., and Grandjean, B.P. (1999). Bifunctional behavior of Mo/Hzsm-5 catalysts in methane aromatization. Ind. Eng. Chem. Res. 38: 3860–3867, https://doi.org/10.1021/ie990145i.Search in Google Scholar
Shu, Y., Xu, Y., Wong, S.-T., Wang, L., and Guo, X. (1997). Promotional effect of Ru on the dehydrogenation and aromatization of methane in the absence of oxygen over Mo/Hzsm-5 catalysts. J. Catal. 170: 11–19, https://doi.org/10.1006/jcat.1997.1726.Search in Google Scholar
Shu, Y., Ohnishi, R., and Ichikawa, M. (2002). Stable and selective dehydrocondensation of methane towards benzene on modified Mo/Hmcm-22 catalyst by the dealumination treatment. Catal. Lett. 81: 9–17, https://doi.org/10.1023/a:1016016307893.10.1023/A:1016016307893Search in Google Scholar
Smiešková, A., Hudec, P., Kumar, N., Salmi, T., Murzin, D.Y., and Jorík, V. (2010). Aromatization of methane on Mo modified zeolites: influence of the surface and structural properties of the carriers. Appl. Catal. Gen. 377: 83–91.10.1016/j.apcata.2010.01.021Search in Google Scholar
Solymosi, F. and Szechenyi, A. (2004). Aromatization of isobutane and isobutene over Mo2C/Zsm-5 catalyst. Appl. Catal. Gen. 278: 111–121, https://doi.org/10.1016/j.apcata.2004.09.036.Search in Google Scholar
Solymosi, F., Erdöhelyi, A., and Szöke, A. (1995). Dehydrogenation of methane on supported molybdenum oxides. Formation of benzene from methane. Catal. Lett. 32: 43–53, https://doi.org/10.1007/bf00806100.Search in Google Scholar
Solymosi, F., Cserenyi, J., Szöke, A., Bansagi, T., and Oszko, A. (1997). Aromatization of methane over supported and unsupported Mo-based catalysts. J. Catal. 165: 150–161, https://doi.org/10.1006/jcat.1997.1478.Search in Google Scholar
Song, Y., Zhu, X., Xie, S., Wang, Q., and Xu, L. (2004). The effect of acidity on olefin aromatization over potassium modified Zsm-5 catalysts. Catal. Lett. 97: 31–36, https://doi.org/10.1023/b:catl.0000034281.58853.76.10.1023/B:CATL.0000034281.58853.76Search in Google Scholar
Song, Y., Zhu, X., Song, Y., Wang, Q., and Xu, L. (2006). An effective method to enhance the stability on-stream of butene aromatization: post-treatment of Zsm-5 by alkali solution of sodium hydroxide. Appl. Catal. Gen. 302: 69–77, https://doi.org/10.1016/j.apcata.2005.12.023.Search in Google Scholar
Sousa-Aguiar, E.F., Appel, L.G., and Mota, C. (2005). Natural gas chemical transformations: the path to refining in the future. Catal. Today 101: 3–7, https://doi.org/10.1016/j.cattod.2004.12.003.Search in Google Scholar
Su, L., Liu, L., Zhuang, J., Wang, H., Li, Y., Shen, W., Xu, Y., and Bao, X. (2003). Creating mesopores in Zsm-5 zeolite by alkali treatment: a new way to enhance the catalytic performance of methane dehydroaromatization on Mo/Hzsm-5 catalysts. Catal. Lett. 91: 155–167, https://doi.org/10.1023/b:catl.0000007149.48132.5a.10.1023/B:CATL.0000007149.48132.5aSearch in Google Scholar
Su, X., Wang, G., Bai, X., Wu, W., Xiao, L., Fang, Y., and Zhang, J. (2016). Synthesis of nanosized Hzsm-5 zeolites isomorphously substituted by gallium and their catalytic performance in the aromatization. Chem. Eng. J. 293: 365–375, https://doi.org/10.1016/j.cej.2016.02.088.Search in Google Scholar
Tagliabue, M., Carati, A., Flego, C., Millini, R., Perego, C., Pollesel, P., Stocchi, B., and Terzoni, G. (2004). Study on the stability of a Ga/Nd/Zsm-5 aromatisation catalyst. Appl. Catal. Gen. 265: 23–33, https://doi.org/10.1016/j.apcata.2003.12.056.Search in Google Scholar
Tan, P. (2016). Active phase, catalytic activity, and induction period of Fe/zeolite material in nonoxidative aromatization of methane. J. Catal. 338: 21–29, https://doi.org/10.1016/j.jcat.2016.01.027.Search in Google Scholar
Tan, P., Au, C., and Lai, S. (2007). Effects of acidification and basification of impregnating solution on the performance of Mo/Hzsm-5 in methane aromatization. Appl. Catal. Gen. 324: 36–41, https://doi.org/10.1016/j.apcata.2007.03.002.Search in Google Scholar
Tempelman, C.H., Zhu, X., and Hensen, E.J. (2015). Activation of Mo/Hzsm-5 for methane aromatization. Chin. J. Catal. 36: 829–837, https://doi.org/10.1016/s1872-2067(14)60301-6.Search in Google Scholar
Treesukol, P., Srisuk, K., Limtrakul, J., and Truong, T.N. (2005). Nature of the metal-support interaction in bifunctional catalytic Pt/H-Zsm-5 zeolite. J. Phys. Chem. B 109: 11940–11945, https://doi.org/10.1021/jp0511348.Search in Google Scholar
Tshabalala, T.E. and Scurrell, M.S. (2015). Aromatization of n-hexane over Ga, Mo and Zn modified H-Zsm-5 zeolite catalysts. Catal. Commun. 72: 49–52, https://doi.org/10.1016/j.catcom.2015.06.022.Search in Google Scholar
Tshabalala, T.E., Coville, N.J., Anderson, J.A., and Scurrell, M.S. (2015). Dehydroaromatization of methane over Sn–Pt modified Mo/H-Zsm-5 zeolite catalysts: effect of preparation method. Appl. Catal. Gen. 503: 218–226, https://doi.org/10.1016/j.apcata.2015.06.035.Search in Google Scholar
Van Grieken, R., Sotelo, J., Menéndez, J., and Melero, J. (2000). Anomalous crystallization mechanism in the synthesis of nanocrystalline Zsm-5. Microporous Mesoporous Mater. 39: 135–147, https://doi.org/10.1016/s1387-1811(00)00190-6.Search in Google Scholar
Venkatathri, N. (2008). A novel route to synthesis Aluminum silicate hollow spheres having Zsm-5 structure in absence of template. Mater. Lett. 62: 462–465, https://doi.org/10.1016/j.matlet.2007.05.064.Search in Google Scholar
Viswanadham, N., Muralidhar, G., and Rao, T.P. (2004). Cracking and aromatization properties of some metal modified Zsm-5 catalysts for light alkane conversions. J. Mol. Catal. A: Chem. 223: 269–274, https://doi.org/10.1016/j.molcata.2003.11.045.Search in Google Scholar
Viswanadham, N., Saxena, S.K., and Garg, M. (2013). Octane number enhancement studies of naphtha over noble metal loaded zeolite catalysts. J. Ind. Eng. Chem. 19: 950–955, https://doi.org/10.1016/j.jiec.2012.11.014.Search in Google Scholar
Vosmerikova, L., Volynkina, A., Zaikovskii, V., and Vosmerikov, A. (2017). Physicochemical and catalytic properties of Ga and In pentasils in the reaction of propane aromatization. Russ. J. Phys. Chem. A 91: 856–861, https://doi.org/10.1134/s0036024417050302.Search in Google Scholar
Wallenstein, D. and Harding, R. (2001). The dependence of Zsm-5 additive performance on the hydrogen-transfer activity of the Reusy base catalyst in fluid catalytic cracking. Appl. Catal. Gen. 214: 11–29, https://doi.org/10.1016/s0926-860x(01)00482-3.Search in Google Scholar
Wan, H. and Chitta, P. (2016). Catalytic conversion of propane to Btx over Ga, Zn, Mo, and Re impregnated Zsm-5 catalysts. J. Anal. Appl. Pyrol. 121: 369–375, https://doi.org/10.1016/j.jaap.2016.08.018.Search in Google Scholar
Wang, D., Lunsford, J.H., and Rosynek, M.P. (1997a). Characterization of a Mo/Zsm-5 catalyst for the conversion of methane to benzene. J. Catal. 169: 347–358, https://doi.org/10.1006/jcat.1997.1712.Search in Google Scholar
Wang, G.-L., Wei, W., Wang, Z., Bai, X.-F., Wang, W.-J., Xin, Q., and Kikhtyanin, O. (2015a). Preparation of Zn-modified nano-Zsm-5 zeolite and its catalytic performance in aromatization of 1-hexene. Trans. Nonferrous Metals Soc. China 25: 1580–1586, https://doi.org/10.1016/s1003-6326(15)63761-x.Search in Google Scholar
Wang, L., Tao, L., Xie, M., Xu, G., Huang, J., and Xu, Y. (1993). Dehydrogenation and aromatization of methane under non-oxidizing conditions. Catal. Lett. 21: 35–41, https://doi.org/10.1007/bf00767368.Search in Google Scholar
Wang, L., Xu, Y., Wong, S.-T., Cui, W., and Guo, X. (1997b). Activity and stability enhancement of Mohzsm-5-based catalysts for methane non-oxidative transformation to aromatics and C2 hydrocarbons: effect of additives and pretreatment conditions. Appl. Catal. A: Gen. 152: 173–182, https://doi.org/10.1016/s0926-860x(96)00366-3.Search in Google Scholar
Wang, P., Shen, B., and Gao, J. (2007). Synthesis of Zsm-5 zeolite from expanded perlite and its catalytic performance in Fcc gasoline aromatization. Catal. Today 125: 155–162, https://doi.org/10.1016/j.cattod.2007.03.010.Search in Google Scholar
Wang, Y., Yokoi, T., Namba, S., Kondo, J.N., and Tatsumi, T. (2015b). Catalytic cracking of n-hexane for producing propylene on Mcm-22 zeolites. Appl. Catal. A: Gen. 504: 192–202, https://doi.org/10.1016/j.apcata.2014.12.018.Search in Google Scholar
Weckhuysen, B.M., Wang, D., Rosynek, M.P., and Lunsford, J.H. (1998). Conversion of methane to benzene over transition metal ion Zsm-5 zeolites: Ii. Catalyst characterization by X-ray photoelectron spectroscopy. J. Catal. 175: 347–351, https://doi.org/10.1006/jcat.1998.2011.Search in Google Scholar
Wu, W. and Weitz, E. (2014). Modification of acid sites in Zsm-5 by ion-exchange: an in-situ Ftir study. Appl. Surf. Sci. 316: 405–415, https://doi.org/10.1016/j.apsusc.2014.07.194.Search in Google Scholar
Xu, Y. and Lin, L. (1999). Recent advances in methane dehydro-aromatization over transition metal ion-modified zeolite catalysts under non-oxidative conditions. Appl. Catal. A: Gen. 188: 53–67, https://doi.org/10.1016/s0926-860x(99)00210-0.Search in Google Scholar
Xu, Y., Bao, X., and Lin, L. (2003). Direct conversion of methane under nonoxidative conditions. J. Catal. 216: 386–395, https://doi.org/10.1016/s0021-9517(02)00124-0.Search in Google Scholar
Xue, N., Olindo, R., and Lercher, J.A. (2010). Impact of forming and modification with phosphoric acid on the acid sites of Hzsm-5. J. Phys. Chem. C 114: 15763–15770, https://doi.org/10.1021/jp106621d.Search in Google Scholar
Yang, K., Yin, Y., Lai, S., Zhu, L., Zhang, J., Lai, W., Lian, Y., and Fang, W. (2018). Aromatization of n-butane and i-butane over Ptsnk/Zsm-5 catalysts: influence of Sio2/Al2O3 Ratio. Catal. Lett. 148: 3570–3582, https://doi.org/10.1007/s10562-018-2548-4.Search in Google Scholar
Yin, C. and Liu, C. (2004). Hydrodesulfurization of cracked naphtha over zeolite-supported Ni-Mo-S catalysts. Appl. Catal. A: Gen. 273: 177–184, https://doi.org/10.1016/j.apcata.2004.06.029.Search in Google Scholar
Zhang, Q., Yu, J., and Corma, A. (2020). Applications of zeolites to C1 chemistry: recent advances, challenges, and opportunities. Adv. Mater. 32: 2002927.10.1002/adma.202002927Search in Google Scholar
Zhao, G., Teng, J., Zhang, Y., Xie, Z., Yue, Y., Chen, Q., and Tang, Y. (2006). Synthesis of ZSM-48 zeolites and their catalytic performance in C4-olefin cracking reactions. Appl. Catal. A: Gen. 299: 167–174, https://doi.org/10.1016/s1003-9953(06)60007-8.Search in Google Scholar
Zheng, L., Xuan, D., Guo, J., Lou, H., and Zheng, X. (2006). Non-oxidative aromatization of CH4-C3H8 over La-promoted Zn/Hzsm-5 catalysts. J. Nat. Gas Chem. 15: 52–57, https://doi.org/10.1016/s1003-9953(06)60007-8.Search in Google Scholar
Zhou, W., Liu, J., Wang, J., Lin, L., Zhang, X., He, N., Liu, C., and Guo, H. (2019). Enhancing propane aromatization performance of Zn/H-Zsm-5 zeolite catalyst with Pt promotion: effect of the third metal additive-Sn. Catal. Lett. 149: 2064–2077, https://doi.org/10.1007/s10562-019-02832-5.Search in Google Scholar
Zhu, X., Wang, Y., Li, X., Li, H., Zeng, P., An, J., Chen, F., Xie, S., Lan, H., and Wang, D. (2013). Co-feeding with Dme: an effective way to enhance gasoline production via low temperature aromatization of Lpg. J. Energy Chem. 22: 755–760, https://doi.org/10.1016/s2095-4956(13)60100-x.Search in Google Scholar
© 2021 Walter de Gruyter GmbH, Berlin/Boston