Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter June 23, 2021

ZnO nanostructures: synthesis by anodization and applications in photoelectrocatalysis

Patricia Batista-Grau , Rita Sánchez-Tovar , Ramón M. Fernández-Domene and José García-Antón EMAIL logo


Solar energy is a clean and abundant energy source. In a photoelectrochemical cell, energy from sunlight is captured and converted into electric power, chemical fuels such as hydrogen is employed to degrade organic pollutants. ZnO is a promising material for photoelectrocatalysis due to its remarkable properties. The aim of this review is to perform an exhaustive revision of nanostructured ZnO synthesis by electrochemical anodization in order to control surface characteristics of this material through anodization parameters such as electrolyte type and concentration, potential, time, temperature, stirring, and post treatment. Finally, application of ZnO nanostructures is overviewed to observe how surface characteristics affected the ZnO photoelectrocatalytic performance.

Corresponding author: José García-Antón, Ingeniería Electroquímica y Corrosión (IEC), Instituto Universitario de Seguridad Industrial, Radiofísica y Medioambiental (ISIRYM), Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain, E-mail:

Funding source: Generalitat Valenciana 10.13039/501100003359

Award Identifier / Grant number: GJIDI/2018/A/067

Award Identifier / Grant number: IDIFEDER/18/044

Funding source: European Social Fund 10.13039/501100004895

Award Identifier / Grant number: UPOV08-3E-012

Funding source: Ministerio de Ciencia e Innovación 10.13039/501100004837

Award Identifier / Grant number: PID2019-105844RB-I00


The authors thank Professor María Amparo Díaz Tortosa, Departamento de Lingüística Aplicada UPV, for her help with the English language.

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: The authors thank the Generalitat Valenciana and the European Social Fund for the financial support through subvention GJIDI/2018/A/067, as well as the project co-funded by FEDER operational programme 2014–2020 of Comunitat Valenciana (IDIFEDER/18/044). The authors also express their gratitude to the Ministerio de Ciencia e Innovación- Agencia Estatal de Investigación (project code: PID2019-105844RB-I00) for the financial support and help with the laser Raman microscope acquisition (UPOV08-3E-012), and for the co-financing by the European Social Fund.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.


Abramović, B.F., Banić, N.D., and Krstić, J.B. (2013). Degradation of thiacloprid by ZnO in a laminar falling film slurry photocatalytic reactor. Ind. Eng. Chem. Res. 52: 5040–5047.10.1021/ie400194mSearch in Google Scholar

Acuña, K., Yáñez, J., Ranganathan, S., Ramírez, E., Pablo Cuevas, J., Mansilla, H.D., and Santander, P. (2017). Photocatalytic degradation of roxarsone by using synthesized ZnO nanoplates. Sol. Energy 157: 335–341, in Google Scholar

Aghamalyan, N.R., Gambaryan, I.A., Goulanian, E.K., Hovsepyan, R.K., Kostanyan, R.B., Petrosyan, S.I., Vardanyan, E.S., and Zerrouk, A.F. (2003). Influence of thermal annealing on optical and electrical properties of ZnO films prepared by electron beam evaporation. Semicond. Sci. Technol. 18: 525–529, in Google Scholar

Ahn, K.S., Shet, S., Deutsch, T., Jiang, C.S., Yan, Y., Al-Jassim, M., and Turner, J. (2008a). Enhancement of photoelectrochemical response by aligned nanorods in ZnO thin films. J. Power Sources 176: 387–392, in Google Scholar

Ahn, K.S., Yan, Y., Shet, S., Jones, K., Deutsch, T., Turner, J., and Al-Jassim, M. (2008b). ZnO nanocoral structures for photoelectrochemical cells. Appl. Phys. Lett. 93: 163117, in Google Scholar

Al-Alwani, M.A.M., Mohamad, A.B., Ludin, N.A., Kadhum, A.A.H., and Sopian, K. (2016). Dye-sensitised solar cells: development, structure, operation principles, electron kinetics, characterisation, synthesis materials and natural photosensitisers. Renew. Sustain. Energy Rev. 65: 183–213, in Google Scholar

Ali, L.I., El-Molla, S.A., Ibrahim, M.M., Mahmoud, H.R., and Naghmash, M.A. (2016). Effect of preparation methods and optical band gap of ZnO nanomaterials on photodegradation studies. Opt. Mater. 58: 484–490, in Google Scholar

Alvi, M.A., Al-Ghamdi, A.A., and Shaheer Akhtar, M. (2017). Synthesis of ZnO nanostructures via low temperature solution process for photocatalytic degradation of rhodamine B dye. Mater. Lett. 204: 12–15, in Google Scholar

Archana, P.S., Jose, R., Vijila, C., and Ramakrishna, S. (2009). Improved electron diffusion coefficient in electrospun TiO2 nanowires. J. Phys. Chem. C 113: 21538–21542, in Google Scholar

Balbuena, J., Cruz-Yusta, M., Cuevas, A.L., Martín, F., Pastor, A., Romero, R., and Sánchez, L. (2019). Hematite porous architectures as enhanced air purification photocatalyst. J. Alloys Compd. 797: 166–173, in Google Scholar

Baruah, S., Jaisai, M., Imani, R., Nazhad, M.M., and Dutta, J. (2010a). Photocatalytic paper using zinc oxide nanorods. Sci. Technol. Adv. Mater. 11: 055002, in Google Scholar PubMed PubMed Central

Baruah, S., Mahmood, M.A., Myint, M.T.Z., Bora, T., and Dutta, J. (2010b). Enhanced visible light photocatalysis through fast crystallization of zinc oxide nanorods. Beilstein J. Nanotechnol. 1: 14–20, in Google Scholar PubMed PubMed Central

Batista-Grau, P., Sánchez-Tovar, R., Fernández-Domene, R.M., and García-Antón, J. (2020). Formation of ZnO nanowires by anodization under hydrodynamic conditions for photoelectrochemical water splitting. Surf. Coating. Technol. 381: 125197, in Google Scholar

Baxter, J.B., Walker, A.M., Van Ommering, K., and Aydil, E.S. (2006). Synthesis and characterization of ZnO nanowires and their integration into dye-sensitized solar cells. Nanotechnology 17: 304–312, in Google Scholar

Bayat, A., Ebrahimi, M., Nourmohammadi, A., and Moshfegh, A.Z. (2015). Wettability properties of PTFE/ZnO nanorods thin film exhibiting UV-resilient superhydrophobicity. Appl. Surf. Sci. 341: 92–99, in Google Scholar

Biroju, R.K. and Giri, P.K. (2017). Strong visible and near infrared photoluminescence from ZnO nanorods/nanowires grown on single layer graphene studied using sub-band gap excitation. J. Appl. Phys. 122: 044302, in Google Scholar

Buesser, B. and Pratsinis, S.E. (2012). Design of nanomaterial synthesis by aerosol processes. Ann. Rev. Chem. Biomol. Eng. 3: 103–127, in Google Scholar PubMed PubMed Central

Chen, Y.H., Shen, Y.M., Wang, S.C., and Huang, J.L. (2014). Fabrication of one-dimensional ZnO nanotube and nanowire arrays with an anodic alumina oxide template via electrochemical deposition. Thin Solid Films 570: 303–309, in Google Scholar

Chernomordik, B.D., Russell, H.B., Cvelbar, U., Jasinski, J.B., Kumar, V., Deutsch, T., and Sunkara, M.K. (2012). Photoelectrochemical activity of as-grown, α-Fe2O3 nanowire array electrodes for water splitting. Nanotechnology 23: 194009, in Google Scholar PubMed

Dai, X.-C., Hou, S., Huang, M.-H., Li, Y.-B., Li, T., and Xiao, F.-X. (2019). Electrochemically anodized one-dimensional semiconductors: a fruitful platform for solar energy conversion. J. Phys. Energy 1: 022002, in Google Scholar

Dang, W.L., Fu, Y.Q., Luo, J.K., Flewitt, A.J., and Milne, W.I. (2007). Deposition and characterization of sputtered ZnO films. Superlattice. Microst. 42: 89–93, in Google Scholar

Das, A. and Nair, R.G. (2020). Effect of aspect ratio on photocatalytic performance of hexagonal ZnO nanorods. J. Alloys Compd. 817: 153277, in Google Scholar

Dezfoolian, M., Rashchi, F., and Nekouei, R.K. (2015). Synthesis of copper and zinc oxides nanostructures by brass anodization in alkaline media. Surf. Coating. Technol. 275: 245–251, in Google Scholar

Diaz-Cano, A.I., El Filali, B., Torchynska, T.V., and Casas Espinola, J.L. (2013a). White emission of ZnO nanosheets with thermal annealing. Phys. E Low-dimens. Syst. Nanostruct. 51: 24–28, in Google Scholar

Diaz-Cano, A.I., El Filali, B., Torchynska, T.V., and Casas Espinola, J.L. (2013b). Structure and emission transformations in ZnO nanosheets at thermal annealing. J. Phys. Chem. Solid. 74: 431–435, in Google Scholar

Dimapilis, E.A.S., Hsu, C.S., Mendoza, R.M.O., and Lu, M.C. (2018). Zinc oxide nanoparticles for water disinfection. Sustain. Environ. Res. 28: 47–56, in Google Scholar

Di Mauro, A., Fragalà, M.E., Privitera, V., and Impellizzeri, G. (2017). ZnO for application in photocatalysis: from thin films to nanostructures. Mater. Sci. Semicond. Process. 69: 44–51, in Google Scholar

Faid, A.Y. and Allam, N.K. (2016). Stable solar-driven water splitting by anodic ZnO nanotubular semiconducting photoanodes. RSC Adv. 6: 80221–80225, in Google Scholar

Farhad, S., Tanvir, N., Bashar, M., Hossain, M., Sultana, M., and Khatun, N. (2018). Facile synthesis of oriented zinc oxide seed layer for the hydrothermal growth of zinc oxide nanorods. Bangladesh J. Sci. Ind. Res. 53: 233–244, in Google Scholar

Farrukh, M.A., Thong, C.K., Adnan, R., and Kamarulzaman, M.A. (2012). Preparation and characterization of zinc oxide nanoflakes using anodization method and their photodegradation activity on methylene blue. Russ. J. Phys. Chem. A 86: 2041–2048, in Google Scholar

Fernández-Domene, R.M., Sánchez-Tovar, R., Lucas-Granados, B., and García-Antón, J. (2016). Improvement in photocatalytic activity of stable WO3 nanoplatelet globular clusters arranged in a tree-like fashion: influence of rotation velocity during anodization. Appl. Catal. B Environ. 189: 266–282, in Google Scholar

Fernández Domene, R.M., Sánchez Tovar, R., and Lucas Granados, B. (2018). Principios de fotoelectroquímica. Valencia: Editorial de la Universidad Politécnica de Valencia.Search in Google Scholar

Filali, B., Torchynska, T.V., and Diaz Cano, A.I. (2015). Photoluminescence and Raman scattering study in ZnO:Cu nanocrystals. J. Lumin. 161: 25–30, in Google Scholar

Filali, B., Torchynska, T.V., Polupan, G., and Shcherbyna, L. (2017). Radiative defects , emission and structure of ZnO nanocrystals obtained by electrochemical method. Mater. Res. Bull. 85: 161–167 in Google Scholar

Florica, C., Preda, N., Costas, A., Zgura, I., and Enculescu, I. (2016). ZnO nanowires grown directly on zinc foils by thermal oxidation in air: wetting and water adhesion properties. Mater. Lett. 170: 156–159, in Google Scholar

Franklin, J.B., Zou, B., Petrov, P., McComb, D.W., Ryan, M.P., and McLachlan, M.A. (2011). Optimised pulsed laser deposition of ZnO thin films on transparent conducting substrates. J. Mater. Chem. 21: 8178–8182, in Google Scholar

Fujishima, A. and Honda, K. (1972). Electrochemical photolysis of water at a semiconductor electrode. Nature 238: 37–38, in Google Scholar PubMed

Gao, Y., Nagai, M., Chang, T.C., and Shyue, J.J. (2007). Solution-derived ZnO nanowire array film as photoelectrode in dye-sensitized solar cells. Cryst. Growth Des. 7: 2467–2471, in Google Scholar

Garcia-Segura, S. and Brillas, E. (2017). Applied photoelectrocatalysis on the degradation of organic pollutants in wastewaters. J. Photochem. Photobiol. C Photochem. Rev. 31: 1–35, in Google Scholar

Ghosh, R., Kundu, S., Majumder, R. and Chowdhury, M.P. (2019a). Hydrothermal synthesis and characterization of multifunctional ZnO nanomaterials. Mater. Today Proc. 26: 77–81, in Google Scholar

Ghosh, R., Kundu, S., Majumder, R., Roy, S., Das, S., Banerjee, A., Guria, U., Banerjee, M., Bera, M.K., Subhedar, K.M., et al.. (2019b). One-pot synthesis of multifunctional ZnO nanomaterials: study of superhydrophobicity and UV photosensing property. Appl. Nanosci. 9: 1939–1952, in Google Scholar

Goh, H.S., Adnan, R., and Farrukh, M.A. (2011). ZnO nanoflake arrays prepared via anodization and their performance in the photodegradation of methyl orange. Turk. J. Chem. 35: 375–391.10.3906/kim-1010-742Search in Google Scholar

Guo, M.Y., Fung, M.K., Fang, F., Chen, X.Y., Ng, A.M.C., Djurišić, A.B., and Chan, W.K. (2011). ZnO and TiO2 1D nanostructures for photocatalytic applications. J. Alloys Compd. 509: 1328–1332, in Google Scholar

Hagfeldt, A., Boschloo, G., Sun, L., Kloo, L., and Pettersson, H. (2010). Dye-sensitized solar cells. Chem. Rev. 10: 6595–6663, in Google Scholar PubMed

Hagfeldt, A. and Vlachopoulos, N. (2018). Dye-sensitized solar cells. In: The future of semiconductor oxides in next-generation solar cells, India, pp. 183–231.10.1016/B978-0-12-811165-9.00006-5Search in Google Scholar

Hamedani, N.F., Mahjoub, A.R., Khodadadi, A.A., Mortazavi, Y., and Farzaneh, F. (2011). Microwave assisted fast synthesis of flower-like ZnO based guanidinium template for photodegradation of AZO dye congored. World Acad. Sci. Eng. Technol. 5: 314–316.Search in Google Scholar

Harrison, S.E. (1954). Conductivity and hall effect of ZnO at low temperatures. Phys. Rev. 93: 52–62, in Google Scholar

He, S., Zheng, M., Yao, L., Yuan, X., Li, M., Ma, L., and Shen, W. (2010). Preparation and properties of ZnO nanostructures by electrochemical anodization method. Appl. Surf. Sci. 256: 2557–2562, in Google Scholar

Hernández, S., Hidalgo, D., Sacco, A., Chiodoni, A., Lamberti, A., Cauda, V., Tresso, E., Saracco, G. (2015). Comparison of photocatalytic and transport properties of TiO2 and ZnO nanostructures for solar-driven water splitting. Phys. Chem. Chem. Phys. 17: 7775–7786, in Google Scholar PubMed

Horiuchi, H., Katoh, R., Hara, K., Yanagida, M., Murata, S., Arakawa, H., and Tachiya, M. (2003). Electron injection efficiency from excited N3 into nanocrystalline ZnO films: effect of (N3–Zn2+) aggregate formation. J. Phys. Chem. B 107: 2570–2574, in Google Scholar

Horzum, N., Hilal, M.E., and Isik, T. (2018). Enhanced bactericidal and photocatalytic activities of ZnO nanostructures by changing the cooling route. New J. Chem. 42: 11831–11838, in Google Scholar

Hou, T.F., Boppella, R., Shanmugasundaram, A., Kim, D.H., and Lee, D.W. (2017). Hierarchically self-assembled ZnO architectures: establishing light trapping networks for effective photoelectrochemical water splitting. Int. J. Hydrogen Energy 42: 15126–15139, in Google Scholar

Hsu, C.H. and Chen, D.H. (2011). Photoresponse and stability improvement of ZnO nanorod array thin film as a single layer of photoelectrode for photoelectrochemical water splitting. Int. J. Hydrogen Energy 36: 15538–15547, in Google Scholar

Hu, Z., Chen, Q., Li, Z., Yu, Y., and Peng, L.M. (2010). Large-scale and rapid synthesis of ultralong ZnO nanowire films via anodization. J. Phys. Chem. C 114: 881–889, in Google Scholar

Huang, M.C., Wang, T., Wu, B.J., Lin, J.C., and Wu, C.C. (2016). Anodized ZnO nanostructures for photoelectrochemical water splitting. Appl. Surf. Sci. 360: 442–450, in Google Scholar

Iqbal, T., Khan, M.A., and Mahmood, H. (2018). Facile synthesis of ZnO nanosheets: structural, antibacterial and photocatalytic studies. Mater. Lett. 224: 59–63, in Google Scholar

Katwal, G., Paulose, M., Rusakova, I.A., Martinez, J.E., and Varghese, O.K. (2016). Rapid growth of zinc oxide nanotube-nanowire hybrid architectures and their use in breast cancer-related volatile organics detection. Nano Lett. 16: 3014–3021, in Google Scholar PubMed

Keis, K., Lindgren, J., Lindquist, S.E., and Hagfeldt, A. (2000). Studies of the adsorption process of Ru complexes in nanoporous ZnO electrodes. Langmuir 16: 4688–4694, in Google Scholar

Kim, S.J. and Choi, J. (2008). Self-assembled arrays of ZnO stripes by anodization. Electrochem. Commun. 10: 175–179, in Google Scholar

Kim, Y.T., Park, J., Kim, S., Park, D.W., and Choi, J. (2012). Fabrication of hierarchical ZnO nanostructures for dye-sensitized solar cells. Electrochim. Acta 78: 417–421, in Google Scholar

Kong, L., Guo, X., Xu, J., Mo, Z., and Li, L. (2020). Morphology control of WO3 nanoplate film on W foil by oxalic acid for photocatalytic gaseous acetaldehyde degradation. J. Photochem. Photobiol. Chem. 401: 112760, in Google Scholar

Kundu, S., Majumder, R., Ghosh, R., and Pal Chowdhury, M. (2019). Superior positive relative humidity sensing properties of porous nanostructured Al:ZnO thin films deposited by jet-atomizer spray pyrolysis technique. J. Mater. Sci. Mater. Electron. 30: 4618–4625, in Google Scholar

Lee, C.H., Rhee, S.W., and Choi, H.W. (2012a). Preparation of TiO2 nanotube/nanoparticle composite particles and their applications in dye-sensitized solar cells. Nanoscale Res. Lett. 7: 48, in Google Scholar

Lee, K.M., Chiu, W.H., Hsu, C.Y., Cheng, H.M., Lee, C.H., and Wu, C.G. (2012b). Ionic liquid diffusion properties in tetrapod-like ZnO photoanode for dye-sensitized solar cells. J. Power Sources 216: 330–336, in Google Scholar

Lewis, N.S. (2007). Toward cost-effective solar energy use. Science 315: 798–801, in Google Scholar

Li, N., Li, X., and Zeng, B. (2018). Field emission and emission-stimulated desorption of ZnO nanomaterials. Appl. Sci. 8: 1–8, in Google Scholar

Lin, C.Y., Lai, Y.H., Chen, H.W., Chen, J.G., Kung, C.W., Vittal, R., and Ho, K.C. (2011). Highly efficient dye-sensitized solar cell with a ZnO nanosheet-based photoanode. Energy Environ. Sci. 4: 3448–3455, in Google Scholar

Lin, Y., Lin, Q., Liu, X., Gao, Y., He, J., Wang, W., and Fan, Z. (2015). A highly controllable electrochemical anodization process to fabricate porous anodic aluminum oxide membranes. Nanoscale Res. Lett. 10: 495, in Google Scholar

Liu, H., Yang, J., Liang, J., Huang, Y., and Tang, C. (2008). ZnO nanofiber and nanoparticle synthesized through electrospinning and their photocatalytic activity under visible light. J. Am. Ceram. Soc. 91: 1287–1291, in Google Scholar

Liu, Z., Cai, Q., Ma, C., Zhang, J., and Liu, J. (2017). Photoelectrochemical properties and growth mechanism of varied ZnO nanostructures. New J. Chem. 41: 7947–7952, in Google Scholar

Lohrengel, M.M. (1993). Thin anodic oxide layers on aluminium and other valve metals: high field regime. Mater. Sci. Eng. R 11: 243–294, in Google Scholar

Lupan, O., Guérin, V.M., Ghimpu, L., Tiginyanu, I.M., and Pauporté, T. (2012). Nanofibrous-like ZnO layers deposited by magnetron sputtering and their integration in dye-sensitized solar cells. Chem. Phys. Lett. 550: 125–129, in Google Scholar

Mah, C.F., Beh, K.P., Yam, F.K., and Hassan, Z. (2016). Rapid formation and evolution of anodized-Zn nanostructures in NaHCO3 solution. ECS J. Solid State Sci. Technol. 5: M105–M112, in Google Scholar

Man, M.T., Kim, J.H., Jeong, M.S., Do, A.T.T., and Lee, H.S. (2017). Oriented ZnO nanostructures and their application in photocatalysis. J. Lumin. 185: 17–22, in Google Scholar

Mang, A., Reimann, K., and Rübenacke, S. (1995). Band gaps, crystal-field splitting, spin-orbit coupling, and exciton binding energies in ZnO under hydrostatic pressure. Solid State Commun. 94: 251–254, in Google Scholar

Marlinda, A.R., Yusoff, N., Pandikumar, A., Huang, N.M., Akbarzadeh, O., Sagadevan, S., Wahab, Y.A., Johan, M.R. (2019). Tailoring morphological characteristics of zinc oxide using a one-step hydrothermal method for photoelectrochemical water splitting application. Int. J. Hydrogen Energy 44: 17535–17543, in Google Scholar

Martinson, A.B.F., McGarrah, J.E., Parpia, M.O.K., and Hupp, J.T. (2006). Dynamics of charge transport and recombination in ZnO nanorod array dye-sensitized solar cells. Phys. Chem. Chem. Phys. 8: 4655–4659, in Google Scholar PubMed

Masuda, H., Yamada, H., Satoh, M., Asoh, H., Nakao, M., and Tamamura, T. (1997). Highly ordered nanochannel-array architecture in anodic alumina. Appl. Phys. Lett. 71: 2770, in Google Scholar

Mendelsberg, R.J., Lim, S.H.N., Zhu, Y.K., Wallig, J., Milliron, D.J., and Anders, A. (2011). Achieving high mobility ZnO: Al at very high growth rates by DC filtered cathodic arc deposition. J. Phys. Appl. Phys. 44: 1–6, in Google Scholar

Miles, D.O., Cameron, P.J., and Mattia, D. (2015). Hierarchical 3D ZnO nanowire structures via fast anodization of zinc. J. Mater. Chem. 3: 17481–17882, in Google Scholar

Miles, D.O., Lee, C.S., Cameron, P.J., Mattia, D., and Kim, J.H. (2016). Hierarchical growth of TiO2 nanosheets on anodic ZnO nanowires for high efficiency dye-sensitized solar cells. J. Power Sources 325: 365–374, in Google Scholar

Mohan, R., Krishnamoorthy, K., and Kim, S.J. (2012). Diameter dependent photocatalytic activity of ZnO nanowires grown by vapor transport technique. Chem. Phys. Lett. 539: 83–88, in Google Scholar

Nair, P.K., Nair, M.T.S., García, V.M., Arenas, O.L., Peña, Y., Castillo, A., Ayala, I.T., Gomezdaza, O., Sánchez, A., Campos, J., et al.. (1998). Semiconductor thin films by chemical bath deposition for solar energy related applications. Sol. Energy Mater. Sol. Cell. 52: 313–344, in Google Scholar

Nandi, P. and Das, D. (2019). Photocatalytic degradation of Rhodamine-B dye by stable ZnO nanostructures with different calcination temperature induced defects. Appl. Surf. Sci. 465: 546–556, in Google Scholar

O’Brien, P., Saeed, T., and Knowles, J. (1996). Speciation and the nature of ZnO thin films from chemical bath deposition. J. Mater. Chem. 6: 1135–1139, in Google Scholar

Ou, M., Ma, L., Xu, L., Li, H., Yang, Z., and Lan, Z. (2016). Microwave-assisted synthesis of hierarchical ZnO nanostructures. In: MATEC Web Conf. 67 No. 02005, in Google Scholar

Özgür, Ü., Alivov, Y.I., Liu, C., Teke, A., Reshchikov, M.A., Doǧan, S., Avrutin, V., Cho, S.J., Morkoç, A.H. (2005). A comprehensive review of ZnO materials and devices. J. Appl. Phys. 98: 1–103, in Google Scholar

Park, J., Kim, K., and Choi, J. (2013). Formation of ZnO nanowires during short durations of potentiostatic and galvanostatic anodization. Curr. Appl. Phys. 13: 1370–1375, in Google Scholar

Park, J.Y., Oh, H., Kim, J.J., and Kim, S.S. (2006). Growth of ZnO nanorods via metalorganic chemical vapor deposition and their electrical properties. J. Cryst. Growth 287: 145–148, in Google Scholar

Patwari, J., Shyamal, S., Khan, T., Ghadi, H., Bhattacharya, C., Chakrabarti, S., and Pal, S.K. (2019). Inversion of activity in DSSC for TiO2 and ZnO photo-anodes depending on the choice of sensitizer and carrier dynamics. J. Lumin. 207: 169–176, in Google Scholar

Pruna, A., Shao, Q., Kamruzzaman, M., Li, Y.Y., Zapien, J.A., Pullini, D., Busquets Mataix, D., Ruotolo, A. (2017). Effect of ZnO core electrodeposition conditions on electrochemical and photocatalytic properties of polypyrrole-graphene oxide shelled nanoarrays. Appl. Surf. Sci. 392: 801–809, in Google Scholar

Ramirez-Canon, A., Miles, D.O., Cameron, P.J., and Mattia, D. (2013). Zinc oxide nanostructured films produced via anodization: a rational design approach. RSC Adv. 3: 25323–25330, in Google Scholar

Rani, M. and Tripathi, S.K. (2016). Electron transfer properties of organic dye sensitized ZnO and ZnO/TiO2 photoanode for dye sensitized solar cells. Renew. Sustain. Energy Rev. 61: 97–107, in Google Scholar

Reuge, N., Bacsa, R., Serp, P., and Caussat, B. (2009). Chemical vapor synthesis of zinc oxide nanoparticles: experimental and preliminary modeling studies. J. Phys. Chem. C 113: 19845–19852, in Google Scholar

Rosli, N., Halim, M.M., Hashim, M.R., and Maryam, W. (2019). Influence of concentration on the geometry of ZnO nanostructures prepared by chemical bath deposition. J. Phys. Conf. 1371: 012015, in Google Scholar

Samir, N., Eissa, D.S., and Allam, N.K. (2014). Self-assembled growth of vertically aligned ZnO nanorods for light sensing applications. Mater. Lett. 137: 45–48, in Google Scholar

Sánchez-Tovar, R., Fernández-Domene, R.M., Montañés, M.T., Sanz-Marco, A., and Garcia-Antón, J. (2016). ZnO/ZnS heterostructures for hydrogen production by photoelectrochemical water splitting. RSC Adv. 6: 30425–30435, in Google Scholar

Sanz-Marco, A., Sánchez-Tovar, R., Bajo, M.M., Fernández-Domene, R.M., and García-Antón, J. (2018). Cathodoluminescence characterization of Zno/Zns nanostructures anodized under hydrodynamic conditions. Electrochim. Acta 269: 553–559, in Google Scholar

Şengül, H., Theis, T.L., and Ghosh, S. (2008). Toward sustainable nanoproducts: an overview of nanomanufacturing methods. J. Ind. Ecol. 12: 329–359.10.1111/j.1530-9290.2008.00046.xSearch in Google Scholar

Sharma, S., Siwach, B., Ghoshal, S.K., and Mohan, D. (2017). Dye sensitized solar cells: from genesis to recent drifts. Renew. Sustain. Energy Rev. 70: 529–537, in Google Scholar

Shi, L., Zeng, C., Jin, Y., Wang, T., and Tsubaki, N. (2012). A sol–gel auto-combustion method to prepare Cu/ZnO catalysts for low-temperature methanol synthesis. Catal. Sci. Technol. 2: 2569–2577, in Google Scholar

Shi, Z. and Walker, A.V. (2015). Chemical bath deposition of ZnO on functionalized self-assembled monolayers: selective deposition and control of deposit morphology. Langmuir 31: 1421–1428, in Google Scholar PubMed

Sinha, D., De, D., Goswami, D., and Ayaz, A. (2018). Fabrication of DSSC with nanostructured ZnO photo anode and natural dye sensitizer. Mater. Today Proc. 5: 2056–2063, in Google Scholar

Siwatch, S., Kundu, V.S., Kumar, A., Kumar, S., Chauhan, N., and Kumari, M. (2019). Morphology correlated efficiency of ZnO photoanode in dye sensitized solar cell. Mater. Res. Express 6: 1050d3, in Google Scholar

Song, Y., Shao, P., Tian, J., Shi, W., Gao, S., Qi, J., Yan, X., Cui, F. (2016). One-step hydrothermal synthesis of ZnO hollow nanospheres uniformly grown on graphene for enhanced photocatalytic performance. Ceram. Int. 42: 2074–2078, in Google Scholar

Sreekantan, S., Gee, L.R., and Lockman, Z. (2009). Room temperature anodic deposition and shape control of one-dimensional nanostructured zinc oxide. J. Alloys Compd. 476: 513–518, in Google Scholar

Stroyuk, A.L., Kryukov, A.I., Kuchmii, S.Y., and Pokhodenko, V.D. (2005). Quantum size effects in semiconductor photocatalysis. Theor. Exp. Chem. 41: 207–228, in Google Scholar

Sun, T., Qui, J., and Liang, C. (2008). Controllable fabrication and photocatalytic activity of ZnO nanobelt arrays. J. Phys. Chem. C 112: 715–721, in Google Scholar

Swihart, M.T. (2003). Vapor-phase synthesis of nanoparticles. Curr. Opin. Colloid Interface Sci. 8: 127–133, in Google Scholar

Tahir, M., Tasleem, S., and Tahir, B. (2020). Recent development in band engineering of binary semiconductor materials for solar driven photocatalytic hydrogen production. Int. J. Hydrogen Energy 45: 15985–16038, in Google Scholar

Thakur, S. and Mandal, S.K. (2020). Morphology engineering of ZnO nanorod arrays to hierarchical nanoflowers for enhanced photocatalytic activity and antibacterial action against Escherichia coli. New J. Chem. 44: 11796–11807, in Google Scholar

Tong, H., Ouyang, S., Bi, Y., Umezawa, N., Oshikiri, M., and Ye, J. (2012). Nano-photocatalytic materials: possibilities and challenges. Adv. Mater. 24: 229–251, in Google Scholar PubMed

Toporovska, L.R., Hryzak, A.M., Turko, B.I., Rudyk, V.P., Tsybulskyi, V.S., and Serkiz, R.Y. (2017). Photocatalytic properties of zinc oxide nanorods grown by different methods. Opt. Quant. Electron. 49: 1–10, in Google Scholar

Torchynska, T.V. and El Filali, B. (2014). Size dependent emission stimulation in ZnO nanosheets. J. Lumin. 149: 54–60, in Google Scholar

Torchynska, T.V., El Filali, B., and Ballardo Rodríguez, I.C. (2016). Emission of Cu-related complexes in ZnO:Cu nanocrystals. Phys. E Low-dimens. Syst. Nanostruct. 75: 156–162, in Google Scholar

Tschurl, M. (2018). Semiconductor/metal (oxide) hybrid materials for applications in photocatalysis. In: Encyclopedia of interfacial chemistry: surface science and electrochemistry, pp. 573–580.10.1016/B978-0-12-409547-2.13002-1Search in Google Scholar

Tsubomura, H., Matsumura, M., Nomura, Y., and Amamiya, T. (1976). Dye sensitised zinc oxide: aqueous electrolyte: platinum photocell. Nature 261: 402–403, in Google Scholar

U.S. EIA. (2019). Annual energy outlook 2019 with projections to 2050. Annual Energy Outlook 2019 with Projections to 2050 44: 1–64.Search in Google Scholar

Vyas, S., Giri, P., Singh, S., and Chakrabarti, P. (2015). Comparative study of As-deposited ZnO thin films by thermal evaporation, pulsed laser deposition and RF sputtering methods for electronic and optoelectronic applications. J. Electron. Mater. 44: 3401–3407, in Google Scholar

van de Krol, R., and Grätzel, M. (2012). Photoelectro-chemical hydrogen production. Springer, New York.10.1007/978-1-4614-1380-6Search in Google Scholar

Virji, M.A. and Stefaniak, A.B. (2014). A review of engineered nanomaterial manufacturing processes and associated exposures. Compr. Mater. Process. 8: 103–125, in Google Scholar

Viswanathan, B., and Scibioh, M.A. (2014). Photoelectrochemistry. Alpha Science International Ltd, Oxford.Search in Google Scholar

Vittal, R. and Ho, K. (2017). Zinc oxide based dye-sensitized solar cells: a review. Renew. Sustain. Energy Rev. 70: 920–935, in Google Scholar

Wang, J., Wang, Z., Huang, B., Ma, Y., Liu, Y., Qin, X., Zhang, X., Dai, Y. (2012). Oxygen vacancy induced band-gap narrowing and enhanced visible light photocatalytic activity of ZnO. ACS Appl. Mater. Interfaces 4: 4024–4030, in Google Scholar PubMed

Wang, J., Chen, R., Xiang, L., and Komarneni, S. (2018). Synthesis, properties and applications of ZnO nanomaterials with oxygen vacancies: a review. Ceram. Int. 44: 7357–7377, in Google Scholar

Wang, L., Zhao, J., Liu, H., and Huang, J. (2018). Design, modification and application of semiconductor photocatalysts. J. Taiwan Inst. Chem. Eng. 93: 590–602, in Google Scholar

Wu, X., Lu, G., Li, C., and Shi, G. (2006). Room-temperature fabrication of highly oriented ZnO nanoneedle arrays by anodization of zinc foil. Nanotechnology 17: 4936–4940, in Google Scholar

Yang, H.Y., Yu, S.F., Lau, S.P., Zhang, X., Sun, D.D., and Jun, G. (2009). Direct Growth of ZnO nanocrystals onto the surface of porous TiO2 nanotube arrays for highly efficient and recyclable photocatalysts. Small 5: 2260–2264, in Google Scholar PubMed

Yang, X., Liu, R., He, Y., Thorne, J., Zheng, Z., and Wang, D. (2014). Enabling practical electrocatalyst-assisted photoelectron-chemical water splitting with earth abundant materials. Nano Research 8: 56–81, in Google Scholar

Yao, C., Lu, J., and Webster, T.J. (2011). Titanium and cobalt-chromium alloys for hips and knees (chapter 2). In: Lysaght, M. and Webster, T.J. (Eds.), Biomaterials for artificial organs. Woodhead Publishing Limited, Sawston, UK, pp. 34–55.10.1533/9780857090843.1.34Search in Google Scholar

Yin, H., Liu, H., and Shen, W.Z. (2010). The large diameter and fast growth of self-organized TiO2 nanotube arrays achieved via electrochemical anodization. Nanotechnology 21: 035601, in Google Scholar PubMed

Yoshida, T., Zhang, J., Komatsu, D., Sawatani, S., Minoura, H., Pauporté, T., Lincot, D., Oekermann, T., Schlettwein, D., Tada, H., et al.. (2009). Electrodeposition of inorganic/organic hybrid thin films. Adv. Funct. Mater. 19: 17–43, in Google Scholar

Yu, H., Wang, J., Xia, C., Yan, X., and Cheng, P. (2018). Template-free hydrothermal synthesis of Flower-like hierarchical zinc oxide nanostructures. Optik 168: 778–783, in Google Scholar

Yue, S., Yan, Z., Shi, Y., and Ran, G. (2013). Synthesis of zinc oxide nanotubes within ultrathin anodic aluminum oxide membrane by sol–gel method. Mater. Lett. 98: 246–249, in Google Scholar

Zaraska, L., Mika, K., Hnida, K.E., Gajewska, M., Łojewski, T., Jaskuła, M., and Sulka, G.D. (2017a). High aspect-ratio semiconducting ZnO nanowires formed by anodic oxidation of Zn foil and thermal treatment. Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. 226: 94–98, in Google Scholar

Zaraska, L., Mika, K., Syrek, K., and Sulka, G.D. (2017b). Formation of ZnO nanowires during anodic oxidation of zinc in bicarbonate electrolytes. J. Electroanal. Chem. 801: 511–520, in Google Scholar

Zhao, H. and Lei, Y. (2020). 3D nanostructures for the next generation of high-performance nanodevices for electrochemical energy conversion and storage. Adv. Energy Mater. 10: 1–8, in Google Scholar

Zhao, J., Wang, X., Liu, J., Meng, Y., Xu, X., and Tang, C. (2011). Controllable growth of zinc oxide nanosheets and sunflower structures by anodization method. Mater. Chem. Phys. 126: 555–559, in Google Scholar

Zheng, M., Xing, C., Zhang, W., Cheng, Z., Liu, X., and Zhang, S. (2020). Hydrogenated hematite nanoplates for enhanced photocatalytic and photo-fenton oxidation of organic compounds. Inorg. Chem. Commun. 119: 108040, in Google Scholar

Received: 2020-12-16
Accepted: 2021-04-26
Published Online: 2021-06-23
Published in Print: 2022-11-25

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 27.1.2023 from
Scroll Up Arrow