Skip to content
Licensed Unlicensed Requires Authentication Published online by De Gruyter August 23, 2021

Molybdenum nitrides from structures to industrial applications

Zainab N. Jaf EMAIL logo , Hussein A. Miran , Zhong-Tao Jiang and Mohammednoor Altarawneh ORCID logo EMAIL logo


Owing to their remarkable characteristics, refractory molybdenum nitride (MoNx)-based compounds have been deployed in a wide range of strategic industrial applications. This review reports the electronic and structural properties that render MoNx materials as potent catalytic surfaces for numerous chemical reactions and surveys the syntheses, procedures, and catalytic applications in pertinent industries such as the petroleum industry. In particular, hydrogenation, hydrodesulfurization, and hydrodeoxygenation are essential processes in the refinement of oil segments and their conversions into commodity fuels and platform chemicals. N-vacant sites over a catalyst’s surface are a significant driver of diverse chemical phenomena. Studies on various reaction routes have emphasized that the transfer of adsorbed hydrogen atoms from the N-vacant sites reduces the activation barriers for bond breaking at key structural linkages. Density functional theory has recently provided an atomic-level understanding of Mo–N systems as active ingredients in hydrotreating processes. These Mo–N systems are potentially extendible to the hydrogenation of more complex molecules, most notably, oxygenated aromatic compounds.

Corresponding authors: Zainab N. Jaf, Department of Physics, College of Education for Pure Sciences – Ibn Al-Haitham, University of Baghdad, Baghdad10071, Iraq; and Mohammednoor Altarawneh, Department of Chemical and Petroleum Engineering, United Arab Emirates University, Sheikh Khalifa bin Zayed Street, Al-Ain15551, United Arab Emirates, E-mail: (Z. N. Jaf), (M. Altarawneh)

Funding source: United Arab Emirates University (UAEU)

Award Identifier / Grant number: 31N451


Z. J. and H. M. acknowledge the Iraqi Ministry of Higher Education and Scientific Research and University of Baghdad represented by the College of Education for Pure Sciences – Ibn Al-Haitham.

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: M. A. Acknowledges a UPAR grant from the United Arab Emirates University, grant ID: 31N451.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.


Abdelkader, H.S., Rabahi, A., Benaissa, M., and Benabadji, M.K. (2020). Theoretical investigation of structural and mechanical stability of Mo2N. Solid State Commun. 314–315: 113919, in Google Scholar

Aegerter, P.A., Quigley, W.W., Simpson, G.J., Ziegler, D.D., Logan, J.W., Mccrea, K.R., Glazier, S., and Bussell, M.E. (1996). Thiophene hydrodesulfurization over alumina-supported molybdenum carbide and nitride catalysts: adsorption sites, catalytic activities, and nature of the active surface. J. Catal. 164: 109–121, in Google Scholar

Alexander, A.-M. and Hargreaves, J.S. (2010). Alternative catalytic materials: carbides, nitrides, phosphides and amorphous boron alloys. Chem. Soc. Rev. 39: 4388–4401, in Google Scholar

Altarawneh, M., Jaf, Z., Oskierski, H., Jiang, Z.-T., Gore, J., and Dlugogorski, B.Z. (2016). Conversion of NO into N2 over γ-Mo2N. J. Phys. Chem. C 120: 22270–22280, in Google Scholar

Arun, N., Nanda, S., Hu, Y., and Dalai, A.K. (2021). Hydrodeoxygenation of oleic acid using γ-Al2O3 supported transition metallic catalyst systems: insight into the development of novel FeCu/γ-Al2O3 catalyst. Mol. Catal.: 111526, in Google Scholar

Babich, I. and Moulijn, J. (2003). Science and technology of novel processes for deep desulfurization of oil refinery streams: a review. Fuel 82: 607–631, in Google Scholar

Baek, S.-H., Yun, K., Kang, D.-C., An, H., Park, M.B., Shin, C.-H., and Min, H.-K. (2021). Characteristics of high surface area molybdenum nitride and its activity for the catalytic decomposition of ammonia. Catalysts 11: 192, in Google Scholar

Bafrali, R. and Bell, A.T. (1992). Interactions of H2 and NH3 with Mo (100) and Mo (100)-c (2 × 2) N surfaces. Surf. Sci. 278: 353–363, in Google Scholar

Balasubramanian, K., Huang, L., and Gall, D. (2017). Phase stability and mechanical properties of Mo1−x Nx with 0 ≤ x ≤ 1. J. Appl. Phys. 122: 195101, in Google Scholar

Balasubramanian, K., Khare, S.V., and Gall, D. (2018). Energetics of point defects in rocksalt structure transition metal nitrides: thermodynamic reasons for deviations from stoichiometry. Acta Mater. 159: 77–88, in Google Scholar

Balogun, M.-S., Huang, Y., Qiu, W., Yang, H., Ji, H., and Tong, Y. (2017). Updates on the development of nanostructured transition metal nitrides for electrochemical energy storage and water splitting. Mater. Today 20: 425–451, in Google Scholar

Balogun, M.-S., Qiu, W., Wang, W., Fang, P., Lu, X., and Tong, Y. (2015). Recent advances in metal nitrides as high-performance electrode materials for energy storage devices. J. Mater. Chem. A 3: 1364–1387, in Google Scholar

Bell, T.E. and Torrente-Murciano, L. (2016). H2 production via ammonia decomposition using non-noble metal catalysts: a review. Top. Catal. 59: 1438–1457, in Google Scholar

Bezinge, A., Yvon, K., Muller, J., Lengaeur, W., and Ettmayer, P. (1987). High-pressure high-temperature experiments on δ-MoN. Solid State Commun. 63: 141–145, in Google Scholar

Bhattar, S., Abedin, M.A., Kanitkar, S., and Spivey, J.J. (2021). A review on dry reforming of methane over perovskite derived catalysts. Catal. Today 365: 2–23, in Google Scholar

Brewer, L. (1968). Bonding and structures of transition metals. Science 161: 115–122, in Google Scholar PubMed

Bull, C.L., Kawashima, T., Mcmillan, P.F., Machon, D., Shebanova, O., Daisenberger, D., Soignard, E., Takayama-Muromachi, E., and Chapon, L.C. (2006). Crystal structure and high-pressure properties of γ-Mo2N determined by neutron powder diffraction and X-ray diffraction. J. Solid State Chem. 179: 1762–1767, in Google Scholar

Bull, C.L., Mcmillan, P.F., Soignard, E., and Leinenweber, K. (2004). Determination of the crystal structure of δ-MoN by neutron diffraction. J. Solid State Chem. 177: 1488–1492, in Google Scholar

Burimsitthigul, T., Yoosuk, B., Ngamcharussrivichai, C., and Prasassarakich, P. (2021). Hydrocarbon biofuel from hydrotreating of palm oil over unsupported Ni–Mo sulfide catalysts. Renew. Energy 163: 1648–1659, in Google Scholar

Butler, K.T., Sai Gautam, G., and Canepa, P. (2019). Designing interfaces in energy materials applications with first-principles calculations. npj Comput. Mater. 5: 19, in Google Scholar

Cairns, A., Gallagher, J., Hargreaves, J., Mckay, D., Morrison, E., Rico, J., and Wilson, K. (2009). The influence of precursor source and thermal parameters upon the formation of beta-phase molybdenum nitride. J. Alloys Compd. 479: 851–854, in Google Scholar

Cairns, A., Gallagher, J., Hargreaves, J., Mckay, D., Rico, J., and Wilson, K. (2010). The effect of low levels of dopants upon the formation and properties of beta-phase molybdenum nitride. J. Solid State Chem. 183: 613–619, in Google Scholar

Calais, J.-L. (1977). Band structure of transition metal compounds. Adv. Phys. 26: 847–885, in Google Scholar

Cao, B., Neuefeind, J.C., Adzic, R.R., and Khalifah, P.G. (2015). Molybdenum nitrides as oxygen reduction reaction catalysts: structural and electrochemical studies. Inorg. Chem. 54: 2128–2136, in Google Scholar PubMed

Cardenas-Lizana, F., Gomez-Quero, S., Perret, N., Kiwi-Minsker, L., and Keane, M.A. (2011). β-molybdenum nitride: synthesis mechanism and catalytic response in the gas phase hydrogenation of p-chloronitrobenzene. Catal. Sci. Technol. 1: 794–801, in Google Scholar

Cárdenas-Lizana, F., Hao, Y., Crespo-Quesada, M., Yuranov, I., Wang, X., Keane, M.A., and Kiwi-Minsker, L. (2013). Selective gas phase hydrogenation of p-chloronitrobenzene over Pd catalysts: role of the support. ACS Catal. 3: 1386–1396, in Google Scholar

Cárdenas-Lizana, F., Lamey, D., Kiwi-Minsker, L., and Keane, M.A. (2018). Molybdenum nitrides: a study of synthesis variables and catalytic performance in acetylene hydrogenation. J. Mater. Sci. 53: 6707–6718, in Google Scholar

Chen, H., He, D., He, Q., Jiang, P., Zhou, G., and Fu, W. (2017). Selective hydrogenation of p-chloronitrobenzene over an Fe promoted Pt/AC catalyst. RSC Adv. 7: 29143–29148, in Google Scholar

Chen, J.G. (1996). Carbide and nitride overlayers on early transition metal surfaces: preparation, characterization, and reactivities. Chem. Rev. 96: 1477–1498, in Google Scholar PubMed

Chen, W.-F., Iyer, S., Iyer, S., Sasaki, K., Wang, C.-H., Zhu, Y., Muckerman, J.T., and Fujita, E. (2013a). Biomass-derived electrocatalytic composites for hydrogen evolution. Energy Environ. Sci. 6: 1818–1826, in Google Scholar

Chen, W.-F., Muckerman, J.T., and Fujita, E. (2013b). Recent developments in transition metal carbides and nitrides as hydrogen evolution electrocatalysts. Chem. Commun. 49: 8896–8909, in Google Scholar

Chen, W.F., Sasaki, K., Ma, C., Frenkel, A.I., Marinkovic, N., Muckerman, J.T., Zhu, Y., and Adzic, R.R. (2012). Hydrogen‐evolution catalysts based on non‐noble metal nickel–molybdenum nitride nanosheets. Angew. Chem. Int. Ed. 51: 6131–6135, in Google Scholar

Chen, W.F., Schneider, J.M., Sasaki, K., Wang, C.H., Schneider, J., Iyer, S., Iyer, S., Zhu, Y., Muckerman, J.T., and Fujita, E. (2014). Tungsten carbide–nitride on graphene nanoplatelets as a durable hydrogen evolution electrocatalyst. ChemSusChem 7: 2414–2418, in Google Scholar

Chen, X., Zhang, T., Zheng, M., Wu, Z., Wu, W., and Li, C. (2004). The reaction route and active site of catalytic decomposition of hydrazine over molybdenum nitride catalyst. J. Catal. 224: 473–478, in Google Scholar

Choi, D. and Kumta, P.N. (2011). Synthesis and characterization of nanostructured niobium and molybdenum nitrides by a two‐step transition metal halide approach. J. Am. Ceram. Soc. 94: 2371–2378, in Google Scholar

Choi, J.-G., Brenner, J.R., Colling, C.W., Demczyk, B.G., Dunning, J.L., and Thompson, L.T. (1992). Synthesis and characterization of molybdenum nitride hydrodenitrogenation catalysts. Catal. Today 15: 201–222, in Google Scholar

Choi, J.-G., Curl, R.L., and Thompson, L.T. (1994). Molybdenum nitride catalysts: I. Influence of the synthesis factors on structural properties. J. Catal. 146: 218–227, in Google Scholar

Claridge, J.B., York, A.P., Brungs, A.J., and Green, M.L. (2000). Study of the temperature-programmed reaction synthesis of early transition metal carbide and nitride catalyst materials from oxide precursors. Chem. Mater. 12: 132–142, in Google Scholar

Colling, C.W., Choi, J.-G., and Thompson, L.T. (1996). Molybdenum nitride catalysts: II. H2 temperature programmed reduction and NH3 temperature programmed desorption. J. Catal. 160: 35–42, in Google Scholar

Ding, L.-P., Shao, P., Zhang, F.-H., Lu, C., and Huang, X.-F. (2018). Prediction of molybdenum nitride from first-principle calculations: crystal structures, electronic properties, and hardness. J. Phys. Chem. C 122: 21039–21046, in Google Scholar

Dinh, K.N., Liang, Q., Du, C.-F., Zhao, J., Tok, A.I.Y., Mao, H., and Yan, Q. (2019). Nanostructured metallic transition metal carbides, nitrides, phosphides, and borides for energy storage and conversion. Nano Today 25: 99–121, in Google Scholar

Dolce, G., Savage, P., and Thompson, L. (1997). Hydrotreatment activities of supported molybdenum nitrides and carbides. Energy Fuels 11: 668–675, in Google Scholar

Dongil, A. (2019). Recent progress on transition metal nitrides nanoparticles as heterogeneous catalysts. Nanomaterials 9: 1111, in Google Scholar

Eichler, A. (2002). CO oxidation on transition metal surfaces: reaction rates from first principles. Surf. Sci. 498: 314–320, in Google Scholar

Erdemir, D. and Dincer, I. (2021). A perspective on the use of ammonia as a clean fuel: challenges and solutions. Int. J. Energy Res. 45: 4827–4834, in Google Scholar

Erisman, J.W., Sutton, M.A., Galloway, J., Klimont, Z., and Winiwarter, W. (2008). How a century of ammonia synthesis changed the world. Nat. Geosci. 1: 636, in Google Scholar

Esposito, D.V., Hunt, S.T., Stottlemyer, A.L., Dobson, K.D., Mccandless, B.E., Birkmire, R.W., and Chen, J.G. (2010). Low‐cost hydrogen‐evolution catalysts based on monolayer platinum on tungsten monocarbide substrates. Angew. Chem. Int. Ed. 49: 9859–9862, in Google Scholar PubMed

Ettmayer, P. (1970). Das system Molybdän-Stickstoff. Monatsh. Chem. 101: 127–140, in Google Scholar

Frapper, G., Pélissier, M., and Hafner, J. (2000). CO Adsorption on molybdenum nitride’s γ-Mo2N (100) surface: formation of NCO species? A density functional study. J. Phys. Chem. B 104: 11972–11976, in Google Scholar

Fu, X., Su, H., Yin, W., Huang, Y., and Gu, X. (2017). Bimetallic molybdenum nitride Co3Mo3N: a new promising catalyst for CO2 reforming of methane. Catal. Sci. Technol. 7: 1671–1678, in Google Scholar

Furimsky, E. (2000). Catalytic hydrodeoxygenation. Appl. Catal. Gen. 199: 147–190, in Google Scholar

Furimsky, E. (2003). Metal carbides and nitrides as potential catalysts for hydroprocessing. Appl. Catal. Gen. 240: 1–28, in Google Scholar

Ganin, A.Y., Kienle, L., and Vajenine, G.V. (2006). Synthesis and characterisation of hexagonal molybdenum nitrides. J. Solid State Chem. 179: 2339–2348, in Google Scholar

Gao, B., Li, X., Ding, K., Huang, C., Li, Q., Chu, P.K., and Huo, K. (2019). Recent progress in nanostructured transition metal nitrides for advanced electrochemical energy storage. J. Mater. Chem. A 7: 14–37, in Google Scholar

Gassner, G., Mayrhofer, P., Kutschej, K., Mitterer, C., and Kathrein, M. (2006). Magnéli phase formation of PVD Mo–N and W–N coatings. Surf. Coating. Technol. 201: 3335–3341, in Google Scholar

Ghampson, I.T., Sepúlveda, C., Garcia, R., Radovic, L.R., Fierro, J.G., Desisto, W.J., and Escalona, N. (2012). Hydrodeoxygenation of guaiacol over carbon-supported molybdenum nitride catalysts: effects of nitriding methods and support properties. Appl. Catal. Gen. 439: 111–124, in Google Scholar

Giordano, C. and Antonietti, M. (2011). Synthesis of crystalline metal nitride and metal carbide nanostructures by sol–gel chemistry. Nano Today 6: 366–380, in Google Scholar

Gogotsi, Y.G. and Andrievski, R.A. (2012). Materials science of carbides, nitrides and borides. Springer Science & Business Media, Heidelberg, Germany.Search in Google Scholar

Goldschmid, H.J. (2013). Interstitial alloys. Springer, Berlin, Germany.Search in Google Scholar

Gray, H.B. (2009). Powering the planet with solar fuel. Nat. Chem. 1: 7, in Google Scholar PubMed

Greczynski, G., Primetzhofer, D., Lu, J., and Hultman, L. (2017). Core-level spectra and binding energies of transition metal nitrides by non-destructive X-ray photoelectron spectroscopy through capping layers. Appl. Surf. Sci. 396: 347–358, in Google Scholar

Greeley, J., Nørskov, J.K., Kibler, L.A., El‐Aziz, A.M., and Kolb, D.M. (2006). Hydrogen evolution over bimetallic systems: understanding the trends. ChemPhysChem 7: 1032–1035, in Google Scholar PubMed

Gregory, D.H. (1999). Structural families in nitride chemistry. J. Chem. Soc., Dalton Trans. 1: 259–270, in Google Scholar

Guy, K., Tessier, F., Kaper, H., Grasset, F., Dumait, N., Demange, V., Nishio, M., Matsushita, Y., Matsui, Y., Takei, T., et al.. (2020). Original synthesis of molybdenum nitrides using metal cluster compounds as precursors: applications in heterogeneous catalysis. Chem. Mater. 32: 6026–6034, in Google Scholar

Haddix, G., Jones, D., Reimer, J., and Bell, A. (1988). Characterization of NH3 adsorbed on γ-Mo2N by NMR spectroscopy. J. Catal. 112: 556–564, in Google Scholar

Haddix, G., Reimer, J., and Bell, A. (1987). Characterization of H2 adsorbed on γ-Mo2N by NMR spectroscopy. J. Catal. 108: 50–54, in Google Scholar

Hägg, G. (1931). Gesetzmässigkeiten im Kristallbau bei Hydriden, Boriden, Carbiden und Nitriden der Übergangselemente. Z. Phys. Chem. 12: 33–56.Search in Google Scholar

Ham, D.J. and Lee, J.S. (2009). Transition metal carbides and nitrides as electrode materials for low temperature fuel cells. Energies 2: 873–899, in Google Scholar

Hao, Z., Wei, Z., Wang, L., Li, X., Li, C., Min, E., and Xin, Q. (2000). Selective hydrogenation of ethyne on γ-Mo2N. Appl. Catal. Gen. 192: 81–84, in Google Scholar

Hargreaves, J. (2013). Heterogeneous catalysis with metal nitrides. Coord. Chem. Rev. 257: 2015–2031, in Google Scholar

Hargreaves, J. (2014). Nitrides as ammonia synthesis catalysts and as potential nitrogen transfer reagents. Appl. Petrochem. Res. 4: 3–10, in Google Scholar

He, H., Dai, H.X., Ngan, K.Y., and Au, C.T. (2001). Molybdenum nitride for the direct decomposition of NO. Catal. Lett. 71: 147–153, in Google Scholar

Heine, V. (1967). s− d interaction in transition metals. Phys. Rev. 153: 673, in Google Scholar

Hillis, M., Kemball, C., and Roberts, M. (1966). Synthesis of ammonia and related processes on reduced molybdenum dioxide. Trans. Faraday Soc. 62: 3570–3585, in Google Scholar

Höchst, H., Bringans, R., Steiner, P., and Wolf, T. (1982). Photoemission study of the electronic structure of stoichiometric and substoichiometric TiN and ZrN. Phys. Rev. B 25: 7183, in Google Scholar

Hones, P., Martin, N., Regula, M., and Lévy, F. (2003). Structural and mechanical properties of chromium nitride, molybdenum nitride, and tungsten nitride thin films. J. Phys. D Appl. Phys. 36: 1023, in Google Scholar

Hume-Rothery, W. (1968). The Engel-Brewer theories of metals and alloys. Prog. Mater. Sci. 13: 229–265, in Google Scholar

Hunter, S.M., Mckay, D., Smith, R.I., Hargreaves, J.S., and Gregory, D.H. (2010). Topotactic nitrogen transfer: structural transformation in cobalt molybdenum nitrides. Chem. Mater. 22: 2898–2907, in Google Scholar

Inumaru, K., Baba, K., and Yamanaka, S. (2005). Synthesis and characterization of superconducting β-Mo2N crystalline phase on a Si substrate: an application of pulsed laser deposition to nitride chemistry. Chem. Mater. 17: 5935–5940, in Google Scholar

Inumaru, K., Baba, K., and Yamanaka, S. (2006a). Preparation of superconducting molybdenum nitride MoNx (0.5 ≤ x ≤ 1) films with controlled composition. Phys. B Condens. Matter 383: 84–85, in Google Scholar

Inumaru, K., Baba, K., and Yamanaka, S. (2006b). Structural distortion and suppression of superconductivity in stoichiometric B1−MoN epitaxial thin films. Phys. Rev. B 73: 052504, in Google Scholar

Isaev, E.I., Simak, S.I., Abrikosov, I., Ahuja, R., Vekilov, Y.K., Katsnelson, M., Lichtenstein, A., and Johansson, B. (2007). Phonon related properties of transition metals, their carbides, and nitrides: a first-principles study. J. Appl. Phys. 101: 123519, in Google Scholar

Jaf, Z.N., Altarawneh, M., Miran, H.A., Almatarneh, M.H., Jiang, Z.-T., and Dlugogorski, B.Z. (2018a). Catalytic hydrogenation of p-chloronitrobenzene to p-Chloroaniline mediated by γ-Mo2N. ACS Omega 3: 14380–14391, in Google Scholar PubMed PubMed Central

Jaf, Z.N., Altarawneh, M., Miran, H.A., and Jiang, Z.-T. (2018b). Geometries, electronic properties and stability of molybdenum and tungsten nitrides low-index surfaces. Mater. Res. Express 5: 126402, in Google Scholar

Jaf, Z.N., Altarawneh, M., Miran, H.A., Jiang, Z.-T., and Dlugogorski, B.Z. (2018c). Hydrodesulfurization of thiophene over γ-Mo2N catalyst. Mol. Catal. 459: 21–30, in Google Scholar

Jaf, Z.N., Altarawneh, M., Miran, H.A., Jiang, Z.-T., and Dlugogorski, B.Z. (2017). Mechanisms governing selective hydrogenation of acetylene over γ-Mo2N surfaces. Catal. Sci. Technol. 7: 943–960, in Google Scholar

Jaf, Z.N., Jiang, Z.-T., Altarawneh, M., and Miran, H.A. (2016). Thermo-elastic and optical properties of molybdenum nitride. Can. J. Phys. 94: 902–912, in Google Scholar

Jaggers, C.H., Michaels, J.N., and Stacy, A.M. (1990). Preparation of high-surface-area transition-metal nitrides: molybdenum nitrides, Mo2N and MoN. Chem. Mater. 2: 150–157, in Google Scholar

Jaramillo, T.F., Jørgensen, K.P., Bonde, J., Nielsen, J.H., Horch, S., and Chorkendorff, I. (2007). Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts. Science 317: 100–102, in Google Scholar

Jauberteau, I., Bessaudou, A., Mayet, R., Cornette, J., Jauberteau, J.L., Carles, P., and Merle-Méjean, T. (2015). Molybdenum nitride films: crystal structures, synthesis, mechanical, electrical and some other properties. Coatings 5: 656–687, in Google Scholar

Jehn, H. and Ettmayer, P. (1978). The molybdenum-nitrogen phase diagram. J. Less Common. Met. 58: 85–98, in Google Scholar

Jennings, J.R. (2013). Catalytic ammonia synthesis: fundamentals and practice. Springer Science & Business Media, Heidelberg, Germany.Search in Google Scholar

Jhi, S.-H., Ihm, J., Louie, S.G., and Cohen, M.L. (1999). Electronic mechanism of hardness enhancement in transition-metal carbonitrides. Nature 399: 132–134, in Google Scholar

Jin, H., Liu, X., Vasileff, A., Jiao, Y., Zhao, Y., Zheng, Y., and Qiao, S.-Z. (2018). Single-crystal nitrogen-rich two-dimensional Mo5N6 nanosheets for efficient and stable seawater splitting. ACS Nano 12: 12761–12769, in Google Scholar PubMed

Johansson, L.I. (1995). Electronic and structural properties of transition-metal carbide and nitride surfaces. Surf. Sci. Rep. 21: 177–250, in Google Scholar

Joshi, S., Wang, Q., Puntambekar, A., and Chakrapani, V. (2017). Facile synthesis of large area two-dimensional layers of transition-metal nitride and their use as insertion electrodes. ACS Energy Lett. 2: 1257–1262, in Google Scholar

Kanoun, M., Goumri-Said, S., and Jaouen, M. (2007). Structure and mechanical stability of molybdenum nitrides: a first-principles study. Phys. Rev. B 76: 134109, in Google Scholar

Karam, R. and Ward, R. (1970). Preparation of .beta.-molybdenum nitride. Inorg. Chem. 9: 1385–1387, in Google Scholar

Kawashima, T., Takayama-Muromachi, E., and Mcmillan, P.F. (2007). High-pressure synthesis and crystal structure of γ-Mo2N. Physica C 460: 651–652, in Google Scholar

Khojier, K., Mehr, M.R.K., and Savaloni, H. (2013). Annealing temperature effect on the mechanical and tribological properties of molybdenum nitride thin films. J. Nanostruct. Chem. 3: 5, in Google Scholar

Klimashin, F., Koutná, N., Euchner, H., Holec, D., and Mayrhofer, P. (2016). The impact of nitrogen content and vacancies on structure and mechanical properties of Mo–N thin films. J. Appl. Phys. 120: 185301, in Google Scholar

Kojima, R. and Aika, K.-I. (2001). Molybdenum nitride and carbide catalysts for ammonia synthesis. Appl. Catal. Gen. 219: 141–147, in Google Scholar

Koutná, N., Holec, D., Friak, M., Mayrhofer, P.H., and Šob, M. (2018). Stability and elasticity of metastable solid solutions and superlattices in the MoN–TaN system: first-principles calculations. Mater. Des. 144: 310–322, in Google Scholar

Koutná, N., Holec, D., Svoboda, O., Klimashin, F.F., Friak, M., and Mayrhofer, P.H. (2016). Point defects stabilise cubic Mo–N and Ta–N. J. Phys. D Appl. Phys. 49: 375303, in Google Scholar

Kreider, M.E., Stevens, M.B., Liu, Y., Patel, A.M., Statt, M.J., Gibbons, B.M., Gallo, A., Ben-Naim, M., Mehta, A., and Davis, R.C. (2020). Nitride or oxynitride? Elucidating the composition–activity relationships in molybdenum nitride electrocatalysts for the oxygen reduction reaction. Chem. Mater. 32: 2946–2960, in Google Scholar

Lahmer, M.A. (2019). The effect of growth conditions and vacancies on the electronic and mechanical properties of cubic Mo2N; a DFT study. Comput. Condens. Matter 21: e00405, in Google Scholar

Lee, J.S. and Ham, D.J. (2003). Metal nitrides. In: Encyclopedia of catalysis. John Wiley & Sons, Hoboken, New Jersey, pp. 15–32.10.1002/0471227617.eoc138.pub2Search in Google Scholar

Lee, J.-Y. and Park, J.-W. (1996). Diffusion barrier property of molybdenum nitride films for copper metallization. Jpn. J. Appl. Phys. 35: 4280, in Google Scholar

Lee, K.S., Abe, H., Reimer, J., and Bell, A. (1993). Hydrodenitrogenation of quinoline over high-surface-area Mo2N. J. Catal. 139: 34–40, in Google Scholar

Lengauer, W. (2000). Transition metal carbides, nitrides, and carbonitrides. In: Handbook of ceramic hard materials. John Wiley & Sons, Hoboken, New Jersey, pp. 202–252.10.1002/9783527618217.ch7Search in Google Scholar

Lengauer, W. (2005). Nitrides: transition metal solid‐state chemistry. Wiley Online Library, Hoboken, New Jersey.Search in Google Scholar

Lévy, F., Hones, P., Schmid, P., Sanjinés, R., Diserens, M., and Wiemer, C. (1999). Electronic states and mechanical properties in transition metal nitrides. Surf. Coating. Technol. 120: 284–290, in Google Scholar

Levy, R. and Boudart, M. (1973). Platinum-like behavior of tungsten carbide in surface catalysis. Science 181: 547–549, in Google Scholar PubMed

Lewis, N.S. and Nocera, D.G. (2006). Powering the planet: chemical challenges in solar energy utilization. Proc. Natl. Acad. Sci. U. S. A. 103: 15729–15735, in Google Scholar PubMed PubMed Central

Li, S., Kim, W.B., and Lee, J.S. (1998). Effect of the reactive gas on the solid-state transformation of molybdenum trioxide to carbides and nitrides. Chem. Mater. 10: 1853–1862, in Google Scholar

Li, S., Lee, J.S., Hyeon, T., and Suslick, K.S. (1999). Catalytic hydrodenitrogenation of indole over molybdenum nitride and carbides with different structures. Appl. Catal. Gen. 184: 1–9, in Google Scholar

Li, W., Yan, X., Aberle, A.G., and Venkataraj, S. (2015). Effect of deposition pressure on the properties of magnetron-sputter-deposited molybdenum back contacts for CIGS solar cells. Jpn. J. Appl. Phys. 54: 08KC14, in Google Scholar

Li, X.S., Chen, Y.X., Zhang, Y.J., Ji, C.X., and Xin, Q. (1996a). Temperature-programmed desorption and adsorption of hydrogen on Mo2N. React. Kinet. Catal. Lett. 58: 391–396, in Google Scholar

Li, X.S., Zhang, Y.J., Xin, Q., Ji, C.X., Miao, Y.F., and Wang, L. (1996b). Irreversible hydrogen uptake on Mo2N catalyst. React. Kinet. Catal. Lett. 57: 177–182, in Google Scholar

Lin, S.-Y. and Lai, Y.-S. (2014). Effect of nitrogen on the physical properties and work function of MoNx cap layers on HfO2 gate dielectrics. ECS J. Solid State Sci. Technol. 3: N161–N165, in Google Scholar

Liu, D., Liu, Y., Zhou, T., Liu, C., and Que, G. (2003). In situ FTIR study of co hydrogenation on a molybdenum nitride catalyst. Prepr. Pap.-Am. Chem. Soc., Div. Fuel Chem. 48: 506.Search in Google Scholar

Liu, Y., Liu, C., and Que, G. (2002). Hydrodesulfurization of dibenzothiophene over cobalt− molybdenum nitride catalysts. Energy Fuels 16: 531–535, in Google Scholar

Liu, Z., Zhou, X., Gall, D., and Khare, S. (2014). First-principles investigation of the structural, mechanical and electronic properties of the NbO-structured 3d, 4d and 5d transition metal nitrides. Comput. Mater. Sci. 84: 365–373, in Google Scholar

Luo, Y.-R. (2002). Handbook of bond dissociation energies in organic compounds. CRC Press, Boca Raton, Florida.10.1201/9781420039863Search in Google Scholar

Marchand, R., Gouin, X., Tessier, F., and Laurent, Y. (1996). New routes to molybdenum nitrides and oxynitrides: preparation and characterization of new phases. In: The chemistry of transition metal carbides and nitrides. Springer, Berlin, Germany, pp. 252–270.10.1007/978-94-009-1565-7_13Search in Google Scholar

Marchand, R., Tessier, F., and Disalvo, F.J. (1999). New routes to transition metal nitrides: and characterization of new phases. J. Mater. Chem. 9: 297–304, in Google Scholar

Markel, E. and Van Zee, J. (1990). Catalytic hydrodesulfurization by molybdenum nitride. J. Catal. 126: 643–657, in Google Scholar

Mccrea, K.R., Logan, J.W., Tarbuck, T.L., Heiser, J.L., and Bussell, M.E. (1997). Thiophene hydrodesulfurization over alumina-supported molybdenum carbide and nitride catalysts: effect of Mo loading and phase. J. Catal. 171: 255–267, in Google Scholar

Mcgee, R.C.V. and Thompson, L.T. (2020). Nature of acid-base sites on molybdenum nitride catalysts: effect of nitrogen and oxygen content. Appl. Catal. Gen. 605: 117777, in Google Scholar

Mckay, D. (2008). Catalysis over molybdenum containing nitride materials, PhD Thesis. University of Glasgow, Glasgow, Scotland.Search in Google Scholar

Mckone, J.R., Lewis, N.S., and Gray, H.B. (2013). Will solar-driven water-splitting devices see the light of day? Chem. Mater. 26: 407–414, in Google Scholar

Mckone, J.R., Marinescu, S.C., Brunschwig, B.S., Winkler, J.R., and Gray, H.B. (2014). Earth-abundant hydrogen evolution electrocatalysts. Chem. Sci. 5: 865–878, in Google Scholar

Mckone, J.R., Warren, E.L., Bierman, M.J., Boettcher, S.W., Brunschwig, B.S., Lewis, N.S., and Gray, H.B. (2011). Evaluation of Pt, Ni, and Ni–Mo electrocatalysts for hydrogen evolution on crystalline Si electrodes. Energy Environ. Sci. 4: 3573–3583, in Google Scholar

Meng, X., Cheng, H., Fujita, S.-I., Hao, Y., Shang, Y., Yu, Y., Cai, S., Zhao, F., and Arai, M. (2010). Selective hydrogenation of chloronitrobenzene to chloroaniline in supercritical carbon dioxide over Ni/TiO2: significance of molecular interactions. J. Catal. 269: 131–139, in Google Scholar

Mitterer, C., Holler, F., Üstel, F., and Heim, D. (2000). Application of hard coatings in aluminium die casting—soldering, erosion and thermal fatigue behaviour. Surf. Coating. Technol. 125: 233–239, in Google Scholar

Mohammed, A.H.A.K., Hussein, H.Q., and Naife, T.M. (2015). Comparative study of new Re-Ni-Mo/Al2o3 and conventional hydrodesulphurization catalyst. Iraqi J. Chem. Petrol. Eng. 16: 1–9.Search in Google Scholar

Monnier, J., Sulimma, H., Dalai, A., and Caravaggio, G. (2010). Hydrodeoxygenation of oleic acid and canola oil over alumina-supported metal nitrides. Appl. Catal., A 382: 176–180, in Google Scholar

Mueller-Langer, F., Tzimas, E., Kaltschmitt, M., and Peteves, S. (2007). Techno-economic assessment of hydrogen production processes for the hydrogen economy for the short and medium term. Int. J. Hydrogen Energy 32: 3797–3810, in Google Scholar

Nagai, M. (2007). Transition-metal nitrides for hydrotreating catalyst — synthesis, surface properties, and reactivities. Appl. Catal. Gen. 322: 178–190, in Google Scholar

Nagai, M. and Miyao, T. (1992). Activity of alumina-supported molybdenum nitride for carbazole hydrodenitrogenation. Catal. Lett. 15: 105–109, in Google Scholar

Nagai, M., Miyao, T., and Tuboi, T. (1993). Hydrodesulfurization of dibenzothiophene on alumina-supported molybdenum nitride. Catal. Lett. 18: 9–14, in Google Scholar

Nagai, M., Goto, Y., Irisawa, A., and Omi, S. (2000). Catalytic activity and surface properties of nitrided molybdena–alumina for carbazole hydrodenitrogenation. J. Catal. 191: 128–137, in Google Scholar

Neylon, M., Choi, S., Kwon, H., Curry, K., and Thompson, L. (1999). Catalytic properties of early transition metal nitrides and carbides: n-butane hydrogenolysis, dehydrogenation and isomerization. Appl. Catal. Gen. 183: 253–263, in Google Scholar

Oyama, S.T. (1992). Crystal structure and chemical reactivity of transition metal carbides and nitrides. J. Solid State Chem. 96: 442–445, in Google Scholar

Oyama, S.T. (1996). Introduction to the chemistry of transition metal carbides and nitrides. In: The chemistry of transition metal carbides and nitrides. Springer, Berlin, Germany, pp. 1–27.10.1007/978-94-009-1565-7_1Search in Google Scholar

Ozkan, U.S., Zhang, L., and Clark, P.A. (1997). Performance and postreaction characterization of γ-Mo2N catalysts in simultaneous hydrodesulfurization and hydrodenitrogenation reactions. J. Catal. 172: 294–306, in Google Scholar

Pakhare, D. and Spivey, J. (2014). A review of dry (CO2) reforming of methane over noble metal catalysts. Chem. Soc. Rev. 43: 7813–7837, in Google Scholar PubMed

Papaconstantopoulos, D. and Pickett, W. (1985). Effects of disorder on high-temperature superconductivity in cubic MoN. Phys. Rev. B 31: 7093, doi: in Google Scholar PubMed

Papaconstantopoulos, D., Pickett, W., Klein, B., and Boyer, L. (1985). Electronic properties of transition-metal nitrides: the group-V and group-VI nitrides VN, NbN, TaN, CrN, MoN, and WN. Phys. Rev. B 31: 752, in Google Scholar

Park, H.K., Lee, J.K., Yoo, J.K., Ko, E.S., and Kim, K.L. (1997). Surface properties and reactivity of supported and unsupported molybdenum nitride catalysts. Appl. Catal. Gen. 150: 21–35, in Google Scholar

Perot, G. (1991). The reactions involved in hydrodenitrogenation. Catal. Today 10: 447–472, in Google Scholar

Perret, N., Cárdenas-Lizana, F., Lamey, D., Laporte, V., Kiwi-Minsker, L., and Keane, M.A. (2012). Effect of crystallographic phase (β vs. γ) and surface area on gas phase nitroarene hydrogenation over Mo2N and Au/Mo2N. Top. Catal. 55: 955–968, in Google Scholar

Perret, N., Lamey, D., Kiwi-Minsker, L., Cárdenas-Lizana, F., and Keane, M.A. (2019). New insights into the effect of nitrogen incorporation in Mo: catalytic hydrogenation vs. hydrogenolysis. Catal. Sci. Technol. 9: 1891–1901, in Google Scholar

Pietrowski, M., Zieliński, M., and Wojciechowska, M. (2011). High‐selectivity hydrogenation of chloronitrobenzene to chloroaniline over magnesium fluoride‐supported bimetallic ruthenium‐copper catalysts. ChemCatChem 3: 835–838, in Google Scholar

Podila, S., Zaman, S.F., Driss, H., Alhamed, Y.A., Al-Zahrani, A.A., and Petrov, L.A. (2016). Hydrogen production by ammonia decomposition using high surface area Mo2N and Co3Mo3N catalysts. Catal. Sci. Technol. 6: 1496–1506, in Google Scholar

Powell, R.A. and Rossnagel, S. (1999). PVD for microelectronics: sputter deposition applied to semiconductor manufacturing (thin films). Academic Press, London.Search in Google Scholar

Qi, J., Jiang, L., Jiang, Q., Wang, S., and Sun, G. (2010). Theoretical and experimental studies on the relationship between the structures of molybdenum nitrides and their catalytic activities toward the oxygen reduction reaction. J. Phys. Chem. C 114: 18159–18166, in Google Scholar

Radlik, M., Adamowska-Teyssier, M., Krztoń, A., Kozieł, K., Krajewski, W., Turek, W., and Da Costa, P. (2015). Dry reforming of methane over Ni/Ce0.62Zr0.38O2 catalysts: effect of Ni loading on the catalytic activity and on H2/CO production. Compt. Rendus Chem. 18: 1242–1249, in Google Scholar

Ramanathan, S. and Oyama, S.T. (1995). New catalysts for hydroprocessing: transition metal carbides and nitrides. J. Phys. Chem. 99: 16365–16372, in Google Scholar

Ranhotra, G., Haddix, G., Bell, A., and Reimer, J. (1987). Catalysis over molybdenum carbides and nitrides: I. Catalyst characterization. J. Catal. 108: 24–39, in Google Scholar

Rase, H.F. (2016). Handbook of commercial catalysts: heterogeneous catalysts. CRC Press, Boca Raton, Florida.10.1201/b21367Search in Google Scholar

Rostrupnielsen, J. and Hansen, J.B. (1993). CO2-reforming of methane over transition metals. J. Catal. 144: 38–49, in Google Scholar

Roy, A., Serov, A., Artyushkova, K., Brosha, E.L., Atanassov, P., and Ward, T.L. (2015). Facile synthesis of high surface area molybdenum nitride and carbide. J. Solid State Chem. 228: 232–238, in Google Scholar

Saito, K. and Asada, Y. (1987). Superconductivity and structural changes of nitrogen-ion implanted Mo thin films. J. Phys. F Met. Phys. 17: 2273, in Google Scholar

Saleem, B.A. (2019). Spectrophotometric determination of some drugs using oxidation reduction reactions. Ibn AL- Haitham J. Pure Appl. Sci. 32: 43–55.Search in Google Scholar

Sangiovanni, D.G., Hultman, L., and Chirita, V. (2011). Supertoughening in B1 transition metal nitride alloys by increased valence electron concentration. Acta Mater. 59: 2121–2134, in Google Scholar

Sanjinés, R., Wiemer, C., Almeida, J., and Levy, F. (1996). Valence band photoemission study of the Ti–Mo–N system. Thin Solid Films 290: 334–338, in Google Scholar

Schlatter, J.C., Oyama, S.T., Metcalfe, J.E.III, and Lambert, J.M.Jr. (1988). Catalytic behavior of selected transition metal carbides, nitrides, and borides in the hydrodenitrogenation of quinoline. Ind. Eng. Chem. Res. 27: 1648–1653, in Google Scholar

Şenol, O., Viljava, T.-R., and Krause, A. (2005). Hydrodeoxygenation of methyl esters on sulphided NiMo/γ-Al2O3 and CoMo/γ-Al2O3 catalysts. Catal. Today 100: 331–335.10.1016/j.cattod.2004.10.021Search in Google Scholar

Senzi, L. and Lee, J.S. (1998). Molybdenum nitride and carbide prepared from heteropolyacid: II. Hydrodenitrogenation of indole. J. Catal. 173: 134–144, in Google Scholar

Sepúlveda, C., Leiva, K., García, R., Radovic, L., Ghampson, I., Desisto, W., Fierro, J.G., and Escalona, N. (2011). Hydrodeoxygenation of 2-methoxyphenol over Mo2N catalysts supported on activated carbons. Catal. Today 172: 232–239, in Google Scholar

Shen, Y. (2003). Effect of deposition conditions on mechanical stresses and microstructure of sputter-deposited molybdenum and reactively sputter-deposited molybdenum nitride films. Mater. Sci. Eng. A 359: 158–167, in Google Scholar

Soignard, E., Mcmillan, P.F., Chaplin, T.D., Farag, S.M., Bull, C.L., Somayazulu, M.S., and Leinenweber, K. (2003). High-pressure synthesis and study of low-compressibility molybdenum nitride (MoN and MoN1−x) phases. Phys. Rev. B 68: 132101, in Google Scholar

Sproul, W.D. (1986). Reactively sputtered nitrides and carbides of titanium, zirconium, and hafnium. J. Vac. Sci. Technol., A 4: 2874–2878, in Google Scholar

Stampfl, C. (2005). Surface processes and phase transitions from ab initio atomistic thermodynamics and statistical mechanics. Catal. Today 105: 17–35, in Google Scholar

Steele, B.C. and Heinzel, A. (2011). Materials for fuel-cell technologies. In: Materials for sustainable energy: a collection of peer-reviewed research and review articles from Nature Publishing Group. World Scientific, Singapore, pp. 20–30.Search in Google Scholar

Stevens, F., Carmichael, I., Callens, F., and Waroquier, M. (2006). Density functional investigation of high-spin XY (X = Cr, Mo, W and Y = C, N, O) molecules. J. Phys. Chem. A 110: 4846–4853, in Google Scholar PubMed

Sui, S., Wang, X., Zhou, X., Su, Y., Riffat, S., and Liu, C.-J. (2017). A comprehensive review of Pt electrocatalysts for the oxygen reduction reaction: nanostructure, activity, mechanism and carbon support in PEM fuel cells. J. Mater. Chem. A 5: 1808–1825, in Google Scholar

Sun, G.D., Zhang, G.H., and Chou, K.C. (2018). Synthesis of molybdenum nitrides nanosheets by nitriding 2H‐MoS2 with ammonia. J. Am. Ceram. Soc. 101: 2796–2808, in Google Scholar

Sun, W., Holder, A., Orvañanos, B., Arca, E., Zakutayev, A., Lany, S., and Ceder, G. (2017). Thermodynamic routes to novel metastable nitrogen-rich nitrides. Chem. Mater. 29: 6936–6946, in Google Scholar

Suszko, T., Gulbiński, W., and Jagielski, J. (2005). The role of surface oxidation in friction processes on molybdenum nitride thin films. Surf. Coating. Technol. 194: 319–324, in Google Scholar

Tagliazucca, V., Schlichte, K., Schüth, F., and Weidenthaler, C. (2013). Molybdenum-based catalysts for the decomposition of ammonia: in situ X-ray diffraction studies, microstructure, and catalytic properties. J. Catal. 305: 277–289, in Google Scholar

Theerthagiri, J., Lee, S.J., Murthy, A.P., Madhavan, J., and Choi, M.Y. (2020). Fundamental aspects and recent advances in transition metal nitrides as electrocatalysts for hydrogen evolution reaction: a review. Curr. Opin. Solid State Mater. Sci. 24: 100805, in Google Scholar

Toth, L. (2014). Transition metal carbides and nitrides. Elsevier, Amsterdam, Netherlands.Search in Google Scholar

Tran, P.D., Le Goff, A., Heidkamp, J., Jousselme, B., Guillet, N., Palacin, S., Dau, H., Fontecave, M., and Artero, V. (2011). Noncovalent modification of carbon nanotubes with pyrene‐functionalized nickel complexes: carbon monoxide tolerant catalysts for hydrogen evolution and uptake. Angew. Chem. 123: 1407–1410, in Google Scholar

Volpe, L. and Boudart, M. (1985). Compounds of molybdenum and tungsten with high specific surface area: I. Nitrides. J. Solid State Chem. 59: 332–347, in Google Scholar

Wang, C., Akbar, S., Chen, W., and Patton, V. (1995). Electrical properties of high-temperature oxides, borides, carbides, and nitrides. J. Mater. Sci. 30: 1627–1641, in Google Scholar

Wang, S., Antonio, D., Yu, X., Zhang, J., Cornelius, A.L., He, D., and Zhao, Y. (2015a). The hardest superconducting metal nitride. Sci. Rep. 5: 13733, in Google Scholar PubMed PubMed Central

Wang, S., Ge, H., Sun, S., Zhang, J., Liu, F., Wen, X., Yu, X., Wang, L., Zhang, Y., and Xu, H. (2015b). A new molybdenum nitride catalyst with rhombohedral MoS2 structure for hydrogenation applications. J. Am. Chem. Soc. 137: 4815–4822, in Google Scholar PubMed

Wang, S., Ge, H., Han, W., Li, Y., Zhang, J., Yu, X., Qin, J., Quan, Z., Wen, X., and Li, X. (2017). Synthesis of onion-like δ-MoN catalyst for selective hydrogenation. J. Phys. Chem. C 121: 19451–19460, in Google Scholar

Wang, Y. and Ding, Y. (2016). The hydrogen-induced structural stability and promising electronic properties of molybdenum and tungsten dinitride nanosheets: a first-principles study. J. Mater. Chem. C 4: 7485–7493, in Google Scholar

Wang, Y., Li, J., and Wei, Z. (2018). Transition-metal-oxide-based catalysts for the oxygen reduction reaction. J. Mater. Chem. A 6: 8194–8209, in Google Scholar

Wei, Q., Zhao, C., Zhang, M., Yan, H., and Wei, B. (2019). High-pressure phases and pressure-induced phase transition of MoN6 and ReN6. Phys. Lett. A 383: 2429–2435, in Google Scholar

Wise, R. and Markel, E. (1994). Synthesis of high surface area molybdenum nitride in mixtures of nitrogen and hydrogen. J. Catal. 145: 344–355, in Google Scholar

Xie, J., Li, S., Zhang, X., Zhang, J., Wang, R., Zhang, H., Pan, B., and Xie, Y. (2014). Atomically-thin molybdenum nitride nanosheets with exposed active surface sites for efficient hydrogen evolution. Chem. Sci. 5: 4615–4620, in Google Scholar

Xia, D., Liu, S., Wang, Z., Chen, G., Zhang, L., Zhang, L., Hui, S.R., and Zhang, J. (2008). Methanol-tolerant MoN electrocatalyst synthesized through heat treatment of molybdenum tetraphenylporphyrin for four-electron oxygen reduction reaction. J. Power Sources 177: 296–302, in Google Scholar

Xu, H., Zhang, H., Fang, L., Yang, J., Wu, K., and Wang, Y. (2015). Hierarchical molybdenum nitride nanochexes by a textured self-assembly in gas–solid phase for the enhanced application in lithium ion batteries. ACS Nano 9: 6817–6825, in Google Scholar PubMed

Yang, C.-J. (2009). An impending platinum crisis and its implications for the future of the automobile. Energy Pol. 37: 1805–1808, in Google Scholar

Yang, S., Li, C., Xu, J., and Xin, Q. (1998). Surface sites of alumina-supported molybdenum nitride characterized by FTIR, TPD-MS, and volumetric chemisorption. J. Phys. Chem. B 102: 6986–6993, in Google Scholar

Yu, S., Huang, B., Jia, X., Zeng, Q., Oganov, A.R., Zhang, L., and Frapper, G. (2016). Exploring the real ground-state structures of molybdenum dinitride. J. Phys. Chem. C 120: 11060–11067, in Google Scholar

Yu, X., Zhou, T., Ge, J., and Wu, C. (2020). Recent advances on the modulation of electrocatalysts based on transition metal nitrides for the rechargeable Zn-air battery. ACS Mater. Lett. 2: 1423–1434, in Google Scholar

Zaman, S. (2010). A DFT study of CO adsorption and dissociation over γ-Mo2N (111) plane. Bulg. Chem. Commun. 47: 125–132.Search in Google Scholar

Zeinalipour-Yazdi, C.D., Hargreaves, J.S., and Catlow, C.R.A. (2015). Nitrogen activation in a Mars–van Krevelen mechanism for ammonia synthesis on Co3Mo3N. J. Phys. Chem. C 119: 28368–28376, in Google Scholar

Zhang, Y., Li, Y., Li, C., and Xin, Q. (1997). Adsorption and migration of hydrogen on different surface sites of γ-Mo2N catalyst. In: Studies in surface science and catalysis. Elsevier, Amsterdam, Netherlands, pp. 457–464.10.1016/S0167-2991(97)80869-5Search in Google Scholar

Zhang, C., Liu, J., Shen, H., Li, X.-Z., and Sun, Q. (2017). Identifying the ground state geometry of a MoN2 sheet through a global structure search and its tunable p-electron half-metallicity. Chem. Mater. 29: 8588–8593, in Google Scholar

Zhang, L., Ni, Z., Xue, J., Qian, H., Liu, Y., and Jin, C. (2018). Selective hydrogenation of p-chloronitrobenzene on nanosized gold clusters: a theoretical study. Chem. Phys. Lett. 703: 23–28, in Google Scholar

Zhang, S., Sun, D., Fu, Y., and Du, H. (2003). Recent advances of superhard nanocomposite coatings: a review. Surf. Coating. Technol. 167: 113–119, in Google Scholar

Zhang, X., Yu, Z., Wang, S.-S., Guan, S., Yang, H.Y., Yao, Y., and Yang, S.A. (2016). Theoretical prediction of MoN2 monolayer as a high capacity electrode material for metal ion batteries. J. Mater. Chem. A 4: 15224–15231, in Google Scholar

Zhang, Z.-S., Fu, Q., Xu, K., Wang, W.-W., Fu, X.-P., Zheng, X.-S., Wu, K., Ma, C., Si, R., and Jia, C.-J. (2020). Intrinsically active surface in a Pt/γ-Mo2N catalyst for the water–gas shift reaction: molybdenum nitride or molybdenum oxide? J. Am. Chem. Soc. 142: 13362–13371, in Google Scholar

Zhao, E., Wang, J., Meng, J., and Wu, Z. (2010). Structural, mechanical and electronic properties of 4d transition metal mononitrides by first-principles. Comput. Mater. Sci. 47: 1064–1071, in Google Scholar

Zhao, X. and Range, K.-J. (2000). High pressure synthesis of molybdenum nitride MoN. J. Alloys Compd. 296: 72–74, in Google Scholar

Zheng, W., Cotter, T.P., Kaghazchi, P., Jacob, T., Frank, B., Schlichte, K., Zhang, W., Su, D.S., Schüth, F., and Schlögl, R. (2013). Experimental and theoretical investigation of molybdenum carbide and nitride as catalysts for ammonia decomposition. J. Am. Chem. Soc. 135: 3458–3464, in Google Scholar PubMed

Supplementary Material

The online version of this article offers supplementary material (

Received: 2021-01-16
Accepted: 2021-07-20
Published Online: 2021-08-23

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 27.1.2023 from
Scroll Up Arrow