Abstract
Chitosan is a biopolymer originating from renewable resources, with great properties which make it an attractive candidate for plenty of applications of contemporary interest. By manufacturing chitosan into nanofibers using the electrospinning method, its potential is amplified due to the enhancement of the active surface and the low preparation cost. Many attempts were made with the aim of preparing chitosan-based nanofibers with controlled morphology targeting their use for tissue engineering, wound healing, food packaging, drug delivery, air and water purification filters. This was a challenging task, which resulted in a high amount of data, sometimes with apparent contradictory results. In this light, the goal of the paper is to present the main routes reported in the literature for chitosan electrospinning, stressing the advantages and disadvantages of each of them. Special emphasis is placed on the influence of various electrospinning parameters on the morphological characteristics of the fibers and their suitability for distinct applications.
Funding source: MEN–UEFISCDI
Award Identifier / Grant number: 10PCCDI/2018
Funding source: European Commission
Award Identifier / Grant number: SWORD- DLV-873123
-
Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
-
Research funding: The financial support from the Romanian National Authority for Scientific Research MEN–UEFISCDI (PN-III-P1-1.2-PCCDI2017-0569, no. 10PCCDI/2018) and European Commission through the project H2020-MSCA-RISE-2019, SWORD-DLV-873123 is highly acknowledged.
-
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
References
Abbaspour, M., Sharif Makhmalzadeh, B., Rezaee, B., Shoja, S., and Ahangari, Z. (2015). Evaluation of the antimicrobial effect of chitosan/polyvinyl alcohol electrospun nanofibers containing mafenide acetate. Jundishapur J. Microbiol. 8: e24239, https://doi.org/10.5812/jjm.24239.Search in Google Scholar PubMed PubMed Central
Abdelgawad, A.M., Hudson, S.M., and Rojas, O.J. (2014). Antimicrobial wound dressing nanofiber mats from multicomponent (chitosan/silver-NPs/polyvinyl alcohol) systems. Carbohydr. Polym. 100: 166–178, https://doi.org/10.1016/j.carbpol.2012.12.043.Search in Google Scholar PubMed
Ailincai, D., Marin, L., Morariu, S., Mares, M., Bostanaru, A.-C., Pinteala, M., Simionescu, B.C., and Barboiu, M. (2016). Dual crosslinked iminoboronate-chitosan hydrogels with strong antifungal activity against Candida planktonic yeasts and biofilms. Carbohydr. Polym. 152: 306–316, https://doi.org/10.1016/j.carbpol.2016.07.007.Search in Google Scholar PubMed
AL-Jbour, N.D., Beg, M.D., Gimbun, J., and Alam, A.K.M.M. (2019). An overview of chitosan nanofibers and their applications in the drug delivery process. Curr. Drug Deliv. 16: 272–294, https://doi.org/10.2174/1567201816666190123121425.Search in Google Scholar PubMed
Amiri, N., Rozbeh, Z., Afrough, T., Sajadi Tabassi, S.A., Moradi, A., and Movaffagh, J. (2018). Optimization of chitosan-gelatin nanofibers production: investigating the effect of solution properties and working parameters on fibers diameter. BioNanoScience 8: 778–789, https://doi.org/10.1007/s12668-018-0540-5.Search in Google Scholar
An, J., Zhang, H., Zhang, J., Zhao, Y., and Yuan, X. (2009). Preparation and antibacterial activity of electrospun chitosan/poly(ethylene oxide) membranes containing silver nanoparticles. Colloid Polym. Sci. 287: 1425–1434, https://doi.org/10.1007/s00396-009-2108-y.Search in Google Scholar
Asadian, M., Onyshchenko, I., Thukkaram, M., Esbah Tabaei, P.S., Van Guyse, J., Cools, P., Declercq, H., Hoogenboom, R., Morent, R., and De Geyter, N. (2018). Effects of a dielectric barrier discharge (DBD) treatment on chitosan/polyethylene oxide nanofibers and their cellular interactions. Carbohydr. Polym. 201: 402–415, https://doi.org/10.1016/j.carbpol.2018.08.092.Search in Google Scholar PubMed
Askari, M., Rezaei, B., Shoushtari, A.M., Noorpanah, P., Abdouss, M., and Ghani, M. (2014). Fabrication of high performance chitosan/polyvinyl alcohol nanofibrous mat with controlled morphology and optimised diameter. Can. J. Chem. Eng. 92: 1008–1015, https://doi.org/10.1002/cjce.21975.Search in Google Scholar
Atakhanov, A. (2020). Nanofibers based on chitosan Bombyx mori. Am. J. Res. 11–12: 24–31.Search in Google Scholar
Augustine, R., Rehman, S.R.U., Ahmed, R., Zahid, A.A., Sharifi, M., Falahati, M., and Hasan, A. (2020). Electrospun chitosan membranes containing bioactive and therapeutic agents for enhanced wound healing. Int. J. Biol. Macromol. 156: 153–170, https://doi.org/10.1016/j.ijbiomac.2020.03.207.Search in Google Scholar PubMed
Bampidis, V., Azimonti, G., Bastos, M.D., Christensen, H., Dusemund, B., Kouba, M., Lopez-Alonso, M., Puente, S.L., Marcon, F., and Mayo, B., et al.. (2021). Safety and efficacy of a feed additive consisting of acetic acid for all animal species. EFSA Journal 19: e6615, doi:10.2903/j.efsa.2021.6615.10.2903/j.efsa.2021.6615Search in Google Scholar PubMed PubMed Central
Bazmandeh, A.Z., Mirzaei, E., Fadaie, M., Shirian, S., and Ghasemi, Y. (2020). Dual spinneret electrospun nanofibrous/gel structure of chitosan-gelatin/chitosan-hyaluronic acid as a wound dressing: in-vitro and in-vivo studies. Int. J. Biol. Macromol. 162: 359–373, https://doi.org/10.1016/j.ijbiomac.2020.06.181.Search in Google Scholar PubMed
Beauchamp, R.O., St Clair, M.B.G., Fennell, T.R., Clarke, D.O., Morgan, K.T., and Karl, F.W. (1992). A critical review of the toxicology of glutaraldehyde. Crit. Rev. Toxicol. 22: 143–174, https://doi.org/10.3109/10408449209145322.Search in Google Scholar PubMed
Behbood, L., Karimi, S., Mirzaei, E., Mohammadi, G., Azami, M., and Arkan, E. (2018). Mucoadhesive chitosan electrospun nanofibers containing tetracycline and triamcinolone as a drug delivery system. Fibers Polym. 19: 1454–1462, https://doi.org/10.1007/s12221-018-8087-1.Search in Google Scholar
Bejan, A., Ailincai, D., Simionescu, B.C., and Marin, L. (2018). Chitosan hydrogelation with a phenothiazine based aldehyde: a synthetic approach toward highly luminescent biomaterials. Polym. Chem. 9: 2359–2369, https://doi.org/10.1039/c7py01678f.Search in Google Scholar
Bejan, A., Doroftei, F., Cheng, X., and Marin, L. (2020). Phenothiazine-chitosan based eco-adsorbents: a special design for mercury removal and fast naked eye detection. Int. J. Biol. Macromol. 162: 1839–1848, https://doi.org/10.1016/j.ijbiomac.2020.07.232.Search in Google Scholar PubMed
Bellich, B., D'Agostino, I., Semeraro, S., Gamini, A., and Cesàro, A. (2016). “The good, the bad and the ugly” of chitosans. Mar. Drugs 14: 99, https://doi.org/10.3390/md14050099.Search in Google Scholar PubMed PubMed Central
Berger, J., Reist, M., Mayer, J.M., Felt, O., Peppas, N.A., and Gurny, R. (2004). Structure and interactions in covalently and ionically crosslinked chitosan hydrogels for biomedical applications. Eur. J. Pharm. Biopharm. 57: 19–34, https://doi.org/10.1016/s0939-6411(03)00161-9.Search in Google Scholar PubMed
Bhardwaj, N. and Kundu, S.C. (2010). Electrospinning: a fascinating fiber fabrication technique. Biotechnol. Adv. 28: 325–347, https://doi.org/10.1016/j.biotechadv.2010.01.004.Search in Google Scholar PubMed
Bhattarai, N., Edmondson, D., Veiseh, O., Matsen, F.A., and Zhang, M. (2005). Electrospun chitosan-based nanofibers and their cellular compatibility. Biomaterials 26: 6176–6184, https://doi.org/10.1016/j.biomaterials.2005.03.027.Search in Google Scholar PubMed
Biranje, S., Madiwale, P., and Adivarekar, R.V. (2017). Electrospinning of chitosan/PVA nanofibrous membrane at ultralow solvent concentration. J. Polym. Res. 24: 92, https://doi.org/10.1007/s10965-017-1238-z.Search in Google Scholar
Bizarria, M.T.M., D'Ávila, M.A., and Mei, L.H.I. (2014). Non-woven nanofiber chitosan/peo membranes obtained by electrospinning. Braz. J. Chem. Eng. 31: 57–68, https://doi.org/10.1590/s0104-66322014000100007.Search in Google Scholar
Bochek, A.M., Zabivalova, N.M., Brazhnikova, E.N., Anferova, M.S., and Lavrent'ev, V.K. (2019). Chitosan-polyamide composite nanofibers produced by needleless electrospinning. Fibre Chem. 50: 391–395, https://doi.org/10.1007/s10692-019-09995-2.Search in Google Scholar
Bohlouli, N., Mirzaei, E., Ghanbari, H., Rezayat Sorkhabadi, S.M., and Faridi-Majid, R. (2018). Reinforcing mechanical strength of electrospun chitosan nanofibrous scaffold using cellulose nanofibers. J. Nano Res. 52: 71–79, https://doi.org/10.4028/www.scientific.net/jnanor.52.71.Search in Google Scholar
Boschetto, F., Doan, H.N., Vo, P.P., Zanocco, M., Zhu, W., Sakai, W., Adachi, T., Ohgitani, E., and Tsutsumi, N. (2020). Antibacterial and osteoconductive effects of chitosan/polyethylene oxide (PEO)/bioactive glass nanofibers for orthopedic applications. Appl. Sci. 10: 2360, https://doi.org/10.3390/app10072360.Search in Google Scholar
Cai, Z., Mo, X., Zhang, K., Fan, L., Yin, A., He, C., and Wang, H. (2010). Fabrication of chitosan/silk fibroin composite nanofibers for wound-dressing applications. Int. J. Mol. Sci. 11: 3529–3539, https://doi.org/10.3390/ijms11093529.Search in Google Scholar PubMed PubMed Central
Cárdena-Pérez, Y.C., Vera-Graziano, R., Muñoz-Prieto, E.D.J., and Gómez-Pachón, E.Y. (2017). Preparation and characterization of scaffold nanofibers by electrospinning, based on chitosan and fibroin from Silkworm (Bombyx mori). Ing. Compet. 19: 139–151, https://doi.org/10.25100/iyc.v19i1.2138.Search in Google Scholar
Casasola, R., Thomas, N.L., Trybala, A., and Georgiadou, S. (2014). Electrospun poly lactic acid (PLA) fibres: effect of different solvent systems on fibre morphology and diameter. Polymer 55: 4728–4737, https://doi.org/10.1016/j.polymer.2014.06.032.Search in Google Scholar
Charernsriwilaiwat, N., Rojanarata, T., Ngawhirunpat, T., and Opanasopit, P. (2014). Electrospun chitosan/polyvinyl alcohol nanofibre mats for wound healing. Int. Wound J. 11: 215–222, https://doi.org/10.1111/j.1742-481x.2012.01077.x.Search in Google Scholar
Chen, J.-P., Chen, S.-H., and Lai, G.-J. (2012). Preparation and characterization of biomimetic silk fibroin/chitosan composite nanofibers by electrospinning for osteoblasts culture. Nanoscale Res. Lett. 7: 170, https://doi.org/10.1186/1556-276x-7-170.Search in Google Scholar
Chen, L., Zhu, C., Fan, D., Liu, B., Ma, X., Duan, Z., and Zhou, Y. (2011). A human-like collagen/chitosan electrospun nanofibrous scaffold from aqueous solution: electrospun mechanism and biocompatibility. J. Biomed. Mater. Res. A 99A: 395–409, https://doi.org/10.1002/jbm.a.33202.Search in Google Scholar PubMed
Chen, Y., Shafiq, M., Liu, M., Morsi, Y., and Mo, X. (2020). Advanced fabrication for electrospun three-dimensional nanofiber aerogels and scaffolds. Bioact. Mater. 5: 963–979, https://doi.org/10.1016/j.bioactmat.2020.06.023.Search in Google Scholar PubMed PubMed Central
Chen, Z., Mo, X., and Qing, F. (2007). Electrospinning of collagen–chitosan complex. Mater. Lett. 61: 3490–3494, https://doi.org/10.1016/j.matlet.2006.11.104.Search in Google Scholar
Chen, Z.-G., Wei, B., Mo, X.-M., and Cui, F.-Z. (2009). Diameter control of electrospun chitosan-collagen fibers. J. Polym. Sci. B Polym. Phys. 47: 1949–1955, https://doi.org/10.1002/polb.21793.Search in Google Scholar
Cheng, F., Gao, J., Wang, L., and Hu, X. (2015). Composite chitosan/poly(ethylene oxide) electrospun nanofibrous mats as novel wound dressing matrixes for the controlled release of drugs. J. Appl. Polym. Sci. 132: 42060, https://doi.org/10.1002/app.42060.Search in Google Scholar
Choi, Y., Park, M.H., and Lee, K. (2020). Injectable thermoresponsive hydrogel/nanofiber hybrid scaffolds inducing human adipose-derived stem cell chemotaxis. J. Ind. Eng. Chem. 82: 89–97, https://doi.org/10.1016/j.jiec.2019.09.046.Search in Google Scholar
Cooper, A., Bhattarai, N., and Zhang, M. (2011). Fabrication and cellular compatibility of aligned chitosan–PCL fibers for nerve tissue regeneration. Carbohydr. Polym. 85: 149–156, https://doi.org/10.1016/j.carbpol.2011.02.008.Search in Google Scholar
Cremar, L., Gutierrez, J., Martinez, J., Materon, L., Gilkerson, R., Xu, F., and Lozano, K. (2018). Development of antimicrobial chitosan based nanofiber dressings for wound healing applications. Nanomed. J. 5: 6–14.Search in Google Scholar
Deng, A., Yang, Y., Du, S., and Yang, S. (2018a). Electrospinning of in situ crosslinked recombinant human collagen peptide/chitosan nanofibers for wound healing. Biomater. Sci. 6: 2197–2208, https://doi.org/10.1039/c8bm00492g.Search in Google Scholar PubMed
Deng, L., Taxipalati, M., Zhang, A., Que, F., Wei, H., Feng, F., and Zhang, H. (2018b). Electrospun chitosan/poly(ethylene oxide)/lauric arginate nanofibrous film with enhanced antimicrobial activity. J. Agric. Food Chem. 66: 6219–6226, https://doi.org/10.1021/acs.jafc.8b01493.Search in Google Scholar PubMed
Denis, P., Wrzecionek, M., Gadomska-Gajadhur, A., and Sajkiewicz, P. (2019). Poly(glycerol sebacate)–poly(l-lactide) nonwovens. Towards attractive electrospun material for tissue engineering. Polymers 11: 2113, https://doi.org/10.3390/polym11122113.Search in Google Scholar PubMed PubMed Central
Desai, K., Kit, K., Li, J., and Zivanovic, S. (2008). Morphological and surface properties of electrospun chitosan nanofibers. Biomacromolecules 9: 1000–1006, https://doi.org/10.1021/bm701017z.Search in Google Scholar PubMed
Desai, K., Kit, K., Li, J., Michael Davidson, P., Zivanovic, S., and Meyer, H. (2009). Nanofibrous chitosan non-wovens for filtration applications. Polymer 50: 3661–3669, https://doi.org/10.1016/j.polymer.2009.05.058.Search in Google Scholar
Dhandayuthapani, B., Krishnan, U.M., and Sethuraman, S. (2010). Fabrication and characterization of chitosan-gelatin blend nanofibers for skin tissue engineering. J. Biomed. Mater. Res. B Appl. Biomater. 94B: 264–272, https://doi.org/10.1002/jbm.b.31651.Search in Google Scholar PubMed
Dhawane, M., Deshpande, A., Jain, R., and Dandekar, P. (2019). Colorimetric point-of-care detection of cholesterol using chitosan nanofibers. Sensor. Actuator. B Chem. 281: 72–79, https://doi.org/10.1016/j.snb.2018.10.060.Search in Google Scholar
Dhurai, B., Saraswathy, N., Maheswaran, R., Sethupathi, P., Vanitha, P., Vigneshwaran, S., and Rameshbabu, V. (2013). Electrospinning of curcumin loaded chitosan/poly (lactic acid) nanofilm and evaluation of its medicinal characteristics. Front. Mater. Sci. 7: 350–361, https://doi.org/10.1007/s11706-013-0222-8.Search in Google Scholar
Dilamian, M., Montazer, M., and Masoumi, J. (2013). Antimicrobial electrospun membranes of chitosan/poly(ethylene oxide) incorporating poly(hexamethylene biguanide) hydrochloride. Carbohydr. Polym. 94: 364–371, https://doi.org/10.1016/j.carbpol.2013.01.059.Search in Google Scholar PubMed
Doğan, G., Özyıldız, F., Başal, G., and Uzel, A. (2013). Fabrication of electrospun chitosan and chitosan/poly(ethylene oxide) nanofiber webs and assessment of their antimicrobial activity. Int. Polym. Process. 28: 143–150.10.3139/217.2604Search in Google Scholar
Du, J. and Hsieh, Y.-L. (2009). Cellulose/chitosan hybrid nanofibers from electrospinning of their ester derivatives. Cellulose 16: 247–260, https://doi.org/10.1007/s10570-008-9266-9.Search in Google Scholar
Du, Y., Wei, S., Tang, M., Ye, M., Tao, H., Qi, C., and Shao, L. (2020). Palladium nanoparticles stabilized by chitosan/PAAS nanofibers: a highly stable catalyst for Heck reaction. Appl. Organomet. Chem. 34: e5619, https://doi.org/10.1002/aoc.5619.Search in Google Scholar
Duan, B., Dong, C., Yuan, X., and Yao, K. (2004). Electrospinning of chitosan solutions in acetic acid with poly(ethylene oxide). J. Biomater. Sci. Polym. Ed. 15: 797–811, https://doi.org/10.1163/156856204774196171.Search in Google Scholar PubMed
Duceac, I.A., Verestiuc, L., Dimitriu, C.D., Maier, V., and Coseri, S. (2020). Design and preparation of new multifunctional hydrogels based on chitosan/acrylic polymers for drug delivery and wound dressing applications. Polymers 12: 1473, https://doi.org/10.3390/polym12071473.Search in Google Scholar PubMed PubMed Central
Elsabee, M.Z., Naguib, H.F., and Morsi, R.E. (2012). Chitosan based nanofibers, review. Mater. Sci. Eng. C 32: 1711–1726, https://doi.org/10.1016/j.msec.2012.05.009.Search in Google Scholar PubMed
Emamgholi, A., Rahimi, M., Kaka, G., Sadraie, S.H., and Najafi, S. (2015). Presentation of a novel model of chitosan- polyethylene oxide-nanohydroxyapatite nanofibers together with bone marrow stromal cells to repair and improve minor bone defects. Iran. J. Basic Med. Sci. 18: 887–893.Search in Google Scholar
Erdem, R. and Akalın, M. (2015). Characterization and evaluation of antimicrobial properties of electrospun chitosan/polyethylene oxide based nanofibrous scaffolds (with/without nanosilver). J. Ind. Textil. 44: 553–571, https://doi.org/10.1177/1528083713503000.Search in Google Scholar
de Farias, B.S., Vidal, É.M., Ribeiro, N.T., da Silveira, N., da Silva Vaz, B., Kuntzler, S.G., de Morais, M.G., Cadaval, T.R.S., and de Almeida Pinto, L.A. (2018). Electrospun chitosan/poly(ethylene oxide) nanofibers applied for the removal of glycerol impurities from biodiesel production by biosorption. J. Mol. Liq. 268: 365–370, https://doi.org/10.1016/j.molliq.2018.07.081.Search in Google Scholar
Fazli, Y. and Shariatinia, Z. (2017). Controlled release of cefazolin sodium antibiotic drug from electrospun chitosan-polyethylene oxide nanofibrous mats. Mater. Sci. Eng. C 71: 641–652, https://doi.org/10.1016/j.msec.2016.10.048.Search in Google Scholar PubMed
Galed, G., Mirabelles, B., Panosi, I., Santiago, A., and Heras, A. (2005). Deacetylation and depolymerization reactions of chitin/chitosan: influence of the source of chitin. Carbohydr. Polym. 62: 316–320, https://doi.org/10.1016/j.carbpol.2005.03.019.Search in Google Scholar
Ge, L., Zhao, Y., Mo, T., Li, J., and Li, P. (2012). Immobilization of glucose oxidase in electrospun nanofibrous membranes for food preservation. Food Contr. 26: 188–193, https://doi.org/10.1016/j.foodcont.2012.01.022.Search in Google Scholar
Geng, X., Kwon, O., and Jang, J. (2005). Electrospinning of chitosan dissolved in concentrated acetic acid solution. Biomaterials 26: 5427–5432, https://doi.org/10.1016/j.biomaterials.2005.01.066.Search in Google Scholar PubMed
Ghani, M., Gharehaghaji, A.A., Arami, M., Takhtkuse, N., and Rezaei, B. (2014). Fabrication of electrospun polyamide-6/chitosan nanofibrous membrane toward anionic dyes removal. J. Nanotechnol. 2014: 1–12, https://doi.org/10.1155/2014/278418.Search in Google Scholar
Ghiorghita, C.-A., Borchert, K.B.L., Vasiliu, A.-L., Zaharia, M.-M., Schwarz, D., and Mihai, M. (2020). Porous thiourea-grafted-chitosan hydrogels: synthesis and sorption of toxic metal ions from contaminated waters. Colloid. Surface. A Physicochem. Eng. Aspect. 607: 125504, https://doi.org/10.1016/j.colsurfa.2020.125504.Search in Google Scholar
Ghorbani, F.M., Kaffashi, B., Shokrollahi, P., Seyedjafari, E., and Ardeshirylajimi, A. (2015). PCL/chitosan/Zn-doped nHA electrospun nanocomposite scaffold promotes adipose derived stem cells adhesion and proliferation. Carbohydr. Polym. 118: 133–142, https://doi.org/10.1016/j.carbpol.2014.10.071.Search in Google Scholar PubMed
Gómez-Guillén, M.C., Giménez, B., López-Caballero, M.E., and Montero, M.P. (2011). Functional and bioactive properties of collagen and gelatin from alternative sources: a review. Food Hydrocolloids 25: 1813–1827, https://doi.org/10.1016/j.foodhyd.2011.02.007.Search in Google Scholar
Greiner, A. and Wendorff, J.H. (2007). Electrospinning: a fascinating method for the preparation of ultrathin fibers. Angew. Chem. Int. Ed. 46: 5670–5703, https://doi.org/10.1002/anie.200604646.Search in Google Scholar PubMed
Grkovic, M., Stojanovic, D.B., Pavlovic, V.B., Rajilic-Stojanovic, M., Bjelovic, M., and Uskokovic, P.S. (2017). Improvement of mechanical properties and antibacterial activity of crosslinked electrospun chitosan/poly (ethylene oxide) nanofibers. Compos. B Eng. 121: 58–67, https://doi.org/10.1016/j.compositesb.2017.03.024.Search in Google Scholar
Gu, B.K., Park, S.J., Kim, M.S., Kang, C.M., Kim, J.-I., and Kim, C.-H. (2013). Fabrication of sonicated chitosan nanofiber mat with enlarged porosity for use as hemostatic materials. Carbohydr. Polym. 97: 65–73, https://doi.org/10.1016/j.carbpol.2013.04.060.Search in Google Scholar PubMed
Guarino, V., Gentile, G., Sorrentino, L., and Ambrosio, L. (2017). Polycaprolactone: synthesis, properties, and applications. In: Encyclopedia of polymer science and technology. John Wiley & Sons, Inc., Hoboken, NJ, USA, pp. 1–36.10.1002/0471440264.pst658Search in Google Scholar
Habiba, U., Afifi, A.M., Salleh, A., and Ang, B.C. (2017a). Chitosan/(polyvinyl alcohol)/zeolite electrospun composite nanofibrous membrane for adsorption of Cr6+, Fe3+ and Ni2+. J. Hazard Mater. 322: 182–194, https://doi.org/10.1016/j.jhazmat.2016.06.028.Search in Google Scholar PubMed
Habiba, U., Siddique, T.A., Talebian, S., Lee, J.J.L., Salleh, A., Ang, B.C., and Afifi, A.M. (2017b). Effect of deacetylation on property of electrospun chitosan/PVA nanofibrous membrane and removal of methyl orange, Fe(III) and Cr(VI) ions. Carbohydr. Polym. 177: 32–39, https://doi.org/10.1016/j.carbpol.2017.08.115.Search in Google Scholar PubMed
Hadipour-Goudarzi, E., Montazer, M., Latifi, M., and Aghaji, A.A.G. (2014). Electrospinning of chitosan/sericin/PVA nanofibers incorporated with in situ synthesis of nano silver. Carbohydr. Polym. 113: 231–239, https://doi.org/10.1016/j.carbpol.2014.06.082.Search in Google Scholar PubMed
Haghju, S., Bari, M.R., and Khaled-Abad, M.A. (2018). Affecting parameters on fabrication of β-D-galactosidase immobilized chitosan/poly (vinyl alcohol) electrospun nanofibers. Carbohydr. Polym. 200: 137–143, https://doi.org/10.1016/j.carbpol.2018.07.096.Search in Google Scholar PubMed
Haider, S., Al-Zeghayer, Y., Ahmed Ali, F.A., Haider, A., Mahmood, A., Al-Masry, W.A., Imran, M., and Aijaz, M.O. (2013). Highly aligned narrow diameter chitosan electrospun nanofibers. J. Polym. Res. 20: 105, https://doi.org/10.1007/s10965-013-0105-9.Search in Google Scholar
Haider, S. and Park, S.-Y. (2009). Preparation of the electrospun chitosan nanofibers and their applications to the adsorption of Cu(II) and Pb(II) ions from an aqueous solution. J. Membr. Sci. 328: 90–96, https://doi.org/10.1016/j.memsci.2008.11.046.Search in Google Scholar
Hang, A.T., Tae, B., and Park, J.S. (2010). Non-woven mats of poly(vinyl alcohol)/chitosan blends containing silver nanoparticles: fabrication and characterization. Carbohydr. Polym. 82: 472–479, https://doi.org/10.1016/j.carbpol.2010.05.016.Search in Google Scholar
Hardiansyah, A., Tanadi, H., Yang, M.-C., and Liu, T.-Y. (2015). Electrospinning and antibacterial activity of chitosan-blended poly(lactic acid) nanofibers. J. Polym. Res. 22: 59, https://doi.org/10.1007/s10965-015-0704-8.Search in Google Scholar
Horzum, N., Boyacı, E., Eroğlu, A.E., Shahwan, T., and Demir, M.M. (2010). Sorption efficiency of chitosan nanofibers toward metal ions at low concentrations. Biomacromolecules 11: 3301–3308, https://doi.org/10.1021/bm100755x.Search in Google Scholar PubMed
Huang, X.-J., Ge, D., and Xu, Z.-K. (2007). Preparation and characterization of stable chitosan nanofibrous membrane for lipase immobilization. Eur. Polym. J. 43: 3710–3718, https://doi.org/10.1016/j.eurpolymj.2007.06.010.Search in Google Scholar
Iftime, M.M. and Marin, L. (2018). Chiral betulin-imino-chitosan hydrogels by dynamic covalent sonochemistry. Ultrason. Sonochem. 45: 238–247, https://doi.org/10.1016/j.ultsonch.2018.03.022.Search in Google Scholar PubMed
Iftime, M.-M., Morariu, S., and Marin, L. (2017). Salicyl-imine-chitosan hydrogels: supramolecular architecturing as a crosslinking method toward multifunctional hydrogels. Carbohydr. Polym. 165: 39–50, https://doi.org/10.1016/j.carbpol.2017.02.027.Search in Google Scholar PubMed
Iftime, M.M., Ailiesei, G.L., Ungureanu, E., and Marin, L. (2019). Designing chitosan based eco-friendly multifunctional soil conditioner systems with urea controlled release and water retention. Carbohydr. Polym. 223: 115040, https://doi.org/10.1016/j.carbpol.2019.115040.Search in Google Scholar PubMed
Ignatova, M., Manolova, N., Markova, N., and Rashkov, I. (2009). Electrospun non-woven nanofibrous hybrid mats based on chitosan and PLA for wound-dressing applications. Macromol. Biosci. 9: 102–111, https://doi.org/10.1002/mabi.200800189.Search in Google Scholar PubMed
Jabur, A.R., Abbas, L.K., and Moosa, S.A. (2016). Fabrication of electrospun chitosan/nylon 6 nanofibrous membrane toward metal ions removal and antibacterial effect. Adv. Mater. Sci. Eng. 2016: 1–10, https://doi.org/10.1155/2016/5810216.Search in Google Scholar
Jia, Y.-T., Gong, J., Gu, X.-H., Kim, H.-Y., Dong, J., and Shen, X.-Y. (2007). Fabrication and characterization of poly (vinyl alcohol)/chitosan blend nanofibers produced by electrospinning method. Carbohydr. Polym. 67: 403–409, https://doi.org/10.1016/j.carbpol.2006.06.010.Search in Google Scholar
Jin, Y., Yang, D., Zhou, Y., Ma, G., and Nie, J. (2008). Photocrosslinked electrospun chitosan-based biocompatible nanofibers. J. Appl. Polym. Sci. 109: 3337–3343, https://doi.org/10.1002/app.28371.Search in Google Scholar
Kalantari, K., Afifi, A.M., Jahangirian, H., and Webster, T.J. (2019). Biomedical applications of chitosan electrospun nanofibers as a green polymer – review. Carbohydr. Polym. 207: 588–600, https://doi.org/10.1016/j.carbpol.2018.12.011.Search in Google Scholar PubMed
Kang, W.M., Cheng, B.W., Li, Q.X., and Zuo, F.F. (2010). Novel antibacterial nanofibers of chitosan and polyurethane prepared by electrospinning. Adv. Mater. Res. 150–151: 1452–1456, https://doi.org/10.4028/www.scientific.net/amr.150-151.1452.Search in Google Scholar
Kianfar, P., Vitale, A., Dalle Vacche, S., and Bongiovanni, R. (2019). Photo-crosslinking of chitosan/poly(ethylene oxide) electrospun nanofibers. Carbohydr. Polym. 217: 144–151, https://doi.org/10.1016/j.carbpol.2019.04.062.Search in Google Scholar PubMed
Kievit, F.M., Cooper, A., Jana, S., Leung, M.C., Wang, K., Edmondson, D., Wood, D., Lee, J.S.H., Ellenbogen, R.G., and Zhang, M. (2013). Aligned chitosan-polycaprolactone polyblend nanofibers promote the migration of glioblastoma cells. Adv. Healthc. Mater. 2: 1651–1659, https://doi.org/10.1002/adhm.201300092.Search in Google Scholar PubMed PubMed Central
Kim, S.S. and Lee, J. (2014). Antibacterial activity of polyacrylonitrile–chitosan electrospun nanofibers. Carbohydr. Polym. 102: 231–237, https://doi.org/10.1016/j.carbpol.2013.11.028.Search in Google Scholar PubMed
Kiristi, M., Oksuz, A.U., Oksuz, L., and Ulusoy, S. (2013). Electrospun chitosan/PEDOT nanofibers. Mater. Sci. Eng. C 33: 3845–3850, https://doi.org/10.1016/j.msec.2013.05.018.Search in Google Scholar PubMed
Koosha, M. and Mirzadeh, H. (2015). Electrospinning, mechanical properties, and cell behavior study of chitosan/PVA nanofibers. J. Biomed. Mater. Res. A 103: 3081–3093, https://doi.org/10.1002/jbm.a.35443.Search in Google Scholar PubMed
Koosha, M., Mirzadeh, H., Shokrgozar, M.A., and Farokhi, M. (2015). Nanoclay-reinforced electrospun chitosan/PVA nanocomposite nanofibers for biomedical applications. RSC Adv. 5: 10479–10487, https://doi.org/10.1039/c4ra13972k.Search in Google Scholar
Koosha, M., Raoufi, M., and Moravvej, H. (2019). One-pot reactive electrospinning of chitosan/PVA hydrogel nanofibers reinforced by halloysite nanotubes with enhanced fibroblast cell attachment for skin tissue regeneration. Colloids Surf. B Biointerfaces 179: 270–279, https://doi.org/10.1016/j.colsurfb.2019.03.054.Search in Google Scholar PubMed
Kriegel, C., Arrechi, A., Kit, K., McClements, D.J., and Weiss, J. (2008). Fabrication, functionalization, and application of electrospun biopolymer nanofibers. Crit. Rev. Food Sci. Nutr. 48: 775–797, https://doi.org/10.1080/10408390802241325.Search in Google Scholar PubMed
Kriegel, C., Kit, K.M., McClements, D.J., and Weiss, J. (2009). Influence of surfactant type and concentration on electrospinning of chitosan–poly(ethylene oxide) blend nanofibers. Food Biophys. 4: 213–228, https://doi.org/10.1007/s11483-009-9119-6.Search in Google Scholar
Kritchenkov, A.S., Andranovitš, S., and Skorik, Y.A. (2017). Chitosan and its derivatives: vectors in gene therapy. Russ. Chem. Rev. 86: 231–239, https://doi.org/10.1070/rcr4636.Search in Google Scholar
Lee, D.-M., Kao, C.-W., Huang, T.-W., You, J.-H., and Liu, S.-J. (2016). Electrospinning of sheath-core structured chitosan/polylactide nanofibers for the removal of metal ions. Int. Polym. Process. 31: 533–540, https://doi.org/10.3139/217.3082.Search in Google Scholar
Lee, S.J., Heo, D.N., Moon, J.-H., Park, H.N., Ko, W.-K., Bae, M.S., Lee, J.B., Park, S.W., Kim, E.C., Lee, C.H., et al. (2014). Chitosan/polyurethane blended fiber sheets containing silver sulfadiazine for use as an antimicrobial wound dressing. J. Nanosci. Nanotechnol. 14: 7488–7494, https://doi.org/10.1166/jnn.2014.9581.Search in Google Scholar PubMed
Lemma, S.M., Bossard, F., and Rinaudo, M. (2016). Preparation of pure and stable chitosan nanofibers by electrospinning in the presence of poly (ethylene oxide). Int. J. Mol. Sci. 17: 1790, https://doi.org/10.3390/ijms17111790.Search in Google Scholar PubMed PubMed Central
Li, C., Lou, T., Yan, X., Long, Y., Cui, G., and Wang, X. (2018). Fabrication of pure chitosan nanofibrous membranes as effective absorbent for dye removal. Int. J. Biol. Macromol. 106: 768–774, https://doi.org/10.1016/j.ijbiomac.2017.08.072.Search in Google Scholar PubMed
Li, L. and Hsieh, Y.-L. (2006). Chitosan bicomponent nanofibers and nanoporous fibers. Carbohydr. Res. 341: 374–381, https://doi.org/10.1016/j.carres.2005.11.028.Search in Google Scholar PubMed
Li, L., Li, Y., Cao, L., and Yang, C. (2015). Enhanced chromium (VI) adsorption using nanosized chitosan fibers tailored by electrospinning. Carbohydr. Polym. 125: 206–213, https://doi.org/10.1016/j.carbpol.2015.02.037.Search in Google Scholar PubMed
Li, W., Luo, T., Shi, Y., Yang, Y., Huang, X., Xing, K., Liu, L., and Wang, M. (2014). Preparation, characterization, and property of chitosan/polyethylene oxide electrospun nanofibrous membrane for controlled drug release. Integrated Ferroelectrics Int. J. 151: 164–178, https://doi.org/10.1080/10584587.2014.901124.Search in Google Scholar
Li, Y., Chen, F., Nie, J., and Yang, D. (2012). Electrospun poly(lactic acid)/chitosan core–shell structure nanofibers from homogeneous solution. Carbohydr. Polym. 90: 1445–1451, https://doi.org/10.1016/j.carbpol.2012.07.013.Search in Google Scholar PubMed
Liu, F., Liu, Y., Sun, Z., Wang, D., Wu, H., Du, L., and Wang, D. (2020). Preparation and antibacterial properties of ε-polylysine-containing gelatin/chitosan nanofiber films. Int. J. Biol. Macromol. 164: 3376–3387, https://doi.org/10.1016/j.ijbiomac.2020.08.152.Search in Google Scholar PubMed
Liu, W., Zhan, J., Su, Y., Wu, T., Wu, C., Ramakrishna, S., Mo, X., Al-Deyab, S.S., and El-Newehy, M. (2014a). Effects of plasma treatment to nanofibers on initial cell adhesion and cell morphology. Colloids Surf. B Biointerfaces 113: 101–106, https://doi.org/10.1016/j.colsurfb.2013.08.031.Search in Google Scholar PubMed
Liu, Y., Park, M., Shin, H.K., Pant, B., Park, S.-J., and Kim, H.-Y. (2014b). Preparation and characterization of chitosan-based nanofibers by ecofriendly electrospinning. Mater. Lett. 132: 23–26, https://doi.org/10.1016/j.matlet.2014.06.041.Search in Google Scholar
Liverani, L., Lacina, J., Roether, J.A., Boccardi, E., Killian, M.S., Schmuki, P., Schubert, D.W., and Boccaccini, A.R. (2018). Incorporation of bioactive glass nanoparticles in electrospun PCL/chitosan fibers by using benign solvents. Bioact. Mater. 3: 55–63, https://doi.org/10.1016/j.bioactmat.2017.05.003.Search in Google Scholar PubMed PubMed Central
Lopes-da-Silva, J.A., Veleirinho, B., and Delgadillo, I. (2009). Preparation and characterization of electrospun mats made of PET/chitosan hybrid nanofibers. J. Nanosci. Nanotechnol. 9: 3798–3804, https://doi.org/10.1166/jnn.2009.ns70.Search in Google Scholar PubMed
Ma, G., Liu, Y., Peng, C., Fang, D., He, B., and Nie, J. (2011). Paclitaxel loaded electrospun porous nanofibers as mat potential application for chemotherapy against prostate cancer. Carbohydr. Polym. 86: 505–512, https://doi.org/10.1016/j.carbpol.2011.04.082.Search in Google Scholar
Ma, G., Liu, Y., Fang, D., Chen, J., Peng, C., Fei, X., and Nie, J. (2012). Hyaluronic acid/chitosan polyelectrolyte complexes nanofibers prepared by electrospinning. Mater. Lett. 74: 78–80, https://doi.org/10.1016/j.matlet.2012.01.012.Search in Google Scholar
Mahoney, C., Conklin, D., Waterman, J., Sankar, J., and Bhattarai, N. (2016). Electrospun nanofibers of poly(ε-caprolactone)/depolymerized chitosan for respiratory tissue engineering applications. J. Biomater. Sci. Polym. Ed. 27: 611–625, https://doi.org/10.1080/09205063.2016.1144454.Search in Google Scholar PubMed
Marin, L., Ailincai, D., Mares, M., Paslaru, E., Cristea, M., Nica, V., and Simionescu, B.C. (2015). Imino-chitosan biopolymeric films. Obtaining, self-assembling, surface and antimicrobial properties. Carbohydr. Polym. 117: 762–770, https://doi.org/10.1016/j.carbpol.2014.10.050.Search in Google Scholar PubMed
Marin, L., Dragoi, B., Olaru, N., Perju, E., Coroaba, A., Doroftei, F., Scavia, G., Destri, S., Zappia, S., and Porzio, W. (2019). Nanoporous furfuryl-imine-chitosan fibers as a new pathway towards eco-materials for CO2 adsorption. Eur. Polym. J. 120: 109214, https://doi.org/10.1016/j.eurpolymj.2019.109214.Search in Google Scholar
Matsuda, A., Kagata, G., Kino, R., and Tanaka, J. (2007). Preparation of chitosan nanofiber tube by electrospinning. J. Nanosci. Nanotechnol. 7: 852–855, https://doi.org/10.1166/jnn.2007.520.Search in Google Scholar PubMed
Min, B.-M., Lee, S.W., Lim, J.N., You, Y., Lee, T.S., Kang, P.H., and Park, W.H. (2004). Chitin and chitosan nanofibers: electrospinning of chitin and deacetylation of chitin nanofibers. Polymer 45: 7137–7142, https://doi.org/10.1016/j.polymer.2004.08.048.Search in Google Scholar
Min, L.-L., Yuan, Z.-H., Zhong, L.-B., Liu, Q., Wu, R.-X., and Zheng, Y.-M. (2015). Preparation of chitosan based electrospun nanofiber membrane and its adsorptive removal of arsenate from aqueous solution. Chem. Eng. J. 267: 132–141, https://doi.org/10.1016/j.cej.2014.12.024.Search in Google Scholar
Min, L.-L., Zhong, L.-B., Zheng, Y.-M., Liu, Q., Yuan, Z.-H., and Yang, L.-M. (2016). Functionalized chitosan electrospun nanofiber for effective removal of trace arsenate from water. Sci. Rep. 6: 32480, https://doi.org/10.1038/srep32480.Search in Google Scholar PubMed PubMed Central
Mohammed, M., Syeda, J., Wasan, K., and Wasan, E. (2017). An overview of chitosan nanoparticles and its application in non-parenteral drug delivery. Pharmaceutics 9: 53, https://doi.org/10.3390/pharmaceutics9040053.Search in Google Scholar PubMed PubMed Central
Mohraz, M.H., Golbabaei, F., Yu, I.J., Mansournia, M.A., Zadeh, A.S., and Dehghan, S.F. (2019). Preparation and optimization of multifunctional electrospun polyurethane/chitosan nanofibers for air pollution control applications. Int. J. Environ. Sci. Technol. 16: 681–694, https://doi.org/10.1007/s13762-018-1649-3.Search in Google Scholar
Montembault, A., Viton, C., and Domard, A. (2005). Rheometric study of the gelation of chitosan in aqueous solution without cross-linking agent. Biomacromolecules 6: 653–662, https://doi.org/10.1021/bm049593m.Search in Google Scholar PubMed
Moutsatsou, P., Coopman, K., and Georgiadou, S. (2017). Biocompatibility assessment of conducting PANI/chitosan nanofibers for wound healing applications. Polymers 9: 687, https://doi.org/10.3390/polym9120687.Search in Google Scholar PubMed PubMed Central
Moutsatsou, P., Coopman, K., and Georgiadou, S. (2019). Chitosan & conductive PANI/chitosan composite nanofibers – evaluation of antibacterial properties. Curr. Nanomater. 4: 6–20, https://doi.org/10.2174/1573413714666181114110651.Search in Google Scholar
Munteanu, B., Dumitriu, R., Profire, L., Sacarescu, L., Hitruc, G., Stoleru, E., Dobromir, M., Matricala, A., and Vasile, C. (2016). Hybrid nanostructures containing sulfadiazine modified chitosan as antimicrobial drug carriers. Nanomaterials 6: 207, https://doi.org/10.3390/nano6110207.Search in Google Scholar PubMed PubMed Central
Munteanu, B., Sacarescu, L., Vasiliu, A.-L., Hitruc, G., Pricope, G., Sivertsvik, M., Rosnes, J., and Vasile, C. (2018). Antioxidant/antibacterial electrospun nanocoatings applied onto PLA films. Materials 11: 1973, https://doi.org/10.3390/ma11101973.Search in Google Scholar PubMed PubMed Central
Nair, B. (1998). Final report on the safety assessment of polyvinyl alcohol. Int. J. Toxicol. 17(Suppl. 5): 67–92.10.1177/109158189801700505Search in Google Scholar
Naseri, N., Mathew, A.P., Girandon, L., Fröhlich, M., and Oksman, K. (2015). Porous electrospun nanocomposite mats based on chitosan–cellulose nanocrystals for wound dressing: effect of surface characteristics of nanocrystals. Cellulose 22: 521–534, https://doi.org/10.1007/s10570-014-0493-y.Search in Google Scholar
Nawalakhe, R., Shi, Q., Vitchuli, N., Bourham, M.A., Zhang, X., and McCord, M.G. (2015). Plasma-assisted preparation of high-performance chitosan nanofibers/gauze composite bandages. Int. J. Polym. Mater. Polym. Biomater. 64: 709–717, https://doi.org/10.1080/00914037.2014.1002098.Search in Google Scholar
Nguyen, T.T.T., Chung, O.H., and Park, J.S. (2011). Coaxial electrospun poly(lactic acid)/chitosan (core/shell) composite nanofibers and their antibacterial activity. Carbohydr. Polym. 86: 1799–1806, https://doi.org/10.1016/j.carbpol.2011.07.014.Search in Google Scholar
Nien, Y.-H., Wang, J.-Y., and Tsai, Y.-S. (2013). The preparation and characterization of highly aligned poly(ε-caprolactone)/poly ethylene oxide/chitosan ultrafine fiber for the application to tissue scaffold. J. Nanosci. Nanotechnol. 13: 4703–4707, https://doi.org/10.1166/jnn.2013.7199.Search in Google Scholar PubMed
Nikbakht, M., Salehi, M., Rezayat, S.M., and Majidi, R.F. (2020). Various parameters in the preparation of chitosan/polyethylene oxide electrospun nanofibers containing Aloe vera extract for medical applications. Nanomed. J. 7: 21–28.Search in Google Scholar
Nirmala, R., Il, B.W., Navamathavan, R., El-Newehy, M.H., and Kim, H.Y. (2011a). Preparation and characterizations of anisotropic chitosan nanofibers via electrospinning. Macromol. Res. 19: 345–350, https://doi.org/10.1007/s13233-011-0402-2.Search in Google Scholar
Nirmala, R., Navamathavan, R., Kang, H.-S., El-Newehy, M.H., and Kim, H.Y. (2011b). Preparation of polyamide-6/chitosan composite nanofibers by a single solvent system via electrospinning for biomedical applications. Colloids Surf. B Biointerfaces 83: 173–178, https://doi.org/10.1016/j.colsurfb.2010.11.026.Search in Google Scholar PubMed
Noriega, S.E., Hasanova, G.I., Schneider, M.J., Larsen, G.F., and Subramanian, A. (2012). Effect of fiber diameter on the spreading, proliferation and differentiation of chondrocytes on electrospun chitosan matrices. Cells Tissues Organs 195: 207–221, https://doi.org/10.1159/000325144.Search in Google Scholar PubMed PubMed Central
Ohkawa, K., Cha, D., Kim, H., Nishida, A., and Yamamoto, H. (2004). Electrospinning of chitosan. Macromol. Rapid Commun. 25: 1600–1605, https://doi.org/10.1002/marc.200400253.Search in Google Scholar
Ojha, S.S., Stevens, D.R., Hoffman, T.J., Stano, K., Klossner, R., Scott, M.C., Krause, W., Clarke, L.I., and Gorga, R.E. (2008). Fabrication and characterization of electrospun chitosan nanofibers formed via templating with polyethylene oxide. Biomacromolecules 9: 2523–2529, https://doi.org/10.1021/bm800551q.Search in Google Scholar PubMed
Olaru, A.-M., Marin, L., Morariu, S., Pricope, G., Pinteala, M., and Tartau-Mititelu, L. (2018). Biocompatible chitosan based hydrogels for potential application in local tumour therapy. Carbohydr. Polym. 179: 59–70, https://doi.org/10.1016/j.carbpol.2017.09.066.Search in Google Scholar PubMed
Pakravan, M., Heuzey, M.-C., and Ajji, A. (2011). A fundamental study of chitosan/PEO electrospinning. Polymer 52: 4813–4824, https://doi.org/10.1016/j.polymer.2011.08.034.Search in Google Scholar
Pakravan, M., Heuzey, M.-C., and Ajji, A. (2012). Core–shell structured PEO-chitosan nanofibers by coaxial electrospinning. Biomacromolecules 13: 412–421, https://doi.org/10.1021/bm201444v.Search in Google Scholar PubMed
Pangon, A., Saesoo, S., Saengkrit, N., Ruktanonchai, U., and Intasanta, V. (2016). Multicarboxylic acids as environment-friendly solvents and in situ crosslinkers for chitosan/PVA nanofibers with tunable physicochemical properties and biocompatibility. Carbohydr. Polym. 138: 156–165, https://doi.org/10.1016/j.carbpol.2015.11.039.Search in Google Scholar PubMed
Park, J.H., Lee, H.W., Chae, D.K., Oh, W., Yun, J.D., Deng, Y., and Yeum, J.H. (2009). Electrospinning and characterization of poly(vinyl alcohol)/chitosan oligosaccharide/clay nanocomposite nanofibers in aqueous solutions. Colloid Polym. Sci. 287: 943–950, https://doi.org/10.1007/s00396-009-2050-z.Search in Google Scholar
Park, W.H., Jeong, L., Yoo, D.I., and Hudson, S. (2004). Effect of chitosan on morphology and conformation of electrospun silk fibroin nanofibers. Polymer 45: 7151–7157, https://doi.org/10.1016/j.polymer.2004.08.045.Search in Google Scholar
Pebdeni, A.B., Sadri, M., and Pebdeni, S.B. (2016). Synthesis of chitosan/PEO/silica nanofiber coating for controlled release of cefepime from implants. RSC Adv. 6: 24418–24429, https://doi.org/10.1039/c6ra00071a.Search in Google Scholar
Petrova, V.A., Chernyakov, D.D., Poshina, D.N., Gofman, I.V., Romanov, D.P., Mishanin, A.I., Golovkin, A.S., and Skorik, Y.A. (2019). Electrospun bilayer chitosan/hyaluronan material and its compatibility with mesenchymal stem cells. Materials 12: 2016, https://doi.org/10.3390/ma12122016.Search in Google Scholar PubMed PubMed Central
Pezeshki-Modaress, M., Zandi, M., and Mirzadeh, H. (2015). Fabrication of gelatin/chitosan nanofibrous scaffold: process optimization and empirical modeling. Polym. Int. 64: 571–580, https://doi.org/10.1002/pi.4843.Search in Google Scholar
Phan, D.-N., Lee, H., Huang, B., Mukai, Y., and Kim, I.-S. (2019). Fabrication of electrospun chitosan/cellulose nanofibers having adsorption property with enhanced mechanical property. Cellulose 26: 1781–1793, https://doi.org/10.1007/s10570-018-2169-5.Search in Google Scholar
Poshina, D.N., Khadyko, I.A., Sukhova, A.A., Serov, I.V., Zabivalova, N.M., and Skorik, Y.A. (2019). Needleless electrospinning of a chitosan lactate aqueous solution: influence of solution composition and spinning parameters. Technologies 8: 2, https://doi.org/10.3390/technologies8010002.Search in Google Scholar
Pouranvari, S., Ebrahimi, F., Javadi, G., and Maddah, B. (2016). Chemical cross-linking of chitosan/polyvinyl alcohol electrospun nanofibers. Mater. Tehnol. 50: 663–666, https://doi.org/10.17222/mit.2015.083.Search in Google Scholar
Prabhakaran, M.P., Venugopal, J.R., Chyan, T.T., Hai, L.B., Chan, C.K., Lim, A.Y., and Ramakrishna, S. (2008). Electrospun biocomposite nanofibrous scaffolds for neural tissue engineering. Tissue Eng. A 14: 1787–1797, https://doi.org/10.1089/ten.tea.2007.0393.Search in Google Scholar PubMed
Qasim, S., Zafar, M., Najeeb, S., Khurshid, Z., Shah, A., Husain, S., and Rehman, I. (2018). Electrospinning of chitosan-based solutions for tissue engineering and regenerative medicine. Int. J. Mol. Sci. 19: 407, https://doi.org/10.3390/ijms19020407.Search in Google Scholar PubMed PubMed Central
Qin, Z., Jia, X.-W., Liu, Q., Kong, B., and Wang, H. (2019). Fast dissolving oral films for drug delivery prepared from chitosan/pullulan electrospinning nanofibers. Int. J. Biol. Macromol. 137: 224–231, https://doi.org/10.1016/j.ijbiomac.2019.06.224.Search in Google Scholar PubMed
Qin, Z., Jia, X., Liu, Q., Kong, B., and Wang, H. (2020). Enhancing physical properties of chitosan/pullulan electrospinning nanofibers via green crosslinking strategies. Carbohydr. Polym. 247: 116734, https://doi.org/10.1016/j.carbpol.2020.116734.Search in Google Scholar PubMed
Ranjith, R., Balraj, S., Ganesh, J., and John Milton, M.C. (2019). Therapeutic agents loaded chitosan-based nanofibrous mats as potential wound dressings: a review. Mater. Today Chem. 12: 386–395, https://doi.org/10.1016/j.mtchem.2019.03.008.Search in Google Scholar
Rieger, K.A., Birch, N.P., and Schiffman, J.D. (2016). Electrospinning chitosan/poly(ethylene oxide) solutions with essential oils: correlating solution rheology to nanofiber formation. Carbohydr. Polym. 139: 131–138, https://doi.org/10.1016/j.carbpol.2015.11.073.Search in Google Scholar PubMed
Rošic, R., Pelipenko, J., Kocbek, P., Baumgartner, S., Bešter-Rogač, M., and Kristl, J. (2012). The role of rheology of polymer solutions in predicting nanofiber formation by electrospinning. Eur. Polym. J. 48: 1374–1384.10.1016/j.eurpolymj.2012.05.001Search in Google Scholar
Rwei, S.-P. and Huang, C.-C. (2012). Electrospinning PVA solution-rheology and morphology analyses. Fibers Polym. 13: 44–50, https://doi.org/10.1007/s12221-012-0044-9.Search in Google Scholar
Saatchi, A., Razaghian, A., Moghanian, A., and Mozafari, M. (2020). Synthesis and characterization of electrospun cerium-doped bioactive glass/chitosan/polyethylene oxide composite scaffolds for tissue engineering applications. Ceram. Int. 47: 1–12, https://doi.org/10.1016/j.ceramint.2020.08.130.Search in Google Scholar
Sadri, M., Arab-Sorkhi, S., Vatani, H., and Bagheri-Pebdeni, A. (2015). New wound dressing polymeric nanofiber containing green tea extract prepared by electrospinning method. Fibers Polym. 16: 1742–1750, https://doi.org/10.1007/s12221-015-5297-7.Search in Google Scholar
Sambudi, N.S., Sathyamurthy, M., Lee, G.M., and Park, S.B. (2015). Electrospun chitosan/poly(vinyl alcohol) reinforced with CaCO3 nanoparticles with enhanced mechanical properties and biocompatibility for cartilage tissue engineering. Compos. Sci. Technol. 106: 76–84, https://doi.org/10.1016/j.compscitech.2014.11.003.Search in Google Scholar
Sambudi, N.S., Kim, M.G., and Park, S.B. (2016). The formation of web-like connection among electrospun chitosan/PVA fiber network by the reinforcement of ellipsoidal calcium carbonate. Mater. Sci. Eng. C 60: 518–525, https://doi.org/10.1016/j.msec.2015.11.079.Search in Google Scholar PubMed
Sangsanoh, P. and Supaphol, P. (2006). Stability improvement of electrospun chitosan nanofibrous membranes in neutral or weak basic aqueous solutions. Biomacromolecules 7: 2710–2714, https://doi.org/10.1021/bm060286l.Search in Google Scholar PubMed
Schiffman, J.D. and Schauer, C.L. (2007). Cross-linking chitosan nanofibers. Biomacromolecules 8: 594–601, https://doi.org/10.1021/bm060804s.Search in Google Scholar PubMed
Schiffman, J.D. and Schauer, C.L. (2008). A review: electrospinning of biopolymer nanofibers and their applications. Polym. Rev. 48: 317–352, https://doi.org/10.1080/15583720802022182.Search in Google Scholar
Semnani, D., Naghashzargar, E., Hadjianfar, M., Dehghan Manshadi, F., Mohammadi, S., Karbasi, S., and Effaty, F. (2017). Evaluation of PCL/chitosan electrospun nanofibers for liver tissue engineering. Int. J. Polym. Mater. Polym. Biomater. 66: 149–157, https://doi.org/10.1080/00914037.2016.1190931.Search in Google Scholar
Shan, X., Li, F., Liu, C., and Gao, Q. (2014). Electrospinning of chitosan/poly(lactic acid) nanofibers: the favorable effect of nonionic surfactant. J. Appl. Polym. Sci. 131: 41098, https://doi.org/10.1002/app.41098.Search in Google Scholar
Shariful, M.I., Sepehr, T., Mehrali, M., Ang, B.C., and Amalina, M.A. (2018). Adsorption capability of heavy metals by chitosan/poly(ethylene oxide)/activated carbon electrospun nanofibrous membrane. J. Appl. Polym. Sci. 135: 45851, https://doi.org/10.1002/app.45851.Search in Google Scholar
Shekarforoush, E., Ajalloueian, F., Zeng, G., Mendes, A.C., and Chronakis, I.S. (2018). Electrospun xanthan gum-chitosan nanofibers as delivery carrier of hydrophobic bioactives. Mater. Lett. 228: 322–326, https://doi.org/10.1016/j.matlet.2018.06.033.Search in Google Scholar
Shen, K., Hu, Q., Chen, L., and Shen, J. (2010). Preparation of chitosan bicomponent nanofibers filled with hydroxyapatite nanoparticles via electrospinning. J. Appl. Polym. Sci. 115: 2683–2690, https://doi.org/10.1002/app.29832.Search in Google Scholar
Shenoy, S.L., Bates, W.D., Frisch, H.L., and Wnek, G.E. (2005). Role of chain entanglements on fiber formation during electrospinning of polymer solutions: good solvent, non-specific polymer–polymer interaction limit. Polymer 46: 3372–3384, https://doi.org/10.1016/j.polymer.2005.03.011.Search in Google Scholar
Singh, Y.P., Dasgupta, S., Nayar, S., and Bhaskar, R. (2020). Optimization of electrospinning process & parameters for producing defect-free chitosan/polyethylene oxide nanofibers for bone tissue engineering. J. Biomater. Sci. Polym. Ed. 31: 781–803, https://doi.org/10.1080/09205063.2020.1718824.Search in Google Scholar PubMed
Stoleru, E., Dumitriu, R.P., Munteanu, B.S., Zaharescu, T., Tănase, E.E., Mitelut, A., Ailiesei, G.-L., and Vasile, C. (2016). Novel procedure to enhance PLA surface properties by chitosan irreversible immobilization. Appl. Surf. Sci. 367: 407–417, https://doi.org/10.1016/j.apsusc.2016.01.200.Search in Google Scholar
Su, H., Liu, K.-Y., Karydis, A., Abebe, D.G., Wu, C., Anderson, K.M., Ghadri, N., Adatrow, P., Fujiwara, T., and Bumgardner, J.D. (2016). In vitro and in vivo evaluations of a novel post-electrospinning treatment to improve the fibrous structure of chitosan membranes for guided bone regeneration. Biomed. Mater. 12: 15003, https://doi.org/10.1088/1748-605X/12/1/015003.Search in Google Scholar PubMed
Su, P., Wang, C., Yang, X., Chen, X., Gao, C., Feng, X.-X., Chen, J.-Y., Ye, J., and Gou, Z. (2011). Electrospinning of chitosan nanofibers: the favorable effect of metal ions. Carbohydr. Polym. 84: 239–246, https://doi.org/10.1016/j.carbpol.2010.11.031.Search in Google Scholar
Su, X., Wei, J., Ren, X., Li, L., Meng, X., Ren, J., and Tang, F. (2013). A new amperometric glucose biosensor based on one-step electrospun poly(vinyl alcohol)/chitosan nanofibers. J. Biomed. Nanotechnol. 9: 1776–1783, https://doi.org/10.1166/jbn.2013.1671.Search in Google Scholar PubMed
Sultankulov, B., Berillo, D., Sultankulova, K., Tokay, T., and Saparov, A. (2019). Progress in the development of chitosan-based biomaterials for tissue engineering and regenerative medicine. Biomolecules 9: 470, https://doi.org/10.3390/biom9090470.Search in Google Scholar PubMed PubMed Central
Sun, J., Perry, S.L., and Schiffman, J.D. (2019). Electrospinning nanofibers from chitosan/hyaluronic acid complex coacervates. Biomacromolecules 20: 4191–4198, https://doi.org/10.1021/acs.biomac.9b01072.Search in Google Scholar PubMed
Surendhiran, D., Li, C., Cui, H., and Lin, L. (2020). Fabrication of high stability active nanofibers encapsulated with pomegranate peel extract using chitosan/PEO for meat preservation. Food Packag. Shelf Life 23: 100439, https://doi.org/10.1016/j.fpsl.2019.100439.Search in Google Scholar
Tiplea, R.E., Lemnaru, G.M., Trușcă, R.D., Holban, A., Kaya, M.G.A., Dragu, L.D., Ficai, D., Ficai, A., and Bleotu, C. (2021). Antimicrobial films based on chitosan, collagen, and zno for skin tissue regeneration. Biointerface Res. Appl. Chem. 11: 11985–11995.Search in Google Scholar
Torres‐Giner, S., Ocio, M.J., and Lagaron, J.M. (2008). Development of active antimicrobial fiber‐based chitosan polysaccharide nanostructures using electrospinning. Eng. Life Sci. 8: 303–314.10.1002/elsc.200700066Search in Google Scholar
Toskas, G., Cherif, C., Hund, R.-D., Laourine, E., Mahltig, B., Fahmi, A., Heinemann, C., and Hanke, T. (2013). Chitosan(PEO)/silica hybrid nanofibers as a potential biomaterial for bone regeneration. Carbohydr. Polym. 94: 713–722, https://doi.org/10.1016/j.carbpol.2013.01.068.Search in Google Scholar PubMed
Tsai, R.-Y., Kuo, T.-Y., Hung, S.-C., Lin, C.-M., Hsien, T.-Y., Wang, D.-M., and Hsieh, H.-J. (2015). Use of gum Arabic to improve the fabrication of chitosan–gelatin-based nanofibers for tissue engineering. Carbohydr. Polym. 115: 525–532, https://doi.org/10.1016/j.carbpol.2014.08.108.Search in Google Scholar PubMed
Tsaih, M.L. and Chen, R.H. (1997). Effect of molecular weight and urea on the conformation of chitosan molecules in dilute solutions. Int. J. Biol. Macromol. 20: 233–240, https://doi.org/10.1016/s0141-8130(97)01165-3.Search in Google Scholar PubMed
Vondran, J.L., Sun, W., and Schauer, C.L. (2008). Crosslinked, electrospun chitosan–poly(ethylene oxide) nanofiber mats. J. Appl. Polym. Sci. 109: 968–975, https://doi.org/10.1002/app.28107.Search in Google Scholar
De Vrieze, S., Westbroek, P., Van Camp, T., and Van Langenhove, L. (2007). Electrospinning of chitosan nanofibrous structures: feasibility study. J. Mater. Sci. 42: 8029–8034, https://doi.org/10.1007/s10853-006-1485-6.Search in Google Scholar
Wang, D., Cheng, W., Wang, Q., Zang, J., Zhang, Y., and Han, G. (2019). Preparation of electrospun chitosan/poly(ethylene oxide) composite nanofibers reinforced with cellulose nanocrystals: structure, morphology, and mechanical behavior. Compos. Sci. Technol. 182: 107774, https://doi.org/10.1016/j.compscitech.2019.107774.Search in Google Scholar
Wang, D., Cheng, W., Yue, Y., Xuan, L., Ni, X., and Han, G. (2018a). Electrospun cellulose nanocrystals/chitosan/polyvinyl alcohol nanofibrous films and their exploration to metal ions adsorption. Polymers 10: 1046, https://doi.org/10.3390/polym10101046.Search in Google Scholar PubMed PubMed Central
Wang, D., Lu, Q., Wei, M., and Guo, E. (2018b). Ultrasmall Ag nanocrystals supported on chitosan/PVA nanofiber mats with bifunctional properties. J. Appl. Polym. Sci. 135: 46504, https://doi.org/10.1002/app.46504.Search in Google Scholar
Wang, N., Wang, X., Jia, Y., Li, X., Yu, J., and Ding, B. (2014). Electrospun nanofibrous chitosan membranes modified with polyethyleneimine for formaldehyde detection. Carbohydr. Polym. 108: 192–199, https://doi.org/10.1016/j.carbpol.2014.02.088.Search in Google Scholar PubMed
Wang, P., Wang, L., Dong, S., Zhang, G., Shi, X., Xiang, C., and Li, L. (2018c). Adsorption of hexavalent chromium by novel chitosan/poly(ethylene oxide)/permutit electrospun nanofibers. New J. Chem. 42: 17740–17749, https://doi.org/10.1039/c8nj03899f.Search in Google Scholar
Wardhani, R.A.K., Asri, L.A.T.W., Rachmawati, H., Khairurrijal, K., and Purwasasmita, B.S. (2019). Stabilization of chitosan-polyethylene oxide electrospun nanofibrous containing Colocasia esculenta tuber protein. Mater. Res. Express 6: 1150f4, https://doi.org/10.1088/2053-1591/ab5087.Search in Google Scholar
Wu, J. and Yin, F. (2013). Sensitive enzymatic glucose biosensor fabricated by electrospinning composite nanofibers and electrodepositing Prussian blue film. J. Electroanal. Chem. 694: 1–5, https://doi.org/10.1016/j.jelechem.2013.02.003.Search in Google Scholar
Wu, Y., Rashidpour, A., Almajano, M.P., and Metón, I. (2020). Chitosan-based drug delivery system: applications in fish biotechnology. Polymers 12: 1177, https://doi.org/10.3390/polym12051177.Search in Google Scholar PubMed PubMed Central
Xu, J., Zhang, J., Gao, W., Liang, H., Wang, H., and Li, J. (2009). Preparation of chitosan/PLA blend micro/nanofibers by electrospinning. Mater. Lett. 63: 658–660, https://doi.org/10.1016/j.matlet.2008.12.014.Search in Google Scholar
Yang, D., Jin, Y., Ma, G., Chen, X., Lu, F., and Nie, J. (2008). Fabrication and characterization of chitosan/PVA with hydroxyapatite biocomposite nanoscaffolds. J. Appl. Polym. Sci. 110: 3328–3335, https://doi.org/10.1002/app.28829.Search in Google Scholar
Ye, H., Zhu, J., Deng, D., Jin, S., Li, J., and Man, Y. (2019a). Enhanced osteogenesis and angiogenesis by PCL/chitosan/Sr-doped calcium phosphate electrospun nanocomposite membrane for guided bone regeneration. J. Biomater. Sci. Polym. Ed. 30: 1505–1522, https://doi.org/10.1080/09205063.2019.1646628.Search in Google Scholar PubMed
Yao, R.S., You, Q.D., Liu, P.J., and Xu, Y.F. (2009). Synthesis and pH-induced phase transition behavior of PAA/PVA nanogels in aqueous media. J. Appl. Polym. Sci. 111: 358–362, doi:10.1002/app.29078.10.1002/app.29078Search in Google Scholar
Ye, Z., Zhang, B., Shao, L., Xing, G., Qi, C., and Tao, H. (2019b). Palladium nanoparticles embedded chitosan/poly(vinyl alcohol) composite nanofibers as an efficient and stable heterogeneous catalyst for Heck reaction. J. Appl. Polym. Sci. 136: 48026, https://doi.org/10.1002/app.48026.Search in Google Scholar
Yee Kuen, C., Galen, T., Fakurazi, S., Othman, S.S., and Masarudin, M.J. (2020). Increased cytotoxic efficacy of protocatechuic acid in A549 human lung cancer delivered via hydrophobically modified-chitosan nanoparticles as an anticancer modality. Polymers 12: 1951, https://doi.org/10.3390/polym12091951.Search in Google Scholar PubMed PubMed Central
Yousefi, I., Pakravan, M., Rahimi, H., Bahador, A., Farshadzadeh, Z., and Haririan, I. (2017). An investigation of electrospun Henna leaves extract-loaded chitosan based nanofibrous mats for skin tissue engineering. Mater. Sci. Eng. C 75: 433–444, https://doi.org/10.1016/j.msec.2017.02.076.Search in Google Scholar PubMed
Yu, R., Cornette de Saint-Cyr, L., Soussan, L., Barboiu, M., and Li, S. (2021). Anti-bacterial dynamic hydrogels prepared from O-carboxymethyl chitosan by dual imine bond crosslinking for biomedical applications. Int. J. Biol. Macromol. 167: 1146–1155, https://doi.org/10.1016/j.ijbiomac.2020.11.068.Search in Google Scholar PubMed
Zarghami, A., Irani, M., Mostafazadeh, A., Golpour, M., Heidarinasab, A., and Haririan, I. (2015). Fabrication of PEO/chitosan/PCL/olive oil nanofibrous scaffolds for wound dressing applications. Fibers Polym. 16: 1201–1212, https://doi.org/10.1007/s12221-015-1201-8.Search in Google Scholar
Zhang, C., Yuan, X., Wu, L., Han, Y., and Sheng, J. (2005). Study on morphology of electrospun poly(vinyl alcohol) mats. Eur. Polym. J. 41: 423–432, https://doi.org/10.1016/j.eurpolymj.2004.10.027.Search in Google Scholar
Zhang, Y., Huang, X., Duan, B., Wu, L., Li, S., and Yuan, X. (2007). Preparation of electrospun chitosan/poly(vinyl alcohol) membranes. Colloid Polym. Sci. 285: 855–863, https://doi.org/10.1007/s00396-006-1630-4.Search in Google Scholar
Zhang, Y., Venugopal, J.R., El-Turki, A., Ramakrishna, S., Su, B., and Lim, C.T. (2008). Electrospun biomimetic nanocomposite nanofibers of hydroxyapatite/chitosan for bone tissue engineering. Biomaterials 29: 4314–4322, https://doi.org/10.1016/j.biomaterials.2008.07.038.Search in Google Scholar PubMed
Zhao, R., Li, X., Sun, B., Zhang, Y., Zhang, D., Tang, Z., Chen, X., and Wang, C. (2014). Electrospun chitosan/sericin composite nanofibers with antibacterial property as potential wound dressings. Int. J. Biol. Macromol. 68: 92–97, https://doi.org/10.1016/j.ijbiomac.2014.04.029.Search in Google Scholar PubMed
Zhou, Y., Yang, D., and Nie, J. (2006). Electrospinning of chitosan/poly(vinyl alcohol)/acrylic acid aqueous solutions. J. Appl. Polym. Sci. 102: 5692–5697, https://doi.org/10.1002/app.25068.Search in Google Scholar
Zhou, Y.S., Yang, D.Z., and Nie, J. (2007). Effect of PVA content on morphology, swelling and mechanical property of crosslinked chitosan/PVA nanofibre. Plast. Rubber Compos. Macromol. Eng. 36: 254–258, https://doi.org/10.1179/174328907x191440.Search in Google Scholar
Zhu, X., Chian, K.S., Chan-Park, M.B.E., and Lee, S.T. (2005). Effect of argon-plasma treatment on proliferation of human-skin-derived fibroblast on chitosan membrane in vitro. J. Biomed. Mater. Res. A 73A: 264–274, https://doi.org/10.1002/jbm.a.30211.Search in Google Scholar PubMed
Zhuang, X., Cheng, B., Kang, W., and Xu, X. (2010). Electrospun chitosan/gelatin nanofibers containing silver nanoparticles. Carbohydr. Polym. 82: 524–527, https://doi.org/10.1016/j.carbpol.2010.04.085.Search in Google Scholar
Ziani, K., Henrist, C., Jérôme, C., Aqil, A., Maté, J.I., and Cloots, R. (2011). Effect of nonionic surfactant and acidity on chitosan nanofibers with different molecular weights. Carbohydr. Polym. 83: 470–476, https://doi.org/10.1016/j.carbpol.2010.08.002.Search in Google Scholar
Zong, X., Kim, K., Fang, D., Ran, S., Hsiao, B.S., and Chu, B. (2002). Structure and process relationship of electrospun bioabsorbable nanofiber membranes. Polymer 43: 4403–4412, https://doi.org/10.1016/s0032-3861(02)00275-6.Search in Google Scholar
Zuo, F.F., Cheng, B.W., Kang, W.M., and Ma, Y.H. (2011). Preparation of chitosan/poly(vinyl alcohol) blend nanofibers containing Ag–SiO2 nanoparticles via electrospinning. Mater. Sci. Forum 675: 271–274, https://doi.org/10.4028/www.scientific.net/msf.675-677.271.Search in Google Scholar
© 2021 Walter de Gruyter GmbH, Berlin/Boston