Abstract
The development of highly efficient separation membranes utilizing emerging materials with controllable pore size and minimized thickness could greatly enhance the broad applications of membrane-based technologies. Having this perspective, many studies on the incorporation of nanosheets in membrane fabrication have been conducted, and strong interest in this area has grown over the past decade. This article reviews the development of nanosheet membranes focusing on two-dimensional materials as a continuous phase, due to their promising properties, such as atomic or nanoscale thickness and large lateral dimensions, to achieve improved performance compared to their discontinuous counterparts. Material characteristics and strategies to process nanosheet materials into separation membranes are reviewed, followed by discussions on the membrane performances in diverse applications. The review concludes with a discussion of remaining challenges and future outlook for nanosheet membrane technologies.
Funding source: The Ministry of Research, Technology and Higher Education of the Republic of Indonesia http://dx.doi.org/10.13039/501100009509
Award Identifier / Grant number: -
Award Identifier / Grant number: -
Award Identifier / Grant number: -
About the authors

Grandprix T. M. Kadja is currently an assistant professor in the Division of Inorganic and Physical Chemistry, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Indonesia. He received his BS in Chemistry from Universitas Indonesia in 2013 while his PhD in Chemistry was obtained from Institut Teknologi Bandung in 2017. His research focuses on the synthesis and characterization of nanoporous and nanolayered materials and their applications in the emerging fields of catalysis, separation, energy, and environmental remediation.

Nurul F. Himma received her bachelor degree in chemical engineering from Institut Teknologi Sepuluh Nopember, Indonesia in 2013. In 2015, she completed her master degree from Institut Teknologi Bandung, Indonesia under the supervision of Professor Wenten, and then worked as a research assistant in Prof. Wenten’s laboratory. She is currently a lecturer in the Department of Chemical Engineering at Universitas Brawijaya, Indonesia. Her research interests include wastewater treatment and membrane development for environmental protection.

Nicholaus Prasetya obtained his BSc degree in Chemical Engineering from Institut Teknologi Bandung in 2013. In 2019, he received his PhD, also in Chemical Engineering, from Imperial College London under the supervision of Dr Bradley Ladewig. His research interest focuses on membrane and porous materials for gas and liquid separations.

Martin Z. Bazant is the E. G. Roos (1944) Professor of Chemical Engineering and Mathematics at the Massachusetts Institute of Technology. He received a PhD in Physics from Harvard University in 1997 and began his career at MIT in Mathematics. He joined the Department of Chemical Engineering in 2008 and served as its Executive Officer from 2016 to 2020. His research and teaching in transport phenomena, electrokinetics, and electrochemical systems have been recognized by several reputable awards.

I G. Wenten is a professor of chemical engineering and a member of the Research Center for Nanosciences and Nanotechnology, Institut Teknologi Bandung. He received his Bachelor’s degree in chemical engineering from Institut Teknologi Bandung (ITB) Indonesia and his MSc and PhD degrees from DTU Denmark. He has extensive experience in membrane technology, both at industrial and academic levels, with a career spanning more than 20 years. His research interests include membrane preparation, membrane applications, and membrane fouling.
-
Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
-
Research funding: This work was supported by the Ministry of Research, Technology and Higher Education of the Republic of Indonesia (World Class University (WCU) Program managed by Institut Teknologi Bandung).
-
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
References
Abraham, J., Vasu, K.S., Williams, C.D., Gopinadhan, K., Su, Y., Cherian, C.T., Dix, J., Prestat, E., Haigh, S.J., Grigorieva, I.V., et al.. (2017). Tunable sieving of ions using graphene oxide membranes. Nat. Nanotechnol. 12: 546–551, https://doi.org/10.1038/nnano.2017.21.Search in Google Scholar PubMed
Abuzeid, H.R., El-Mahdy, A.F.M., and Kuo, S.-W. (2021). Covalent organic frameworks: design, principles, synthetic strategies, and diverse applications. Giant 6: 100054, https://doi.org/10.1016/j.giant.2021.100054.Search in Google Scholar
Agrawal, K.V., Topuz, B., Jiang, Z., Nguenkam, K., Elyassi, B., Francis, L.F., Tsapatsis, M., and Navarro, M. (2013). Solution-processable exfoliated zeolite nanosheets purified by density gradient centrifugation. AIChE J. 59: 3458–3467, https://doi.org/10.1002/aic.14099.Search in Google Scholar
Agrawal, K.V., Topuz, B., Pham, T.C.T., Nguyen, T.H., Sauer, N., Rangnekar, N., Zhang, H., Narasimharao, K., Basahel, S.N., Francis, L.F., et al.. (2015). Oriented MFI membranes by gel-less secondary growth of sub-100 nm MFI-nanosheet seed layers. Adv. Mater. 27: 3243–3249, https://doi.org/10.1002/adma.201405893.Search in Google Scholar PubMed
Akbari, A., Sheath, P., Martin, S.T., Shinde, D.B., Shaibani, M., Banerjee, P.C., Tkacz, R., Bhattacharyya, D., and Majumder, M. (2016). Large-area graphene-based nanofiltration membranes by shear alignment of discotic nematic liquid crystals of graphene oxide. Nat. Commun. 7: 10891, https://doi.org/10.1038/ncomms10891.Search in Google Scholar PubMed PubMed Central
Amadei, C.A. and Vecitis, C.D. (2016). How to increase the signal-to-noise ratio of graphene oxide membrane research. Phys. Chem. Lett. 7: 3791–3797, doi:https://doi.org/10.1021/acs.jpclett.6b01829.Search in Google Scholar PubMed
Ang, H. and Hong, L. (2017). Polycationic polymer-regulated assembling of 2D MOF nanosheets for high-performance nanofiltration. ACS Appl. Mater. Interfaces 9: 28079–28088, https://doi.org/10.1021/acsami.7b08383.Search in Google Scholar PubMed
Baerlocher, C. and McCusker, L.B. (2017). Database of zeolite structures [online], Available at: <http://www.iza-structure.org/databases/>.Search in Google Scholar
Berlanga, I., Ruiz-González, M.L., González-Calbet, J.M., Fierro, J.L.G., Mas-Ballesté, R., and Zamora, F. (2011). Delamination of layered covalent organic frameworks. Small 7: 1207–1211, https://doi.org/10.1002/smll.201002264.Search in Google Scholar PubMed
Boehm, K.-P., Clauss, A., and Hofmann, U. (1961). Graphite oxide and its membrane properties. J. Chim. Phys. 58: 141–147, https://doi.org/10.1051/jcp/1961580141.Search in Google Scholar
Brodie, B.C. (1860). Hydration behavior and dynamics of water molecules in graphite oxide. Ann. Chim. Phys. 59: 466–472.Search in Google Scholar
Bu, F., Zagho, M.M., Ibrahim, Y., Ma, B., Elzatahry, A., and Zhao, D. (2020). Porous MXenes: synthesis, structures, and applications. Nano Today 30: 100803, https://doi.org/10.1016/j.nantod.2019.100803.Search in Google Scholar
Bunck, D.N. and Dichtel, W.R. (2013). Bulk synthesis of exfoliated two-dimensional polymers using hydrazone-linked covalent organic frameworks. J. Am. Chem. Soc. 135: 14952–14955, https://doi.org/10.1021/ja408243n.Search in Google Scholar PubMed
Cao, Z., Iskhakova, L., Sun, X., Tang, Z., and Dong, J. (2021). ZSM-5 zeolite nanosheet-based membranes on porous polyvinylidene fluoride for high-flux desalination. ACS Appl. Nano Mater. 4: 2895–2902, https://doi.org/10.1021/acsanm.1c00046.Search in Google Scholar
Cao, Z., Zeng, S., Xu, Z., Arvanitis, A., Yang, S., Gu, X., and Dong, J. (2018). Ultrathin ZSM-5 zeolite nanosheet laminated membrane for high-flux desalination of concentrated brines. Sci. Adv. 4: 1–10, https://doi.org/10.1126/sciadv.aau8634.Search in Google Scholar PubMed PubMed Central
Chandra, S., Kandambeth, S., Biswal, B.P., Lukose, B., Kunjir, S.M., Chaudhary, M., Babarao, R., Heine, T., and Banerjee, R. (2013). Chemically stable multilayered covalent organic nanosheets from covalent organic frameworks via mechanical delamination. J. Am. Chem. Soc. 135: 17853–17861, https://doi.org/10.1021/ja408121p.Search in Google Scholar PubMed
Chen, C., Jia, L., Li, J., Zhang, L., Liang, L., Chen, E., Kong, Z., Wang, X., Zhang, W., and Shen, J.-W. (2020). Understanding the effect of hydroxyl/epoxy group on water desalination through lamellar graphene oxide membranes via molecular dynamics simulation. Desalination 491: 224560, https://doi.org/10.1016/j.desal.2020.114560.Search in Google Scholar
Chen, C., Wang, J., Liu, D., Yang, C., Liu, C., Ruouff, R.S., and Lei, W. (2018). Functionalized boron nitride membranes with ultrafast solvent transport performance for molecular separation. Nat. Commun. 9: 1902, https://doi.org/10.1038/s41467-018-04294-6.Search in Google Scholar PubMed PubMed Central
Cheng, Y., Ravi, S.K., Wang, Y., Tao, J., Gu, Y., Tan, S.C., and Zhao, D. (2018). Covalent organic nanosheets with large lateral size and high aspect ratio synthesized by Langmuir-Blodgett method. Chin. Chem. Lett. 29: 869–872, https://doi.org/10.1016/j.cclet.2017.09.002.Search in Google Scholar
Cheng, Y., Wang, X., Jia, C., Wang, Y., Zhai, L., Wang, Q., and Zhao, D. (2017). Ultrathin mixed matrix membranes containing two-dimensional metal-organic framework nanosheets for efficient CO2/CH4 separation. J. Membr. Sci. 539: 213–223, https://doi.org/10.1016/j.memsci.2017.06.011.Search in Google Scholar
Chi, C., Wang, X., Peng, Y., Qian, Y., Hu, Z., Dong, J., and Zhao, D. (2016). Facile preparation of graphene oxide membranes for gas separation. Chem. Mater. 28: 2921–2927, https://doi.org/10.1021/acs.chemmater.5b04475.Search in Google Scholar
Choi, M., Na, K., Kim, J., Sakamoto, Y., Terasaki, O., and Ryoo, R. (2009). Stable single-unit-cell nanosheets of zeolite MFI as active and long-lived catalysts. Nature 461: 246–249, https://doi.org/10.1038/nature08288.Search in Google Scholar PubMed
Chung, T.S., Teoh, S.K., and Hu, X. (1997). Formation of ultrathin high-performance polyethersulfone hollow-fiber membranes. J. Membr. Sci. 133: 161–175, https://doi.org/10.1016/s0376-7388(97)00101-4.Search in Google Scholar
Côté, A.P., Benin, A.I., Ockwig, N.W., Keeffe, M., Matzger, A.J., and Yaghi, O.M. (2005). Porous, crystalline, covalent organic frameworks. Science 310: 1166.10.1126/science.1120411Search in Google Scholar PubMed
Dai, R., Li, J., and Wang, Z. (2020). Constructing interlayer to tailor structure and performance of thin-film composite polyamide membranes: a review. Adv. Colloid Interface Sci. 282: 102204, https://doi.org/10.1016/j.cis.2020.102204.Search in Google Scholar PubMed
Dakhchoune, M., Villalobos, L.F., Semino, R., Liu, L., Rezaei, M., Schouwink, P., Avalos, C.E., Baade, P., Wood, V., Han, Y., et al.. (2021). Gas-sieving zeolitic membranes fabricated by condensation of precursor nanosheets. Nat. Mater. 20: 362–369, https://doi.org/10.1038/s41563-020-00822-2.Search in Google Scholar PubMed
Dey, K., Pal, M., Rout, K.C., Kunjattu, H.S., Das, A., Mukherjee, R., Kharul, U.K., and Banerjee, R. (2017). Selective molecular separation by interfacially crystallized covalent organic framework thin films. J. Am. Chem. Soc. 139: 13083–13091, https://doi.org/10.1021/jacs.7b06640.Search in Google Scholar PubMed
Díaz, U. and Corma, A. (2016). Ordered covalent organic frameworks, COFs and PAFs from preparation to application. Coord. Chem. Rev. 311: 85–124.10.1016/j.ccr.2015.12.010Search in Google Scholar
Ding, L., Li, L., Liu, Y., Wu, Y., Lu, Z., Deng, J., Wei, Y., Caro, J., and Wang, H. (2020a). Effective ion sieving with Ti3C2Tχ MXene membranes for production of drinking water from seawater. Nat. Sustain. 3: 296–302, https://doi.org/10.1038/s41893-020-0474-0.Search in Google Scholar
Ding, L., Wei, Y., Li, L., Zhang, T., Wang, H., Xue, J., Ding, L.-X., Wang, S., Caro, J., and Gogotsi, Y. (2018). MXene molecular sieving membranes for highly efficient gas separation. Nat. Commun. 9: 155, https://doi.org/10.1038/s41467-017-02529-6.Search in Google Scholar PubMed PubMed Central
Ding, L., Wei, Y., Wang, Y., Chen, H., Caro, J., and Wang, H. (2017). A two-dimensional lamellar membrane: MXene nanosheet stacks. Angew. Chem. Int. Ed. 56: 1825–1829, https://doi.org/10.1002/anie.201609306.Search in Google Scholar PubMed
Ding, L., Xiao, D., Lu, Z., Deng, J., Wei, Y., and Caro, J. (2020b). Oppositely charged Ti3C2Tx MXene membranes with 2D nanofluidic channels for osmotic energy harvesting. Angew. Chem. Int. Ed. 59 8720–8726, https://doi.org/10.1002/anie.201915993.Search in Google Scholar PubMed
Dong, G., Hou, J., Wang, J., Zhang, Y., Chen, V., and Liu, J. (2016). Enhanced CO2/N2 separation by porous reduced graphene oxide/pebax mixed matrix membranes. J. Membr. Sci. 520: 860–868, https://doi.org/10.1016/j.memsci.2016.08.059.Search in Google Scholar
Dreyer, D.R., Park, S., Bielawski, C.W., and Ruoff, R.S. (2010). The chemistry of graphene oxide. Chem. Soc. Rev. 39: 228–240, https://doi.org/10.1039/b917103g.Search in Google Scholar PubMed
Drioli, E., Brunetti, A., Di Profio, G., and Barbieri, G. (2012). Process intensification strategies and membrane engineering. Green Chem. 14: 1561–1572, https://doi.org/10.1039/c2gc16668b.Search in Google Scholar
Duan, K., Wang, J., Zhang, Y., and Liu, J. (2019). Covalent organic frameworks (COFs) functionalized mixed matrix membrane for effective CO2/N2 separation. J. Membr. Sci. 572: 588–595, https://doi.org/10.1016/j.memsci.2018.11.054.Search in Google Scholar
Duong, P.H.H., Kuehl, V.A., Mastorovich, B., Hoberg, J.O., Parkinson, B.A., and Li-Oakey, K.D. (2019). Carboxyl-functionalized covalent organic framework as a two-dimensional nanofiller for mixed-matrix ultrafiltration membranes. J. Membr. Sci. 574: 338–348, https://doi.org/10.1016/j.memsci.2018.12.042.Search in Google Scholar
Eykens, L., Sitter, K.D., Dotremont, C., Pinoy, L., and Bruggen, B.V.D. (2016). How to optimize the membrane distillation: a review. Ind. Eng. Chem. Res. 55: 9333–9343, https://doi.org/10.1021/acs.iecr.6b02226.Search in Google Scholar
Fan, H., Mundstock, A., Gu, J., Meng, H., and Caro, J. (2018). An azine-linked covalent organic framework ACOF-1 membrane for highly selective CO2/CH4 separation. J. Mater. Chem. A 6: 16849–16853, https://doi.org/10.1039/c8ta05641b.Search in Google Scholar
Fan, H., Peng, M., Strauss, I., Mundstock, A., Meng, H., and Caro, J. (2021). MOF-in-COF molecular sieving membrane for selective hydrogen separation. Nat. Commun. 12: 38, https://doi.org/10.1038/s41467-020-20298-7.Search in Google Scholar PubMed PubMed Central
Fan, Z., Zhao, Q., Li, T., Yan, J., Ren, Y., Feng, J., and Wei, T. (2012). Easy synthesis of porous graphene nanosheets and their use in supercapacitors. Carbon 50: 1699–1703, https://doi.org/10.1016/j.carbon.2011.12.016.Search in Google Scholar
Faucher, S., Aluru, N., Bazant, M.Z., Blankschtein, D., Brozena, A.H., Cumings, J., de Souza, J.P., Elimelech, M., Epsztein, R., Fourkas, J.T., et al.. (2019). Critical knowledge gaps in mass transport through single-digit nanopores: a review and perspective. J. Phys. Chem. C 123: 21309–21326, https://doi.org/10.1021/acs.jpcc.9b02178.Search in Google Scholar
Feng, L., Wang, K.-Y., Powell, J., and Zhou, H.-C. (2019). Controllable synthesis of metal-organic frameworks and their hierarchical assemblies. Matter 1: 801–824, https://doi.org/10.1016/j.matt.2019.08.022.Search in Google Scholar
Feng, X., Ding, X., and Jiang, D. (2012). Covalent organic frameworks. Chem. Soc. Rev. 41: 6010–6022, https://doi.org/10.1039/c2cs35157a.Search in Google Scholar PubMed
Fugallo, G., Cepellotti, A., Paulatto, L., Lazzeri, M., Marzari, N., and Mauri, F. (2014). Thermal conductivity of graphene and graphite: collective excitations and mean free paths. Nano Lett. 14: 6109–6114, https://doi.org/10.1021/nl502059f.Search in Google Scholar PubMed
Gadwal, I., Sheng, G., Thankamony, R.L., Liu, Y., Li, H., and Lai, Z. (2018). Synthesis of sub-10 nm two-dimensional covalent organic thin film with sharp molecular sieving nanofiltration. ACS Appl. Mater. Interfaces 10: 12295–12299, https://doi.org/10.1021/acsami.7b19450.Search in Google Scholar PubMed
Gao, F., Ding, Z., and Meng, S. (2013). Three-dimensional metal-intercalated covalent organic frameworks for near-ambient energy storage. Sci. Rep. 3: 1882, https://doi.org/10.1038/srep01882.Search in Google Scholar PubMed PubMed Central
Gao, X., Cui, R., Zhang, M., and Liu, Z. (2017). Metal-organic framework nanosheets that exhibit pH-controlled drug release. Mater. Lett. 197: 217–220, https://doi.org/10.1016/j.matlet.2017.02.082.Search in Google Scholar
Geim, A.K. (2012). Graphene prehistory. Phys. Scripta 2012: 014003, https://doi.org/10.1088/0031-8949/2012/t146/014003.Search in Google Scholar
Goh, P.S., Ismail, A.F., and Hilal, N. (2016). Nano-enabled membranes technology: sustainable and revolutionary solutions for membrane desalination? Desalination 380: 100–104, https://doi.org/10.1016/j.desal.2015.06.002.Search in Google Scholar
Gorgojo, P., Karan, S., Wong, H.C., Jimenez-Solomon, M.F., Cabral, J.T., and Livingston, A.G. (2014). Ultrathin polymer films with intrinsic microporosity: anomalous solvent permeation and high flux membranes. Adv. Funct. Mater. 24: 4729–4737, https://doi.org/10.1002/adfm.201400400.Search in Google Scholar
Guerrero-Contreras, J. and Caballero-Briones, F. (2015). Graphene oxide powders with different oxidation degree, prepared by synthesis variations of the hummers method. Mater. Chem. Phys. 153: 209–220, https://doi.org/10.1016/j.matchemphys.2015.01.005.Search in Google Scholar
Han, L.J., Zheng, D., Chen, S.G., Zheng, H.G., and Ma, J. (2018). A highly solvent-stable metal-organic framework nanosheet: morphology control, exfoliation, and luminescent propert. Small 14: 1703873, https://doi.org/10.1002/smll.201703873.Search in Google Scholar PubMed
Hao, Q., Zhao, C., Sun, B., Lu, C., Liu, J., Liu, M., Wan, L.-J., and Wang, D. (2018). Confined synthesis of two-dimensional covalent organic framework thin films within superspreading water layer. J. Am. Chem. Soc. 140: 12152–12158, https://doi.org/10.1021/jacs.8b07120.Search in Google Scholar PubMed
He, T., Ni, B., Zhang, S., Gong, Y., Wang, H., Gu, L., Zhuang, J., Hu, W., and Wang, X. (2018). Ultrathin 2D zirconium metal–organic framework nanosheets: preparation and application in photocatalysis. Small 14: 1703929, https://doi.org/10.1002/smll.201703929.Search in Google Scholar PubMed
Himma, N.F., Wardani, A.K., Prasetya, N., Aryanti, P.T.P., and Wenten, I.G. (2018). Recent progress and challenges in membrane-based O2/N2 separation. Rev. Chem. Eng. 35: 591–625, https://doi.org/10.1515/revce-2017-0094.Search in Google Scholar
Hirunpinyopas, W., Iamprasertkun, P., Bissett, M.A., and Dryfe, R.A.W. (2020). Tunable charge/size selective ion sieving with ultrahigh water permeance through laminar graphene membranes. Carbon 156: 119–129, https://doi.org/10.1016/j.carbon.2019.09.030.Search in Google Scholar
Hofmann, U. and Kӧnig, E. (1937). Untersuchungen über graphitoxyd. Z. Anorg. Allg. Chem. 234: 311, https://doi.org/10.1002/zaac.19372340405.Search in Google Scholar
Hu, M. and Mi, B. (2013). Enabling graphene oxide nanosheets as water separation membranes. Environ. Sci. Technol. 47: 3715–3723, https://doi.org/10.1021/es400571g.Search in Google Scholar PubMed
Hu, M. and Mi, B. (2014). Layer-by-layer assembly of graphene oxide membranes via electrostatic interaction. J. Membr. Sci. 469: 80–87, https://doi.org/10.1016/j.memsci.2014.06.036.Search in Google Scholar
Huang, H., Song, Z., Wei, N., Shi, L., Mao, Y., Ying, Y., Sun, L., Xu, Z., and Peng, X. (2013). Ultrafast viscous water flow through nanostrand-channelled graphene oxide membranes. Nat. Commun. 4: 2979, https://doi.org/10.1038/ncomms3979.Search in Google Scholar PubMed
Huang, L., Zhang, X., Han, Y., Wang, Q., Fang, Y., and Dong, S. (2017). In situ synthesis of ultrathin metal–organic framework nanosheets: a new method for 2D metal-based nanoporous carbon electrocatalysts. J. Mater. Chem. A 5: 18610–18617, https://doi.org/10.1039/c7ta05821g.Search in Google Scholar
Hummers, W.S. and Offeman, R.E. (1958). Preparation of graphitic oxide. J. Am. Chem. Soc. 80: 1339–1340, https://doi.org/10.1021/ja01539a017.Search in Google Scholar
Hung, W.-S., Lin, T.J., Chiao, Y.-H., Sengupta, A., Hsiao, Y.-C., Wickramasinghe, S.R., Hu, C.-C., Lee, K.-R., and Lai, J.-Y. (2018). Graphene-induced tuning of the d-spacing of graphene oxide composite nanofiltration membranes for frictionless capillary action-induced enhancement of water permeability. J. Mater. Chem. A 6: 19445–19454, https://doi.org/10.1039/c8ta08155g.Search in Google Scholar
Hyun, T., Jeong, J., Chae, A., Kim, Y.K., and Koh, D.-Y. (2019). 2D-enabled membranes: materials and beyond. BMC Chem. Eng. 1: 12, https://doi.org/10.1186/s42480-019-0012-x.Search in Google Scholar
Ismail, A.F., Padaki, M., Hilal, N., Matsuura, T., and Lau, W.J. (2015). Thin film composite membrane — recent development and future potential. Desalination 356: 140–148, https://doi.org/10.1016/j.desal.2014.10.042.Search in Google Scholar
Jamali, S.H., Vlught, T.J.H., and Lin, L.-C. (2017). Atomistic understanding of zeolite nanosheets for water desalination. J. Phys. Chem. C 121: 11273–11280, https://doi.org/10.1021/acs.jpcc.7b00214.Search in Google Scholar
Jeon, M.Y., Kim, D., Kumar, P., Lee, P.S., Rangnekar, N., Bai, P., Shete, M., Elyassi, B., Lee, H.S., Narasimharao, K., et al.. (2017). Ultra-selective high-flux membranes from directly synthesized zeolite nanosheets. Nature 543: 690–694, https://doi.org/10.1038/nature21421.Search in Google Scholar PubMed
Jeong, B.-H., Hoek, E.M.V., Yan, Y., Subramani, A., Huang, X., Hurwitz, G., Ghosh, A.K., and Jawor, A. (2007). Interfacial polymerization of thin film nanocomposites: a new concept for reverse osmosis membranes. J. Membr. Sci. 294: 1–7, https://doi.org/10.1016/j.memsci.2007.02.025.Search in Google Scholar
Jian, M., Qiu, R., Xia, Y., Lu, J., Chen, Y., Gu, Q., Liu, R., Hu, C., Qu, J., Wang, H., et al.. (2020). Ultrathin water-stable metal-organic framework membranes for ion separation. Sci. Adv. 6: eaay3998, https://doi.org/10.1126/sciadv.aay3998.Search in Google Scholar PubMed PubMed Central
Jiang, S., Shi, X., Sun, F., and Zhu, G. (2020). Fabrication of crystalline microporous membrane from 2D MOF nanosheets for gas separation. Chem. Asian J. 15: 2371–2378, https://doi.org/10.1002/asia.202000143.Search in Google Scholar PubMed
Joshi, R.K., Alwarappan, S., Yoshimura, M., Sahajwalla, V., and Nishina, Y. (2015). Graphene oxide: the new membrane material. Appl. Mater. Today 1: 1–12, https://doi.org/10.1016/j.apmt.2015.06.002.Search in Google Scholar
Kadja, G.T.M., Azhari, N.J., Mukti, R.R., and Khalil, M. (2021a). A mechanistic investigation of sustainable solvent-free, seed-directed synthesis of ZSM-5 zeolites in the absence of an organic structure-directing agent. ACS Omega 6: 925–933, https://doi.org/10.1021/acsomega.0c05070.Search in Google Scholar PubMed PubMed Central
Kadja, G.T.M., Rukmana, M.D., Mukti, R.R., Mahyuddin, M.H., Saputro, A.G., and Wungu, T.D.K. (2021b). Solvent-free, small organic lactam-assisted synthesis of ZSM-5 zeolites. Mater. Lett. 290: 129501, https://doi.org/10.1016/j.matlet.2021.129501.Search in Google Scholar
Kallo, M.T. and Lennox, M.J. (2020). Understanding CO2/CH4 separation in pristine and defective 2D MOF CuBDC nanosheets via nonequilibrium molecular dynamics. Langmuir 36: 13591–13600, https://doi.org/10.1021/acs.langmuir.0c02434.Search in Google Scholar PubMed PubMed Central
Kandambeth, S., Dey, K., and Banerjee, R. (2019). Covalent organic frameworks: chemistry beyond the structure. J. Am. Chem. Soc. 141: 1807–1822, https://doi.org/10.1021/jacs.8b10334.Search in Google Scholar PubMed
Kandambeth, S., Mallick, A., Lukose, B., Mane, M.V., Heine, T., and Banerjee, R. (2012). Construction of crystalline 2D covalent organic frameworks with remarkable chemical (acid/base) stability via a combined reversible and irreversible route. J. Am. Chem. Soc. 134: 19524–19527, https://doi.org/10.1021/ja308278w.Search in Google Scholar PubMed
Kang, K.M., Kim, D.W., Ren, C.E., Cho, K.M., Kim, S.J., Choi, J.H., Nam, Y.T., Gogotsi, Y., and Jung, H.-T. (2017). Selective molecular separation on Ti3C2Tx–graphene oxide membranes during pressure-driven filtration: comparison with graphene oxide and MXenes. ACS Appl. Mater. Interfaces 9: 44687–44694, https://doi.org/10.1021/acsami.7b10932.Search in Google Scholar PubMed
Kang, Z., Peng, Y., Hu, Z., Qian, Y., Chi, C., Yeo, L.Y., Tee, L., and Zhao, D. (2015). Mixed matrix membranes composed of two-dimensional metal–organic framework nanosheets for pre-combustion CO2 capture: a relationship study of filler morphology versus membrane performance. J. Mater. Chem. A 3: 20801–20810, https://doi.org/10.1039/c5ta03739e.Search in Google Scholar
Kang, Z., Peng, Y., Qian, Y., Yuan, D., Addicoat, M.A., Heine, T., Hu, Z., Tee, L., Guo, Z., and Zhao, D. (2016). Mixed matrix membranes (MMMs) comprising exfoliated 2D covalent organic frameworks (COFs) for efficient CO2 separation. Chem. Mater. 28: 1277–1285, https://doi.org/10.1021/acs.chemmater.5b02902.Search in Google Scholar
Karahan, H.E., Goh, K., Zhang, C. (J)., Yang, E., Yildirim, C., Chuah, C.Y., Ahunbay, M.G., Lee, J., Tantekin-Ersolmaz, Ş.B., Chen, Y., et al.. (2020). MXene materials for designing advanced separation membranes. Adv. Mater. 32: 1906697, https://doi.org/10.1002/adma.201906697.Search in Google Scholar PubMed
Khan, N.A., Yuan, J., Wu, H., Cao, L., Zhang, R., Liu, Y., Li, L., Rahman, A.U., Kasher, R., and Jiang, Z. (2019). Mixed nanosheet membranes assembled from chemically grafted graphene oxide and covalent organic frameworks for ultra-high water flux. ACS Appl. Mater. Interfaces 11: 28978–28986, https://doi.org/10.1021/acsami.9b09945.Search in Google Scholar PubMed
Khayum, M.A., Kandambeth, S., Mitra, S., Nair, S.B., Das, A., Nagane, S.S., Mukherjee, R., and Banerjee, R. (2016). Chemically delaminated free-standing ultrathin covalent organic nanosheets. Angew. Chem. Int. Ed. 55: 15604–15608, https://doi.org/10.1002/anie.201607812.Search in Google Scholar PubMed
Kim, J.H., Park, G.S., Kim, Y.-J., Choi, E., Kang, J., Kwon, O., Kim, S.J., Cho, J.H., and Kim, D.W. (2021). Large-area Ti3C2Tx-MXene coating: toward industrial-scale fabrication an molecular separation. ACS Nano 15: 8860–8869, https://doi.org/10.1021/acsnano.1c01448.Search in Google Scholar PubMed
Kim, S., Wang, H., and Lee, Y.M. (2019). 2D nanosheets and their composite membranes for water, gas, and ion separation. Angew. Chem. Int. Ed. 58: 17512–17527, https://doi.org/10.1002/anie.201814349.Search in Google Scholar PubMed PubMed Central
Kondo, A., Tiew, C.C., Moriguchi, F., and Maeda, K. (2013). Fabrication of metal–organic framework nanosheets and nanorolls with N-donor type bridging ligands. Dalton Trans. 42: 15267–15270, https://doi.org/10.1039/c3dt52130c.Search in Google Scholar PubMed
Korelskiy, D., Ye, P., Zhou, H., Mouzon, J., and Hedlund, J. (2014). An experimental study of micropore defects in MFI membranes. Microporous Mesoporous Mater. 186: 194–200, https://doi.org/10.1016/j.micromeso.2013.12.002.Search in Google Scholar
Kuehl, V.A., Yin, J., Duong, P.H.H., Mastorovich, B., Newell, B., Li-Oakey, K.D., Parkinson, B.A., and Hoberg, J.O. (2018). A highly ordered nanoporous, two-dimensional covalent organic framework with modifiable pores, and its application in water purification and ion sieving. J. Am. Chem. Soc. 140: 18200–18207, https://doi.org/10.1021/jacs.8b11482.Search in Google Scholar PubMed
Kuhn, P., Antonietti, M., and Thomas, A. (2008). Porous, covalent triazine-based frameworks prepared by ionothermal synthesis. Angew. Chem. Int. Ed. 47: 3450–3453, https://doi.org/10.1002/anie.200705710.Search in Google Scholar PubMed
Kunimatsu, M., Nakagawa, K., Yoshioka, T., Shintani, T., Yasui, T., Kamio, E., Tsang, S.C.E., Li, J., and Matsuyama, H. (2020). Design of niobate nanosheet-graphene oxide composite nanofiltration membranes with improved permeability. J. Membr. Sci. 595: 117598, https://doi.org/10.1016/j.memsci.2019.117598.Search in Google Scholar
Lau, W.J., Gray, S., Matsuura, T., Emadzadeh, D., Paul Chen, J., and Ismail, A.F. (2015). A review on polyamide thin film nanocomposite (TFN) membranes: history, applications, challenges and approaches. Water Res. 80: 306–324, https://doi.org/10.1016/j.watres.2015.04.037.Search in Google Scholar PubMed
Le, N.L. and Nunes, S.P. (2016). Materials and membrane technologies for water and energy sustainability. Sustain. Mater. Technol. 7: 1–28, https://doi.org/10.1016/j.susmat.2016.02.001.Search in Google Scholar
Lee, C., Wei, X., Kysar, J.W., and Hone, J. (2008). Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321: 385–388, https://doi.org/10.1126/science.1157996.Search in Google Scholar PubMed
Lee, X.J., Hiew, B.Y.Z., Lai, K.C., Lee, L.Y., Gan, S., Thangalazhy-Gopakumar, S., and Rigby, S. (2019). Review on graphene and its derivatives: synthesis methods and potential industrial implementation. J. Taiwan Inst. Chem. Eng. 98: 163–180, https://doi.org/10.1016/j.jtice.2018.10.028.Search in Google Scholar
Leonowicz, M.E., Lawton, J.A., Lawton, S.L., and Rubin, M.K. (1994). MCM-22: a molecular sieve with two independent multidimensional channel systems. Science 264: 1910, https://doi.org/10.1126/science.264.5167.1910.Search in Google Scholar PubMed
Li, B., Wang, X., Chen, L., Zhou, Y., Dang, W., Chang, J., and Wu, C. (2018). Ultrathin Cu-TCPP MOF nanosheets: a new theragnostic nanoplatform with magnetic resonance/near-infrared thermal imaging for synergistic phototherapy of cancers. Theranostics 8: 4086–4096, https://doi.org/10.7150/thno.25433.Search in Google Scholar PubMed PubMed Central
Li, G., Shi, L., Zeng, G., Zhang, Y., and Sun, Y. (2014). Efficient dehydration of the organic solvents through graphene oxide (GO)/ceramic composite membranes. RSC Adv. 4: 52012–52015, https://doi.org/10.1039/c4ra09062d.Search in Google Scholar
Li, G., Wang, W., Fang, Q., and Liu, F. (2020). Covalent triazine frameworks membrane with highly ordered skeleton nanopores for robust and precise molecule/ion separation. J. Membr. Sci. 595: 117525, https://doi.org/10.1016/j.memsci.2019.117525.Search in Google Scholar
Li, G., Zhang, K., and Tsuru, T. (2017). Two-dimensional covalent organic framework (COF) membranes fabricated via the assembly of exfoliated COF nanosheets. ACS Appl. Mater. Interfaces 9: 8433–8436, https://doi.org/10.1021/acsami.6b15752.Search in Google Scholar PubMed
Li, H., Ding, X., Zhang, Y., and Liu, J. (2017). Porous graphene nanosheets functionalized thin film nanocomposite membrane prepared by interfacial polymerization for CO2/N2 separation. J. Membr. Sci. 543: 58–68, https://doi.org/10.1016/j.memsci.2017.08.046.Search in Google Scholar
Li, P.-Z., Maeda, Y., and Xu, Q. (2011). Top-down fabrication of crystalline metal–organic framework nanosheets. Chem. Commun. 47: 8436–8438, https://doi.org/10.1039/c1cc12510a.Search in Google Scholar PubMed
Li, Y., Lin, L., Tu, M., Nian, P., Howarth, A.J., Farha, O.K., Qiu, J., and Zhang, X. (2018a). Growth of ZnO self-converted 2D nanosheet zeolitic imidazolate framework membranes by an ammonia-assisted strategy. Nano Res. 11: 1850–1860, https://doi.org/10.1007/s12274-017-1803-0.Search in Google Scholar
Li, Y., Liu, H., Wang, H., Qiu, J., and Zhang, X. (2018b). GO-guided direct growth of highly oriented metal–organic framework nanosheet membranes for H2/CO2 separation. Chem. Sci. 9: 4132–4141, https://doi.org/10.1039/c7sc04815g.Search in Google Scholar PubMed PubMed Central
Li, Z.-Q., Qiu, L.-G., Wang, W., Xu, T., Wu, Y., and Jiang, X. (2008). Fabrication of nanosheets of a fluorescent metal–organic framework [Zn (BDC)(H2O)] n (BDC= 1, 4-benzenedicarboxylate): ultrasonic synthesis and sensing of ethylamine. Inorg. Chem. Commun. 11: 1375–1377, https://doi.org/10.1016/j.inoche.2008.09.010.Search in Google Scholar
Liang, B., Zhang, P., Wang, J., Qu, J., Wang, L., Wang, X., Guan, C., and Pan, K. (2016). Membranes with selective laminar nanochannels of modified reduced graphene oxide for water purification. Carbon 103: 94–100, https://doi.org/10.1016/j.carbon.2016.03.001.Search in Google Scholar
Liang, S., Mu, L., Chen, L., Jiang, J., Yang, Y., and Fang, H. (2020). Tuning the interlayer spacings in dry graphene oxide membranes via ions. Chem. Asian J. 15: 2346–2349, https://doi.org/10.1002/asia.202000251.Search in Google Scholar PubMed
Liu, G., Jin, W., and Xu, N. (2016). Two-dimensional-material membranes: a new family of high-performance separation membranes. Angew. Chem. Int. Ed. 55: 13384–13397, https://doi.org/10.1002/anie.201600438.Search in Google Scholar PubMed
Liu, G., Liu, S., Ma, K., Wang, H., Wang, X., Liu, G., and Jin, W. (2020). Polyelectrolite functionalized Ti2CTx MXene membrane for pervaporation dehydration of isopropanol/water mixtures. Ind. Eng. Chem. Res. 59: 4732–4741, https://doi.org/10.1021/acs.iecr.9b06881.Search in Google Scholar
Liu, H., Wang, H., and Zhang, X. (2015). Facile Fabrication of freestanding ultrathin reduced graphene oxide membranes for water purification. Adv. Mater. 27: 249–254, https://doi.org/10.1002/adma.201404054.Search in Google Scholar PubMed
Liu, H.-L., Chang, Y.-J., Fan, T., and Gu, Z.-Y. (2016). Two-dimensional metal–organic framework nanosheets as a matrix for laser desorption/ionization of small molecules and monitoring enzymatic reactions at high salt concentrations. Chem. Commun. 52: 12984–12987, https://doi.org/10.1039/c6cc07371a.Search in Google Scholar PubMed
Liu, M., Gurr, P.A., Fu, Q., Webley, P.A., and Qiao, G.G. (2018). Two-dimensional nanosheet-based gas separation membranes. J. Mater. Chem. A 6: 23169–23196, https://doi.org/10.1039/c8ta09070j.Search in Google Scholar
Liu, X., Zhang, L., and Wang, J. (2021). Design of strategies for MOF-derived porous functional materials: preserving surfaced and nurturing pores. J. Materiomics 7: 440–459, https://doi.org/10.1016/j.jmat.2020.10.008.Search in Google Scholar
Liu, Y. (2019). Beyond graphene oxides: emerging 2D molecular sieve membranes for efficient separation. Chin. J. Chem. Eng. 27: 1257–1271, https://doi.org/10.1016/j.cjche.2018.08.019.Search in Google Scholar
Lu, Z., Wei, Y., Deng, J., Ding, L., Li, Z.-K., and Wang, H. (2019). Self-crosslinked MXene (Ti3C2Tx) membranes with good antiswelling property for monovalent metal ion exclusion. ACS Nano 13: 10535–10544, https://doi.org/10.1021/acsnano.9b04612.Search in Google Scholar PubMed
Luiten-Olieman, M.W.J., Raaijmakers, M.J.T., Nijmeijer, A., and Benes, N.E. (2013). Thin inorganic porous hollow fiber membranes. In: Hoek, E.M.V., and Tarabara, V.V. (Eds.), Encyclopedia of membrane science and technology. Wiley, New Jersey, USA, pp. 1–24.10.1002/9781118522318.emst036Search in Google Scholar
Lyle, S.J., Waller, P.J., and Yaghi, O.M. (2019). Covalent organic frameworks: organic chemistry extended into two and three dimensions. Trends Chem. 1: 172–184, https://doi.org/10.1016/j.trechm.2019.03.001.Search in Google Scholar
Ma, H.-M., Yi, J.-W., Li, S., Jiang, C., Wei, J.-H., Wu, Y.-P., Zhao, J., and Li, D. (2019). Stable bimetal-MOF ultrathin nanosheets for pseudocapacitors with enhanced performance. Inorg. Chem. 58: 9543–9547, https://doi.org/10.1021/acs.inorgchem.9b00937.Search in Google Scholar PubMed
Mahalingam, D.K., Falca, G., Upadhya, L., Abou-Hamad, E., Batra, N., Wang, S., Musteata, V., Costa, P.M.D., and Nunes, S.P. (2020). Spray-coated graphene oxide hollow fibers for nanofiltration. J. Membr. Sci. 606: 118006, https://doi.org/10.1016/j.memsci.2020.118006.Search in Google Scholar
Mahmoud, K.A., Mansoor, B., Mansour, A., and Khraisheh, M. (2015). Functional graphene nanosheets: the next generation membranes for water desalination. Desalination 356: 208–225, https://doi.org/10.1016/j.desal.2014.10.022.Search in Google Scholar
Makertihartha, I.G.B.N., Kencana, K., Dwiputra, T.R., Khoiruddin, K., Lugito, G., Mukti, R.R., and Wenten, I.G. (2020). SAPO-34 zeotype membrane for gas sweetening. Rev. Chem. Eng.: 00010151520190086, https://doi.org/10.1515/revce-2019-0086.Search in Google Scholar
Makiura, R. and Konovalov, O. (2013). Interfacial growth of large-area single-layer metal-organic framework nanosheets. Sci. Rep. 3: 2506, https://doi.org/10.1038/srep02506.Search in Google Scholar PubMed PubMed Central
Marinho, B., Ghislandi, M., Tkalya, E., Koning, C.E., and de With, G. (2012). Electrical conductivity of compacts of graphene, multi-wall carbon nanotubes, carbon black, and graphite powder. Powder Technol. 221: 351–358, https://doi.org/10.1016/j.powtec.2012.01.024.Search in Google Scholar
Mi, B. (2014). Graphene oxide membranes for ionic and molecular sieving. Science 343: 740–742, https://doi.org/10.1126/science.1250247.Search in Google Scholar PubMed
Min, B., Korde, A., Yang, S., Kim, Y., Jones, C.W., and Nair, S. (2020). Separation of C2–C4 hydrocarbons from methane by zeolite MFI hollow fiber membranes fabricated from 2D nanosheets. AIChE J. 67: 1–10, https://doi.org/10.1002/aic.17048.Search in Google Scholar
Min, B., Yang, S., Korde, A., Kwon, Y.H., Jones, C.W., and Nair, S. (2019). Continuous zeolite MFI membranes fabricated from 2D MFI nanosheets on ceramic hollow fibers. Angew. Chem. Int. Ed. 58: 8201–8205, https://doi.org/10.1002/anie.201903554.Search in Google Scholar PubMed
Moghadam, F. and Park, H.B. (2018). Two-dimensional materials: an emerging platform for gas separation membranes. Curr. Opin. Chem. Eng. 20: 28–38, https://doi.org/10.1016/j.coche.2018.02.004.Search in Google Scholar
Naguib, M., Kurtoglu, M., Presse, V., Lu, J., Niu, J., Heon, M., Hultman, L., Gogotsi, Y., and Barsoum, M.W. (2011). Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv. Mater. 23: 4248–4253, https://doi.org/10.1002/adma.201102306.Search in Google Scholar PubMed
Naguib, M., Mashtalir, O., Carle, J., Presser, V., Lu, J., Hultman, L., Gogotsi, Y., and Barsoum, M.W. (2012). Two-dimensional transition metal carbides. ACS Nano 6: 1322–1331, https://doi.org/10.1021/nn204153h.Search in Google Scholar PubMed
Nair, R.R., Wu, H.A., Jayaram, P.N., Grigorieva, V., and Geim, A.K. (2012). Unimpeded permeation of water through helium-leak-tight graphene-based membranes. Science 335: 442–444, https://doi.org/10.1126/science.1211694.Search in Google Scholar PubMed
Nakagawa, K., Sera, T., Kunimatsu, M., Yamashita, H., Yoshioka, T., Shintani, T., Kamio, E., Tsang, S.C.E., and Matsuyama, H. (2019). Two-dimensional niobate nanosheet membranes for water treatment: effect of nanosheet preparation method on membrane performance. Separ. Purif. Technol. 219: 222–229, https://doi.org/10.1016/j.seppur.2019.03.031.Search in Google Scholar
Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V., and Firsov, A.A. (2004). Electric field effect in atomically thin carbon films. Science 306: 666–669, https://doi.org/10.1126/science.1102896.Search in Google Scholar PubMed
Peng, Y., Li, Y., Ban, Y., Jin, H., Jiao, W., Liu, X., and Yang, W. (2014). Metal-organic framework nanosheets as building blocks for molecular sieving membranes. Science 346: 1356–1359, https://doi.org/10.1126/science.1254227.Search in Google Scholar PubMed
Peng, Y., Li, Y., Ban, Y., and Yang, W. (2017). Two-dimensional metal-organic framework nanosheets for membrane-based gas separation. Angew. Chem. Int. Ed. 56: 9757–9761, https://doi.org/10.1002/anie.201703959.Search in Google Scholar PubMed
Petukhov, D.I., Kan, A.S., Chumakov, A.P., Konovalov, O.V., Valeev, R.G., and Eliseev, A.A. (2021). MXene-based gas separation membranes with sorption type selectivity. J. Membr. Sci. 621: 118994, https://doi.org/10.1016/j.memsci.2020.118994.Search in Google Scholar
Pham, T.C.T., Nguyen, T.H., and Yoon, K.B. (2013). Gel-free secondary growth of uniformly oriented silica MFI zeolite films and application for xylene separation. Angew. Chem. Int. Ed. 52: 8693–8698, https://doi.org/10.1002/anie.201301766.Search in Google Scholar PubMed
Prasetya, N., Himma, N.F., Sutrisna, P.D., Wenten, I.G., and Ladewig, B.P. (2020). A review on emerging organic-containing microporous material membranes for carbon capture and separation. Chem. Eng. J. 391: 123575, https://doi.org/10.1016/j.cej.2019.123575.Search in Google Scholar
Pustovarenko, A., Goesten, M.G., Sachdeva, S., Shan, M., Amghouz, Z., Belmabkhout, Y., Dikhtiarenko, A., Rodenas, T., Keskin, D., Voets, I.K., et al.. (2018). Nanosheets of nonlayered aluminum metal–organic frameworks through a surfactant-assisted method. Adv. Mater. 30: 1707234, https://doi.org/10.1002/adma.201707234.Search in Google Scholar PubMed
Ren, C.E., Hatzell, K.B., Alhabeb, M., Ling, Z., Mahmoud, K.A., and Gogotsi, Y. (2015). Charge- and size-selective ion sieving through Ti3C2Tx MXene membranes. J. Phys. Chem. Lett. 6: 4026–4031, https://doi.org/10.1021/acs.jpclett.5b01895.Search in Google Scholar PubMed
Ren, L., Wu, Q., Yang, C., Zhu, L., Li, C., Zhang, P., Zhang, H., Meng, X., and Xiao, F.-S. (2012). Solvent-free synthesis of zeolites from solid raw materials. J. Am. Chem. Soc. 134: 15173–15176, https://doi.org/10.1021/ja3044954.Search in Google Scholar PubMed
Rilyanti, M., Mukti, R.R., Kadja, G.T.M., Ogura, M., Nur, H., and Ismunandar, N.E.-P. (2016). On the drastic reduction of organic structure directing agent in the steam-assisted crystallization of zeolite with hierarchical porosity. Microporous Mesoporous Mater. 230: 30–38, https://doi.org/10.1016/j.micromeso.2016.04.038.Search in Google Scholar
Ritt, C.L., Werber, J.R., Deshmukh, A., and Elimelech, M. (2019). Monte Carlo simulations of framework defects in layered two-dimensional nanomaterial desalination membranes: implications for permeability and selectivity. Environ. Sci. Technol. 53: 6214–6224, https://doi.org/10.1021/acs.est.8b06880.Search in Google Scholar PubMed
Rodenas, T., Luz, I., Prieto, G., Seoane, B., Miro, H., Corma, A., Kapteijn, F., Xanema, F.X.L.I., and Gascon, J. (2015). Metal–organic framework nanosheets in polymer composite materials for gas separation. Nat. Mater. 14: 48–55, https://doi.org/10.1038/nmat4113.Search in Google Scholar PubMed PubMed Central
Rubin, M.K. and Chu, P. (1990). US patent 4954325.Search in Google Scholar
Sabetghadam, A., Liu, X., Gottmer, S., Chu, L., Gascon, J., and Kapteijn, F. (2019). Thin mixed matrix and dual layer membranes containing metal-organic framework nanosheets and polyactive for CO2 capture. J. Membr. Sci. 570–571: 226–235, https://doi.org/10.1016/j.memsci.2018.10.047.Search in Google Scholar
Shen, J., Liu, G., Huang, K., Jin, W., Lee, K.-R., and Xu, N. (2015). Membranes with fast and selective gas-transport channels of laminar graphene oxide for efficient CO2 capture. Angew. Chem. Int. Ed. 54: 578–582, https://doi.org/10.1002/anie.201409563.Search in Google Scholar PubMed
Shen, J., Liu, G., Ji, Y., Liu, Q., Cheng, L., Guan, K., Zhang, M., Liu, G., Xiong, J., Yang, J., et al.. (2018). 2D MXene nanofilms with tunable gas transport channels. Adv. Funct. Mater. 28: 1801511, https://doi.org/10.1002/adfm.201801511.Search in Google Scholar
Shete, M., Kumar, P., Bachman, J.E., Ma, X., Smith, Z.P., Xu, W., and Mkhoyan, K.A. (2018). On the direct synthesis of Cu (BDC) MOF nanosheets and their performance in mixed matrix membranes. J. Membr. Sci. 549: 312–320, https://doi.org/10.1016/j.memsci.2017.12.002.Search in Google Scholar
Shu, L., Xie, L.-H., Meng, Y., Liu, T., Zhao, C., and Li, J.-R. (2020). A thin and high loading two-dimensional MOF nanosheet based mixed-matrix membrane for high permeance nanofiltration. J. Membr. Sci. 603: 118049, https://doi.org/10.1016/j.memsci.2020.118049.Search in Google Scholar
Shuck, C.E. and Gogotsi, Y. (2020). Taking MXenes from the lab to commercial products. Chem. Eng. J. 401: 125786, https://doi.org/10.1016/j.cej.2020.125786.Search in Google Scholar
Siagian, U.W.R., Raksajati, A., Himma, N.F., Khoiruddin, K., and Wenten, I.G. (2019). Membrane-based carbon capture technologies: membrane gas separation versus membrane contactor. J. Nat. Gas Sci. Eng. 67: 172–195, https://doi.org/10.1016/j.jngse.2019.04.008.Search in Google Scholar
Singh, R.K., Kumar, R., and Singh, D.P. (2016). Graphene oxide: strategies for synthesis, reduction and frontier applications. RSC Adv. 6: 64993–65011, https://doi.org/10.1039/c6ra07626b.Search in Google Scholar
Staudenmaier, L. (1898). Verfahren zur darstellung der graphitsäure. Ber. Dtsch. Chem. Ges. 31: 1481, https://doi.org/10.1002/cber.18980310237.Search in Google Scholar
Strunck, A.B., Suri, A., and Boffa, V. (2020). Effect of temperature and branched crosslinkers on supported graphene oxide pervaporation membranes for ethanol dehydration. Nanomaterials 10: 1571, https://doi.org/10.3390/nano10081571.Search in Google Scholar PubMed PubMed Central
Sun, J., Iakunkov, A., Baburin, I.A., Joseph, B., Palermo, V., and Talyzin, A.V. (2020). Covalent organic framework (COF-1) under high pressure. Angew. Chem. Int. Ed. 59: 1087–1092, https://doi.org/10.1002/anie.201907689.Search in Google Scholar PubMed PubMed Central
Sun, J., Li, Q., Chen, G., Duan, J., Liu, G., and Jin, W. (2019). MOF-801 incorporated PEBA mixed-matrix composite membranes for CO2 capture. Separ. Purif. Technol. 217: 229–239, https://doi.org/10.1016/j.seppur.2019.02.036.Search in Google Scholar
Sun, P., Wang, K., and Zhu, H. (2016). Recent developments in graphene-based membranes: structure, mass-transport mechanism and potential applications. Adv. Mater. 28: 2287–2310, https://doi.org/10.1002/adma.201502595.Search in Google Scholar PubMed
Thebo, K.H., Qian, X., Zhang, Q., Chen, L., Cheng, H.-M., and Ren, W. (2018). Highly stable graphene-oxide-based membranes with superior permeability. Nat. Commun. 9: 1–8, https://doi.org/10.1038/s41467-018-03919-0.Search in Google Scholar PubMed PubMed Central
Tian, M., Pei, F., Yao, M., Fu, Z., Lin, L., Wu, G., Xu, G., Kitagawa, H., and Fang, X. (2019). Ultrathin MOF nanosheet assembled highly oriented microporous membrane as an interlayer for lithium-sulfur batteries. Energy Storage Mater. 21: 14–21, https://doi.org/10.1016/j.ensm.2018.12.016.Search in Google Scholar
Tsapatsis, M. (2014). 2-dimensional zeolites. AIChE J. 60: 2374–2381, https://doi.org/10.1002/aic.14462.Search in Google Scholar
Tsou, C.-H., An, Q.-F., Lo, S.-C., De Guzman, M., Hung, W.-S., Hu, C.-C., Lee, K.-R., and Lai, J.-Y (2015). Effect of microstructure of graphene oxide fabricated through different self-assembly techniques on 1-butanol dehydration. Journal of Membrane Science 477: 93–100 doi:https://doi.org/10.1016/j.memsci.2014.12.039.Search in Google Scholar
Uribe-Romo, F.J., Doonan, C.J., Furukawa, H., Oisaki, K., and Yaghi, O.M. (2011). Crystalline covalent organic frameworks with hydrazone linkages. J. Am. Chem. Soc. 133: 11478–11481, https://doi.org/10.1021/ja204728y.Search in Google Scholar PubMed
Varoon, K., Zhang, X., Elyassi, B., Brewer, D.D., Gettel, M., Kumar, S., Lee, J.A., Maheshwari, S., Mittal, A., Sung, C.-Y., et al.. (2011). Dispersible exfoliated zeolite nanosheets and their application as a selective membrane. Science 334: 72–75, https://doi.org/10.1126/science.1208891.Search in Google Scholar PubMed
Wang, B., Gao, F., Zhang, F., Xing, W., and Zhou, R. (2019). Highly permeable and oriented AIPO-18 membranes prepared using directly synthesized nanosheets for CO2/CH4 separation. J. Mater. Chem. A. 7: 13164–13172, https://doi.org/10.1039/c9ta01233h.Search in Google Scholar
Wang, J. and Zhuang, S. (2019). Covalent organic frameworks (COFs) for environmental applications. Coord. Chem. Rev. 400: 213046, https://doi.org/10.1016/j.ccr.2019.213046.Search in Google Scholar
Wang, L., Sahabudeen, H., Zhang, T., and Dong, R. (2018). Liquid-interface-assisted synthesis of covalent-organic and metal-organic two-dimensional crystalline polymers. NPJ 2D Mater. Appl. 2: 26, https://doi.org/10.1038/s41699-018-0071-5.Search in Google Scholar
Wang, M., Quan, K., Zheng, X., Cao, Y., Cui, X., Xue, M., and Pan, F. (2019). Facilitated transport membranes by incorporating self-exfoliated covalent organic nanosheets for CO2/CH4 separation. Separ. Purif. Technol. 237: 116457.10.1016/j.seppur.2019.116457Search in Google Scholar
Wang, X., Chi, C., Zhang, K., Qian, Y., Gupta, K.M., Kang, Z., Jiang, J., and Zhao, D. (2017). Reversed thermo-switchable molecular sieving membranes composed of two-dimensional metal-organic nanosheets for gas separation. Nat. Commun. 8: 14460, https://doi.org/10.1038/ncomms14460.Search in Google Scholar PubMed PubMed Central
Wang, Y., Li, J., Yang, Q., and Zhong, C. (2016a). Two-dimensional covalent triazine framework membrane for helium separation and hydrogen purification. ACS Appl. Mater. Interfaces 8: 8694–8701, https://doi.org/10.1021/acsami.6b00657.Search in Google Scholar PubMed
Wang, Y., Liu, Y., Wang, H., Liu, W., Li, Y., Zhang, J., Hou, H., and Yang, J. (2019). Ultrathin NiCo-MOF nanosheets for high-performance supercapacitor electrodes. ACS Appl. Energy Mater. 2: 2063–2071, https://doi.org/10.1021/acsaem.8b02128.Search in Google Scholar
Wang, Y., Zhao, M., Ping, J., Chen, B., Cao, X., Huang, Y., Tan, C., Ma, Q., Wu, S., Yu, Y., et al.. (2016b). Bioinspired design of ultrathin 2D bimetallic metal-organic-framework nanosheets used as biomimetic enzymes. Adv. Mater. 28: 4149–4155, https://doi.org/10.1002/adma.201600108.Search in Google Scholar PubMed
Wei, N., Peng, X., and Xu, Z. (2014). Understanding water permeation in graphene oxide membranes. ACS Appl. Mater. Interfaces 6: 5877–5883, https://doi.org/10.1021/am500777b.Search in Google Scholar PubMed
Wei, S., Xie, Y., Xing, Y., Wang, L., Ye, H., Xiong, X., Wang, S., and Han, K. (2019). Two-dimensional graphene oxide/MXene composite lamellar membranes for efficient solvent permeation and molecular separation. J. Membr. Sci. 582: 414–422, https://doi.org/10.1016/j.memsci.2019.03.085.Search in Google Scholar
Wenten, I.G., Dharmawijaya, P.T., Aryanti, P.T.P., Mukti, R.R., and Khoiruddin, K. (2017). LTA zeolite membranes: current progress and challenges in pervaporation. RSC Adv. 7: 29520–29539, https://doi.org/10.1039/c7ra03341a.Search in Google Scholar
Wenten, I.G., Friatnasary, D.L., Khoiruddin, K., Setiadi, T., and Boopathy, R. (2020). Extractive membrane bioreactor (EMBR): recent advances and applications. Bioresour. Technol. 297: 122424, https://doi.org/10.1016/j.biortech.2019.122424.Search in Google Scholar PubMed
Wenten, I.G., Khoiruddin, K., Aranti, P.T.P., Victoria, A.V., and Tanukusuma, G. (2018). Membrane-based zero-sludge palm oil mill plant. Rev. Chem. Eng. 36: 237–263, https://doi.org/10.1515/revce-2017-0117.Search in Google Scholar
Wenten, I.G., Khoiruddin, K., Mukti, R.R., Rahmah, W., Wang, Z., and Kawi, S. (2021). Zeolite membrane reactors: from preparation to application in heterogeneous catalytic reactions. React. Chem. Eng. 6: 401–417, https://doi.org/10.1039/d0re00388c.Search in Google Scholar
Xia, S., Ni, M., Zhu, T., Zhao, Y., and Li, N. (2015). Ultrathin graphene oxide nanosheet membranes with various d-spacing assembled using the pressure-assisted filtration method for removing natural organic matter. Desalination 371: 78–87, https://doi.org/10.1016/j.desal.2015.06.005.Search in Google Scholar
Xing, Y., Akonkwa, G., Liu, Z., Ye, H., and Han, K. (2020). Crumpled two-dimensional Ti3C2Tx MXene lamellar membranes for solvent permeation and separation. ACS Appl. Nano Mater. 3: 1526–1534, https://doi.org/10.1021/acsanm.9b02322.Search in Google Scholar
Xu, G., Yamada, T., Otsubo, K., Sakaida, S., and Kitagawa, H. (2012). Facile “modular assembly” for fast construction of a highly oriented crystalline MOF nanofilm. J. Am. Chem. Soc. 134: 16524–16527, https://doi.org/10.1021/ja307953m.Search in Google Scholar PubMed
Xu, L., Shan, B., Gao, C., and Xu, J. (2020). Multifunctional thin-film nanocomposite membranes comprising covalent organic nanosheets with high crystallinity for efficient reverse osmosis desalination. J. Membr. Sci. 593: 117398, https://doi.org/10.1016/j.memsci.2019.117398.Search in Google Scholar
Xu, M., Yuan, S., Chen, X.-Y., Chang, Y.-J., Day, G., Gu, Z.-Y., and Zhou, H.-C. (2017). Two-dimensional metal–organic framework nanosheets as an enzyme inhibitor: modulation of the α-chymotrypsin activity. J. Am. Chem. Soc. 139: 8312–8319, https://doi.org/10.1021/jacs.7b03450.Search in Google Scholar PubMed
Xu, W.L., Fang, C., Zhou, F., Song, Z., Liu, Q., Qiao, R., and Yu, M. (2017). Self-assembly: a facile way of forming ultrathin, high-performance graphene oxide membranes for water purification. Nano Lett. 17: 2928–2933, https://doi.org/10.1021/acs.nanolett.7b00148.Search in Google Scholar PubMed
Xu, Y., Li, B., Zheng, S., Wu, P., Zhan, J., Xue, H., Xu, Q., and Pang, H. (2018). Ultrathin two-dimensional cobalt–organic framework nanosheets for high-performance electrocatalytic oxygen evolution. J. Mater. Chem. A 6: 22070–22076, https://doi.org/10.1039/c8ta03128b.Search in Google Scholar
Yan, R., Zhao, Y., Yang, H., Kang, X.J., Wang, C., Wen, L.L., and Lu, Z.-D. (2018). Ultrasmall Au nanoparticles embedded in 2D mixed-ligand metal–organic framework nanosheets exhibiting highly efficient and size-selective catalysis. Adv. Funct. Mater. 28: 1802021, https://doi.org/10.1002/adfm.201802021.Search in Google Scholar
Yang, E., Alayande, A.B., Kim, C.-M., Song, J.-H., and Kim, I.S. (2018a). Laminar reduced graphene oxide membrane modified with silver nanoparticle-polydopamine for water/ion separation and biofouling resistance enhancement. Desalination 426: 21–31, https://doi.org/10.1016/j.desal.2017.10.023.Search in Google Scholar
Yang, E., Ham, M.-H., Park, H.B., Kim, C.-M., Song, J.-H., and Kim, I.S. (2018b). Tunable semi-permeability of graphene-based membranes by adjusting reduction degree of laminar graphene oxide layer. J. Membr. Sci. 547: 73–79, https://doi.org/10.1016/j.memsci.2017.10.039.Search in Google Scholar
Yang, E., Karahan, H.E., Goh, K., Chuah, C.Y., Wang, R., and Bae, T.-H. (2019). Scalable fabrication of graphene-based laminate membranes for liquid and gas separations by crosslinking-induced gelation and doctor-blade casting. Carbon 155: 129–137, https://doi.org/10.1016/j.carbon.2019.08.058.Search in Google Scholar
Yang, H., Wu, H., Yao, Z., Shi, B., Xu, Z., Cheng, X., Pan, F., Liu, G., Jiang, Z., and Cao, X. (2018). Functionally graded membranes from nanoporous covalent organic frameworks for highly selective water permeation. J. Mater. Chem. A 6: 583–591, https://doi.org/10.1039/c7ta09596a.Search in Google Scholar
Yang, Q., Su, Y., Chi, C., Cherian, C.T., Huang, K., Kravets, V.G., Wang, F.C., Zhang, J.C., Pratt, A., Grigorenko, A.N., et al.. (2017). Ultrathin graphene-based membrane with precise molecular sieving and ultrafast solvent permeation. Nat. Mater. 16: 1198–1202, https://doi.org/10.1038/nmat5025.Search in Google Scholar PubMed
Yang, Y., Goh, K., Wang, R., and Bae, T.-H. (2017). High-performance nanocomposite membranes realized by efficient molecular sieving with CuBDC nanosheets. Chem. Commun. 53: 4254–4257, https://doi.org/10.1039/c7cc00295e.Search in Google Scholar PubMed
Yao, J., Liu, C., Liu, X., Guo, J., Zhang, S., Zheng, J., and Li, S. (2020). Azobenzene-assisted exfoliation of 2D covalent organic frameworks into large-area, few-layer nanosheets for high flux and selective molecular separation membrane. J. Membr. Sci. 601: 117864, https://doi.org/10.1016/j.memsci.2020.117864.Search in Google Scholar
Ye, L., Gao, Y., Cao, S., Chen, H., Yao, Y., Hou, J., and Sun, L. (2018). Assembly of highly efficient photocatalytic CO2 conversion systems with ultrathin two-dimensional metal–organic framework nanosheets. Appl. Catal. B 227: 54–60, https://doi.org/10.1016/j.apcatb.2018.01.028.Search in Google Scholar
Ying, Y., Liu, D., Ma, J., Tong, M., Zhang, W., Huang, H., Yang, Q., and Zhong, C. (2016). A GO-assisted method for the preparation of ultrathin covalent organic framework membranes for gas separation. J. Mater. Chem. A 4: 13444–13449, https://doi.org/10.1039/c6ta04579k.Search in Google Scholar
You, S., Tang, C., Yu, C., Wang, X., Zhang, J., Han, J., Gan, Y., and Ren, N. (2013). Forward osmosis with a novel thin-film inorganic membrane. Environ. Sci. Technol. 47: 8733–8742, https://doi.org/10.1021/es401555x.Search in Google Scholar PubMed
Yu, H., Zhang, B., Bulin, C., Li, R., and Xing, R. (2016). High-efficient synthesis of graphene oxide based on improved hummers method. Sci. Rep. 6: 36143, https://doi.org/10.1038/srep36143.Search in Google Scholar PubMed PubMed Central
Yuan, S., Li, Y., Xia, Y., Selomulya, C., and Zhang, X. (2021). Stable cation-controlled reduced oxide membranes for improved NaCl rejection. J. Membr. Sci. 621: 118995, https://doi.org/10.1016/j.memsci.2020.118995.Search in Google Scholar
Zeng, L., Yu, Z., Sun, Z., Han, Y., Xu, Y., Wu, J., Liang, Z., and Wang, Z. (2020). Fast synthesis of SSZ-13 zeolite by steam-assisted crystallization method. Microporous Mesoporous Mater. 293: 109789, https://doi.org/10.1016/j.micromeso.2019.109789.Search in Google Scholar
Zhan, G., Fan, L., Zhao, F., Huang, Z., Chen, B., Yang, X., and Zhou, S.-F. (2019). Fabrication of ultrathin 2D Cu-BDC nanosheets and the derived integrated MOF nanocomposites. Adv. Funct. Mater. 29: 1806720, https://doi.org/10.1002/adfm.201806720.Search in Google Scholar
Zhang, J., Li, Z., Zhan, K., Sun, R., Sheng, Z., Wang, M., and Hou, X. (2019). Two dimensional nanomaterial-based separation membranes. Electrophoresis 40: 2029–2040, https://doi.org/10.1002/elps.201800529.Search in Google Scholar PubMed
Zhang, W., Ji, J., Qiu, Y., and Pan, K. (2018a). Polydopamine-grafted graphene oxide composite membranes with adjustable nanochannels and separation performance. Adv. Mater. Interfaces 5: 1701386, https://doi.org/10.1002/admi.201701386.Search in Google Scholar
Zhang, W., Zhang, L., Zhao, H., Li, B., and Ma, H. (2018b). A two-dimensional cationic covalent organic framework membrane for selective molecular sieving. J. Mater. Chem. A 6: 13331–13339, https://doi.org/10.1039/c8ta04178d.Search in Google Scholar
Zhang, Y., Zhu, K., Zhou, X., and Yuan, W. (2014). Synthesis of hierarchically porous ZSM-5 zeolites by steam-assisted crystallization of dry gels silanized with short-chain organosilanes. New J. Chem. 38: 5808–5816, https://doi.org/10.1039/c4nj00811a.Search in Google Scholar
Zhang, Z., Yin, C., Yang, G., Xiao, A., Shi, X., Xing, W., and Wang, Y. (2021). Stitching nanosheets of covalent organic frameworks to build aligned nanopores in nanofiltration membranes for precise ion separations. J. Membr. Sci. 618: 118754, https://doi.org/10.1016/j.memsci.2020.118754.Search in Google Scholar
Zhao, L., Dong, B., Li, S., Zhou, L., Lai, L., Wang, Z., Zhao, S., Han, M., Gao, K., Lu, M., et al.. (2017). Interdiffusion reaction-assisted hybridization of two-dimensional metal–organic frameworks and Ti3C2Tx nanosheets for electrocatalytic oxygen evolution. ACS Nano 11: 5800–5807, https://doi.org/10.1021/acsnano.7b01409.Search in Google Scholar PubMed
Zhao, M., Huang, Y., Peng, Y., Huang, Z., Ma, Q., and Zhang, H. (2018). Two-dimensional metal–organic framework nanosheets: synthesis and applications. Chem. Soc. Rev. 47: 6267–6295, https://doi.org/10.1039/c8cs00268a.Search in Google Scholar PubMed
Zhao, M., Lu, Q., Ma, Q., and Zhang, H. (2017). Two-dimensional metal–organic framework nanosheets. Small Methods 1: 1600030, https://doi.org/10.1002/smtd.201600030.Search in Google Scholar
Zhao, M., Wang, Y., Ma, Q., Huang, Y., Zhang, X., Ping, J., Zhang, Z., Lu, Q., Yu, Y., Xu, H., et al.. (2015). Ultrathin 2D metal–organic framework nanosheets. Adv. Mater. 27: 7372–7378, https://doi.org/10.1002/adma.201503648.Search in Google Scholar PubMed
Zhao, S., Wang, Y., Dong, J., He, C.-T., Yin, H., An, P., Zhao, K., Zhang, X., Gao, C., Zhang, L., et al.. (2016). Ultrathin metal–organic framework nanosheets for electrocatalytic oxygen evolution. Nat. Energy 1: 16184, https://doi.org/10.1038/nenergy.2016.184.Search in Google Scholar
Zhao, W., Peng, J., Wang, W., Liu, S., Zhao, Q., and Huang, W. (2018). Ultrathin two-dimensional metal-organic framework nanosheets for functional electronic devices. Coord. Chem. Rev. 377: 44–63, https://doi.org/10.1016/j.ccr.2018.08.023.Search in Google Scholar
Zhao, Y., Liu, P., Ying, Y., Wei, K., Zhao, D., and Liu, D. (2021). Heating-driven assembly of covalent organic framework nanosheets for gas separation. J. Membr. Sci. 623: 19326, https://doi.org/10.1016/j.memsci.2021.119326.Search in Google Scholar
Zhao, Y., Zhou, C., Kong, C., and Chen, L. (2021). Ultrathin reduced graphene oxide/organosilica hybrid membrane for gas separation. JACS Au 1: 328–335, https://doi.org/10.1021/jacsau.0c00073.Search in Google Scholar PubMed PubMed Central
Zheng, S., Tu, Q., Urban, J.J., Li, S., and Mi, B. (2017). Swelling of graphene oxide membranes in aqueous solution: characterization of interlayer spacing and insight into water transport mechanisms. ACS Nano 11: 6440–6450, https://doi.org/10.1021/acsnano.7b02999.Search in Google Scholar PubMed
Zheng, S., Tu, Q., Wang, M., Urban, J.J., and Mi, B. (2020). Correlating interlayer spacing and separation capability of graphene oxide membranes in organic solvent. ACS Nano 14: 6013–6023, https://doi.org/10.1021/acsnano.0c01550.Search in Google Scholar PubMed
Zheng, Z., Grünker, R., and Feng, X. (2016). Synthetic two-dimensional materials: a new paradigm of membranes for ultimate separation. Adv. Mater. 28: 6529–6545, https://doi.org/10.1002/adma.201506237.Search in Google Scholar PubMed
Zhong, Y.L., Tian, Z., Simon, G.P., and Li, D. (2015). Scalable production of graphene via wet chemistry: progress and challenges. Mater. Today 18: 73–78, https://doi.org/10.1016/j.mattod.2014.08.019.Search in Google Scholar
Zhou, K.-G., Vasu, K., Cherian, C., Neek-Amal, M., Zhang, J.C., Ghorbanfekr-Kalashami, H., Huang, K., Marshall, O., Kravets, V., Abraham, J.J., et al.. (2018). Electrically controlled water permeation through graphene oxide membranes. Nature 559: 236–240, https://doi.org/10.1038/s41586-018-0292-y.Search in Google Scholar PubMed
Zhou, M., Korelskiy, D., Ye, P., Grahn, M., and Hedlund, J. (2014). A uniformly oriented MFI membrane for improved CO2 separation. Angew. Chem. Int. Ed. 53: 3492–3495, https://doi.org/10.1002/anie.201311324.Search in Google Scholar PubMed
Zhou, W., Wei, M., Zhang, X., Xu, F., and Wang, Y. (2019). Fast desalination by multilayered covalent organic framework (COF) nanosheets. ACS Appl. Mater. Interfaces 11: 16847–16854, https://doi.org/10.1021/acsami.9b01883.Search in Google Scholar PubMed
Zhu, J., Hou, J., Uliana, A., Zhang, Y., Tian, M., and Van der Bruggen, B. (2018). The rapid emergence of two-dimensional nanomaterials for high-performance separation membranes. J. Mater. Chem. A 6: 3773–3792, https://doi.org/10.1039/c7ta10814a.Search in Google Scholar
Zhu, W., Zhang, C., Li, Q., Xiong, L., Chen, R., Wan, X., Wang, Z., Chen, W., Deng, Z., and Peng, Y. (2018). Selective reduction of CO2 by conductive MOF nanosheets as an efficient co-catalyst under visible light illumination. Appl. Catal. B 238: 339–345, https://doi.org/10.1016/j.apcatb.2018.07.024.Search in Google Scholar
Zhu, X., Tian, C., Do-Thanh, C.-L., and Dai, S. (2017). Two-dimensional materials as prospective scaffolds for mixed-matrix membrane-based CO2 separation. ChemSusChem 10: 3304–3316, https://doi.org/10.1002/cssc.201700801.Search in Google Scholar PubMed
Zhu, Y., Murali, S., Cai, W., Li, X., Suk, J.W., Potts, J.R., and Ruoff, R.S. (2010). Graphene and graphene oxide: synthesis, properties, and applications. Adv. Mater. 22: 3906–3924, https://doi.org/10.1002/adma.201001068.Search in Google Scholar PubMed
Zhuang, J.-L., Kind, M., Grytz, C.M., Farr, F., Diefenbach, M., Tussupbayev, S., Holthausen, M.C., and Terfort, A. (2015). Insight into the oriented growth of surface-attached metal–organic frameworks: surface functionality, deposition temperature, and first layer order. J. Am. Chem. Soc. 137: 8237–8243, https://doi.org/10.1021/jacs.5b03948.Search in Google Scholar PubMed
© 2021 Walter de Gruyter GmbH, Berlin/Boston