Skip to content
Licensed Unlicensed Requires Authentication Published online by De Gruyter December 29, 2021

Advances and challenges in the development of nanosheet membranes

  • Grandprix T. M. Kadja

    Grandprix T. M. Kadja is currently an assistant professor in the Division of Inorganic and Physical Chemistry, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Indonesia. He received his BS in Chemistry from Universitas Indonesia in 2013 while his PhD in Chemistry was obtained from Institut Teknologi Bandung in 2017. His research focuses on the synthesis and characterization of nanoporous and nanolayered materials and their applications in the emerging fields of catalysis, separation, energy, and environmental remediation.

    , Nurul F. Himma

    Nurul F. Himma received her bachelor degree in chemical engineering from Institut Teknologi Sepuluh Nopember, Indonesia in 2013. In 2015, she completed her master degree from Institut Teknologi Bandung, Indonesia under the supervision of Professor Wenten, and then worked as a research assistant in Prof. Wenten’s laboratory. She is currently a lecturer in the Department of Chemical Engineering at Universitas Brawijaya, Indonesia. Her research interests include wastewater treatment and membrane development for environmental protection.

    , Nicholaus Prasetya

    Nicholaus Prasetya obtained his BSc degree in Chemical Engineering from Institut Teknologi Bandung in 2013. In 2019, he received his PhD, also in Chemical Engineering, from Imperial College London under the supervision of Dr Bradley Ladewig. His research interest focuses on membrane and porous materials for gas and liquid separations.

    , Afriyanti Sumboja , Martin Z. Bazant

    Martin Z. Bazant is the E. G. Roos (1944) Professor of Chemical Engineering and Mathematics at the Massachusetts Institute of Technology. He received a PhD in Physics from Harvard University in 1997 and began his career at MIT in Mathematics. He joined the Department of Chemical Engineering in 2008 and served as its Executive Officer from 2016 to 2020. His research and teaching in transport phenomena, electrokinetics, and electrochemical systems have been recognized by several reputable awards.

    and I G. Wenten

    I G. Wenten is a professor of chemical engineering and a member of the Research Center for Nanosciences and Nanotechnology, Institut Teknologi Bandung. He received his Bachelor’s degree in chemical engineering from Institut Teknologi Bandung (ITB) Indonesia and his MSc and PhD degrees from DTU Denmark. He has extensive experience in membrane technology, both at industrial and academic levels, with a career spanning more than 20 years. His research interests include membrane preparation, membrane applications, and membrane fouling.

    ORCID logo EMAIL logo

Abstract

The development of highly efficient separation membranes utilizing emerging materials with controllable pore size and minimized thickness could greatly enhance the broad applications of membrane-based technologies. Having this perspective, many studies on the incorporation of nanosheets in membrane fabrication have been conducted, and strong interest in this area has grown over the past decade. This article reviews the development of nanosheet membranes focusing on two-dimensional materials as a continuous phase, due to their promising properties, such as atomic or nanoscale thickness and large lateral dimensions, to achieve improved performance compared to their discontinuous counterparts. Material characteristics and strategies to process nanosheet materials into separation membranes are reviewed, followed by discussions on the membrane performances in diverse applications. The review concludes with a discussion of remaining challenges and future outlook for nanosheet membrane technologies.


Corresponding author: I G. Wenten, Research Center for Nanosciences and Nanotechnology, Institut Teknologi Bandung, Jalan Ganesha no. 10, Bandung 40132, Indonesia; and Department of Chemical Engineering, Institut Teknologi Bandung, Jalan Ganesha no. 10, Bandung 40132, Indonesia, E-mail:

Funding source: The Ministry of Research, Technology and Higher Education of the Republic of Indonesia http://dx.doi.org/10.13039/501100009509

Award Identifier / Grant number: -

Award Identifier / Grant number: -

Award Identifier / Grant number: -

About the authors

Grandprix T. M. Kadja

Grandprix T. M. Kadja is currently an assistant professor in the Division of Inorganic and Physical Chemistry, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Indonesia. He received his BS in Chemistry from Universitas Indonesia in 2013 while his PhD in Chemistry was obtained from Institut Teknologi Bandung in 2017. His research focuses on the synthesis and characterization of nanoporous and nanolayered materials and their applications in the emerging fields of catalysis, separation, energy, and environmental remediation.

Nurul F. Himma

Nurul F. Himma received her bachelor degree in chemical engineering from Institut Teknologi Sepuluh Nopember, Indonesia in 2013. In 2015, she completed her master degree from Institut Teknologi Bandung, Indonesia under the supervision of Professor Wenten, and then worked as a research assistant in Prof. Wenten’s laboratory. She is currently a lecturer in the Department of Chemical Engineering at Universitas Brawijaya, Indonesia. Her research interests include wastewater treatment and membrane development for environmental protection.

Nicholaus Prasetya

Nicholaus Prasetya obtained his BSc degree in Chemical Engineering from Institut Teknologi Bandung in 2013. In 2019, he received his PhD, also in Chemical Engineering, from Imperial College London under the supervision of Dr Bradley Ladewig. His research interest focuses on membrane and porous materials for gas and liquid separations.

Martin Z. Bazant

Martin Z. Bazant is the E. G. Roos (1944) Professor of Chemical Engineering and Mathematics at the Massachusetts Institute of Technology. He received a PhD in Physics from Harvard University in 1997 and began his career at MIT in Mathematics. He joined the Department of Chemical Engineering in 2008 and served as its Executive Officer from 2016 to 2020. His research and teaching in transport phenomena, electrokinetics, and electrochemical systems have been recognized by several reputable awards.

I G. Wenten

I G. Wenten is a professor of chemical engineering and a member of the Research Center for Nanosciences and Nanotechnology, Institut Teknologi Bandung. He received his Bachelor’s degree in chemical engineering from Institut Teknologi Bandung (ITB) Indonesia and his MSc and PhD degrees from DTU Denmark. He has extensive experience in membrane technology, both at industrial and academic levels, with a career spanning more than 20 years. His research interests include membrane preparation, membrane applications, and membrane fouling.

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This work was supported by the Ministry of Research, Technology and Higher Education of the Republic of Indonesia (World Class University (WCU) Program managed by Institut Teknologi Bandung).

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

Abraham, J., Vasu, K.S., Williams, C.D., Gopinadhan, K., Su, Y., Cherian, C.T., Dix, J., Prestat, E., Haigh, S.J., Grigorieva, I.V., et al.. (2017). Tunable sieving of ions using graphene oxide membranes. Nat. Nanotechnol. 12: 546–551, https://doi.org/10.1038/nnano.2017.21.Search in Google Scholar PubMed

Abuzeid, H.R., El-Mahdy, A.F.M., and Kuo, S.-W. (2021). Covalent organic frameworks: design, principles, synthetic strategies, and diverse applications. Giant 6: 100054, https://doi.org/10.1016/j.giant.2021.100054.Search in Google Scholar

Agrawal, K.V., Topuz, B., Jiang, Z., Nguenkam, K., Elyassi, B., Francis, L.F., Tsapatsis, M., and Navarro, M. (2013). Solution-processable exfoliated zeolite nanosheets purified by density gradient centrifugation. AIChE J. 59: 3458–3467, https://doi.org/10.1002/aic.14099.Search in Google Scholar

Agrawal, K.V., Topuz, B., Pham, T.C.T., Nguyen, T.H., Sauer, N., Rangnekar, N., Zhang, H., Narasimharao, K., Basahel, S.N., Francis, L.F., et al.. (2015). Oriented MFI membranes by gel-less secondary growth of sub-100 nm MFI-nanosheet seed layers. Adv. Mater. 27: 3243–3249, https://doi.org/10.1002/adma.201405893.Search in Google Scholar PubMed

Akbari, A., Sheath, P., Martin, S.T., Shinde, D.B., Shaibani, M., Banerjee, P.C., Tkacz, R., Bhattacharyya, D., and Majumder, M. (2016). Large-area graphene-based nanofiltration membranes by shear alignment of discotic nematic liquid crystals of graphene oxide. Nat. Commun. 7: 10891, https://doi.org/10.1038/ncomms10891.Search in Google Scholar PubMed PubMed Central

Amadei, C.A. and Vecitis, C.D. (2016). How to increase the signal-to-noise ratio of graphene oxide membrane research. Phys. Chem. Lett. 7: 3791–3797, doi:https://doi.org/10.1021/acs.jpclett.6b01829.Search in Google Scholar PubMed

Ang, H. and Hong, L. (2017). Polycationic polymer-regulated assembling of 2D MOF nanosheets for high-performance nanofiltration. ACS Appl. Mater. Interfaces 9: 28079–28088, https://doi.org/10.1021/acsami.7b08383.Search in Google Scholar PubMed

Baerlocher, C. and McCusker, L.B. (2017). Database of zeolite structures [online], Available at: <http://www.iza-structure.org/databases/>.Search in Google Scholar

Berlanga, I., Ruiz-González, M.L., González-Calbet, J.M., Fierro, J.L.G., Mas-Ballesté, R., and Zamora, F. (2011). Delamination of layered covalent organic frameworks. Small 7: 1207–1211, https://doi.org/10.1002/smll.201002264.Search in Google Scholar PubMed

Boehm, K.-P., Clauss, A., and Hofmann, U. (1961). Graphite oxide and its membrane properties. J. Chim. Phys. 58: 141–147, https://doi.org/10.1051/jcp/1961580141.Search in Google Scholar

Brodie, B.C. (1860). Hydration behavior and dynamics of water molecules in graphite oxide. Ann. Chim. Phys. 59: 466–472.Search in Google Scholar

Bu, F., Zagho, M.M., Ibrahim, Y., Ma, B., Elzatahry, A., and Zhao, D. (2020). Porous MXenes: synthesis, structures, and applications. Nano Today 30: 100803, https://doi.org/10.1016/j.nantod.2019.100803.Search in Google Scholar

Bunck, D.N. and Dichtel, W.R. (2013). Bulk synthesis of exfoliated two-dimensional polymers using hydrazone-linked covalent organic frameworks. J. Am. Chem. Soc. 135: 14952–14955, https://doi.org/10.1021/ja408243n.Search in Google Scholar PubMed

Cao, Z., Iskhakova, L., Sun, X., Tang, Z., and Dong, J. (2021). ZSM-5 zeolite nanosheet-based membranes on porous polyvinylidene fluoride for high-flux desalination. ACS Appl. Nano Mater. 4: 2895–2902, https://doi.org/10.1021/acsanm.1c00046.Search in Google Scholar

Cao, Z., Zeng, S., Xu, Z., Arvanitis, A., Yang, S., Gu, X., and Dong, J. (2018). Ultrathin ZSM-5 zeolite nanosheet laminated membrane for high-flux desalination of concentrated brines. Sci. Adv. 4: 1–10, https://doi.org/10.1126/sciadv.aau8634.Search in Google Scholar PubMed PubMed Central

Chandra, S., Kandambeth, S., Biswal, B.P., Lukose, B., Kunjir, S.M., Chaudhary, M., Babarao, R., Heine, T., and Banerjee, R. (2013). Chemically stable multilayered covalent organic nanosheets from covalent organic frameworks via mechanical delamination. J. Am. Chem. Soc. 135: 17853–17861, https://doi.org/10.1021/ja408121p.Search in Google Scholar PubMed

Chen, C., Jia, L., Li, J., Zhang, L., Liang, L., Chen, E., Kong, Z., Wang, X., Zhang, W., and Shen, J.-W. (2020). Understanding the effect of hydroxyl/epoxy group on water desalination through lamellar graphene oxide membranes via molecular dynamics simulation. Desalination 491: 224560, https://doi.org/10.1016/j.desal.2020.114560.Search in Google Scholar

Chen, C., Wang, J., Liu, D., Yang, C., Liu, C., Ruouff, R.S., and Lei, W. (2018). Functionalized boron nitride membranes with ultrafast solvent transport performance for molecular separation. Nat. Commun. 9: 1902, https://doi.org/10.1038/s41467-018-04294-6.Search in Google Scholar PubMed PubMed Central

Cheng, Y., Ravi, S.K., Wang, Y., Tao, J., Gu, Y., Tan, S.C., and Zhao, D. (2018). Covalent organic nanosheets with large lateral size and high aspect ratio synthesized by Langmuir-Blodgett method. Chin. Chem. Lett. 29: 869–872, https://doi.org/10.1016/j.cclet.2017.09.002.Search in Google Scholar

Cheng, Y., Wang, X., Jia, C., Wang, Y., Zhai, L., Wang, Q., and Zhao, D. (2017). Ultrathin mixed matrix membranes containing two-dimensional metal-organic framework nanosheets for efficient CO2/CH4 separation. J. Membr. Sci. 539: 213–223, https://doi.org/10.1016/j.memsci.2017.06.011.Search in Google Scholar

Chi, C., Wang, X., Peng, Y., Qian, Y., Hu, Z., Dong, J., and Zhao, D. (2016). Facile preparation of graphene oxide membranes for gas separation. Chem. Mater. 28: 2921–2927, https://doi.org/10.1021/acs.chemmater.5b04475.Search in Google Scholar

Choi, M., Na, K., Kim, J., Sakamoto, Y., Terasaki, O., and Ryoo, R. (2009). Stable single-unit-cell nanosheets of zeolite MFI as active and long-lived catalysts. Nature 461: 246–249, https://doi.org/10.1038/nature08288.Search in Google Scholar PubMed

Chung, T.S., Teoh, S.K., and Hu, X. (1997). Formation of ultrathin high-performance polyethersulfone hollow-fiber membranes. J. Membr. Sci. 133: 161–175, https://doi.org/10.1016/s0376-7388(97)00101-4.Search in Google Scholar

Côté, A.P., Benin, A.I., Ockwig, N.W., Keeffe, M., Matzger, A.J., and Yaghi, O.M. (2005). Porous, crystalline, covalent organic frameworks. Science 310: 1166.10.1126/science.1120411Search in Google Scholar PubMed

Dai, R., Li, J., and Wang, Z. (2020). Constructing interlayer to tailor structure and performance of thin-film composite polyamide membranes: a review. Adv. Colloid Interface Sci. 282: 102204, https://doi.org/10.1016/j.cis.2020.102204.Search in Google Scholar PubMed

Dakhchoune, M., Villalobos, L.F., Semino, R., Liu, L., Rezaei, M., Schouwink, P., Avalos, C.E., Baade, P., Wood, V., Han, Y., et al.. (2021). Gas-sieving zeolitic membranes fabricated by condensation of precursor nanosheets. Nat. Mater. 20: 362–369, https://doi.org/10.1038/s41563-020-00822-2.Search in Google Scholar PubMed

Dey, K., Pal, M., Rout, K.C., Kunjattu, H.S., Das, A., Mukherjee, R., Kharul, U.K., and Banerjee, R. (2017). Selective molecular separation by interfacially crystallized covalent organic framework thin films. J. Am. Chem. Soc. 139: 13083–13091, https://doi.org/10.1021/jacs.7b06640.Search in Google Scholar PubMed

Díaz, U. and Corma, A. (2016). Ordered covalent organic frameworks, COFs and PAFs from preparation to application. Coord. Chem. Rev. 311: 85–124.10.1016/j.ccr.2015.12.010Search in Google Scholar

Ding, L., Li, L., Liu, Y., Wu, Y., Lu, Z., Deng, J., Wei, Y., Caro, J., and Wang, H. (2020a). Effective ion sieving with Ti3C2Tχ MXene membranes for production of drinking water from seawater. Nat. Sustain. 3: 296–302, https://doi.org/10.1038/s41893-020-0474-0.Search in Google Scholar

Ding, L., Wei, Y., Li, L., Zhang, T., Wang, H., Xue, J., Ding, L.-X., Wang, S., Caro, J., and Gogotsi, Y. (2018). MXene molecular sieving membranes for highly efficient gas separation. Nat. Commun. 9: 155, https://doi.org/10.1038/s41467-017-02529-6.Search in Google Scholar PubMed PubMed Central

Ding, L., Wei, Y., Wang, Y., Chen, H., Caro, J., and Wang, H. (2017). A two-dimensional lamellar membrane: MXene nanosheet stacks. Angew. Chem. Int. Ed. 56: 1825–1829, https://doi.org/10.1002/anie.201609306.Search in Google Scholar PubMed

Ding, L., Xiao, D., Lu, Z., Deng, J., Wei, Y., and Caro, J. (2020b). Oppositely charged Ti3C2Tx MXene membranes with 2D nanofluidic channels for osmotic energy harvesting. Angew. Chem. Int. Ed. 59 8720–8726, https://doi.org/10.1002/anie.201915993.Search in Google Scholar PubMed

Dong, G., Hou, J., Wang, J., Zhang, Y., Chen, V., and Liu, J. (2016). Enhanced CO2/N2 separation by porous reduced graphene oxide/pebax mixed matrix membranes. J. Membr. Sci. 520: 860–868, https://doi.org/10.1016/j.memsci.2016.08.059.Search in Google Scholar

Dreyer, D.R., Park, S., Bielawski, C.W., and Ruoff, R.S. (2010). The chemistry of graphene oxide. Chem. Soc. Rev. 39: 228–240, https://doi.org/10.1039/b917103g.Search in Google Scholar PubMed

Drioli, E., Brunetti, A., Di Profio, G., and Barbieri, G. (2012). Process intensification strategies and membrane engineering. Green Chem. 14: 1561–1572, https://doi.org/10.1039/c2gc16668b.Search in Google Scholar

Duan, K., Wang, J., Zhang, Y., and Liu, J. (2019). Covalent organic frameworks (COFs) functionalized mixed matrix membrane for effective CO2/N2 separation. J. Membr. Sci. 572: 588–595, https://doi.org/10.1016/j.memsci.2018.11.054.Search in Google Scholar

Duong, P.H.H., Kuehl, V.A., Mastorovich, B., Hoberg, J.O., Parkinson, B.A., and Li-Oakey, K.D. (2019). Carboxyl-functionalized covalent organic framework as a two-dimensional nanofiller for mixed-matrix ultrafiltration membranes. J. Membr. Sci. 574: 338–348, https://doi.org/10.1016/j.memsci.2018.12.042.Search in Google Scholar

Eykens, L., Sitter, K.D., Dotremont, C., Pinoy, L., and Bruggen, B.V.D. (2016). How to optimize the membrane distillation: a review. Ind. Eng. Chem. Res. 55: 9333–9343, https://doi.org/10.1021/acs.iecr.6b02226.Search in Google Scholar

Fan, H., Mundstock, A., Gu, J., Meng, H., and Caro, J. (2018). An azine-linked covalent organic framework ACOF-1 membrane for highly selective CO2/CH4 separation. J. Mater. Chem. A 6: 16849–16853, https://doi.org/10.1039/c8ta05641b.Search in Google Scholar

Fan, H., Peng, M., Strauss, I., Mundstock, A., Meng, H., and Caro, J. (2021). MOF-in-COF molecular sieving membrane for selective hydrogen separation. Nat. Commun. 12: 38, https://doi.org/10.1038/s41467-020-20298-7.Search in Google Scholar PubMed PubMed Central

Fan, Z., Zhao, Q., Li, T., Yan, J., Ren, Y., Feng, J., and Wei, T. (2012). Easy synthesis of porous graphene nanosheets and their use in supercapacitors. Carbon 50: 1699–1703, https://doi.org/10.1016/j.carbon.2011.12.016.Search in Google Scholar

Faucher, S., Aluru, N., Bazant, M.Z., Blankschtein, D., Brozena, A.H., Cumings, J., de Souza, J.P., Elimelech, M., Epsztein, R., Fourkas, J.T., et al.. (2019). Critical knowledge gaps in mass transport through single-digit nanopores: a review and perspective. J. Phys. Chem. C 123: 21309–21326, https://doi.org/10.1021/acs.jpcc.9b02178.Search in Google Scholar

Feng, L., Wang, K.-Y., Powell, J., and Zhou, H.-C. (2019). Controllable synthesis of metal-organic frameworks and their hierarchical assemblies. Matter 1: 801–824, https://doi.org/10.1016/j.matt.2019.08.022.Search in Google Scholar

Feng, X., Ding, X., and Jiang, D. (2012). Covalent organic frameworks. Chem. Soc. Rev. 41: 6010–6022, https://doi.org/10.1039/c2cs35157a.Search in Google Scholar PubMed

Fugallo, G., Cepellotti, A., Paulatto, L., Lazzeri, M., Marzari, N., and Mauri, F. (2014). Thermal conductivity of graphene and graphite: collective excitations and mean free paths. Nano Lett. 14: 6109–6114, https://doi.org/10.1021/nl502059f.Search in Google Scholar PubMed

Gadwal, I., Sheng, G., Thankamony, R.L., Liu, Y., Li, H., and Lai, Z. (2018). Synthesis of sub-10 nm two-dimensional covalent organic thin film with sharp molecular sieving nanofiltration. ACS Appl. Mater. Interfaces 10: 12295–12299, https://doi.org/10.1021/acsami.7b19450.Search in Google Scholar PubMed

Gao, F., Ding, Z., and Meng, S. (2013). Three-dimensional metal-intercalated covalent organic frameworks for near-ambient energy storage. Sci. Rep. 3: 1882, https://doi.org/10.1038/srep01882.Search in Google Scholar PubMed PubMed Central

Gao, X., Cui, R., Zhang, M., and Liu, Z. (2017). Metal-organic framework nanosheets that exhibit pH-controlled drug release. Mater. Lett. 197: 217–220, https://doi.org/10.1016/j.matlet.2017.02.082.Search in Google Scholar

Geim, A.K. (2012). Graphene prehistory. Phys. Scripta 2012: 014003, https://doi.org/10.1088/0031-8949/2012/t146/014003.Search in Google Scholar

Goh, P.S., Ismail, A.F., and Hilal, N. (2016). Nano-enabled membranes technology: sustainable and revolutionary solutions for membrane desalination? Desalination 380: 100–104, https://doi.org/10.1016/j.desal.2015.06.002.Search in Google Scholar

Gorgojo, P., Karan, S., Wong, H.C., Jimenez-Solomon, M.F., Cabral, J.T., and Livingston, A.G. (2014). Ultrathin polymer films with intrinsic microporosity: anomalous solvent permeation and high flux membranes. Adv. Funct. Mater. 24: 4729–4737, https://doi.org/10.1002/adfm.201400400.Search in Google Scholar

Guerrero-Contreras, J. and Caballero-Briones, F. (2015). Graphene oxide powders with different oxidation degree, prepared by synthesis variations of the hummers method. Mater. Chem. Phys. 153: 209–220, https://doi.org/10.1016/j.matchemphys.2015.01.005.Search in Google Scholar

Han, L.J., Zheng, D., Chen, S.G., Zheng, H.G., and Ma, J. (2018). A highly solvent-stable metal-organic framework nanosheet: morphology control, exfoliation, and luminescent propert. Small 14: 1703873, https://doi.org/10.1002/smll.201703873.Search in Google Scholar PubMed

Hao, Q., Zhao, C., Sun, B., Lu, C., Liu, J., Liu, M., Wan, L.-J., and Wang, D. (2018). Confined synthesis of two-dimensional covalent organic framework thin films within superspreading water layer. J. Am. Chem. Soc. 140: 12152–12158, https://doi.org/10.1021/jacs.8b07120.Search in Google Scholar PubMed

He, T., Ni, B., Zhang, S., Gong, Y., Wang, H., Gu, L., Zhuang, J., Hu, W., and Wang, X. (2018). Ultrathin 2D zirconium metal–organic framework nanosheets: preparation and application in photocatalysis. Small 14: 1703929, https://doi.org/10.1002/smll.201703929.Search in Google Scholar PubMed

Himma, N.F., Wardani, A.K., Prasetya, N., Aryanti, P.T.P., and Wenten, I.G. (2018). Recent progress and challenges in membrane-based O2/N2 separation. Rev. Chem. Eng. 35: 591–625, https://doi.org/10.1515/revce-2017-0094.Search in Google Scholar

Hirunpinyopas, W., Iamprasertkun, P., Bissett, M.A., and Dryfe, R.A.W. (2020). Tunable charge/size selective ion sieving with ultrahigh water permeance through laminar graphene membranes. Carbon 156: 119–129, https://doi.org/10.1016/j.carbon.2019.09.030.Search in Google Scholar

Hofmann, U. and Kӧnig, E. (1937). Untersuchungen über graphitoxyd. Z. Anorg. Allg. Chem. 234: 311, https://doi.org/10.1002/zaac.19372340405.Search in Google Scholar

Hu, M. and Mi, B. (2013). Enabling graphene oxide nanosheets as water separation membranes. Environ. Sci. Technol. 47: 3715–3723, https://doi.org/10.1021/es400571g.Search in Google Scholar PubMed

Hu, M. and Mi, B. (2014). Layer-by-layer assembly of graphene oxide membranes via electrostatic interaction. J. Membr. Sci. 469: 80–87, https://doi.org/10.1016/j.memsci.2014.06.036.Search in Google Scholar

Huang, H., Song, Z., Wei, N., Shi, L., Mao, Y., Ying, Y., Sun, L., Xu, Z., and Peng, X. (2013). Ultrafast viscous water flow through nanostrand-channelled graphene oxide membranes. Nat. Commun. 4: 2979, https://doi.org/10.1038/ncomms3979.Search in Google Scholar PubMed

Huang, L., Zhang, X., Han, Y., Wang, Q., Fang, Y., and Dong, S. (2017). In situ synthesis of ultrathin metal–organic framework nanosheets: a new method for 2D metal-based nanoporous carbon electrocatalysts. J. Mater. Chem. A 5: 18610–18617, https://doi.org/10.1039/c7ta05821g.Search in Google Scholar

Hummers, W.S. and Offeman, R.E. (1958). Preparation of graphitic oxide. J. Am. Chem. Soc. 80: 1339–1340, https://doi.org/10.1021/ja01539a017.Search in Google Scholar

Hung, W.-S., Lin, T.J., Chiao, Y.-H., Sengupta, A., Hsiao, Y.-C., Wickramasinghe, S.R., Hu, C.-C., Lee, K.-R., and Lai, J.-Y. (2018). Graphene-induced tuning of the d-spacing of graphene oxide composite nanofiltration membranes for frictionless capillary action-induced enhancement of water permeability. J. Mater. Chem. A 6: 19445–19454, https://doi.org/10.1039/c8ta08155g.Search in Google Scholar

Hyun, T., Jeong, J., Chae, A., Kim, Y.K., and Koh, D.-Y. (2019). 2D-enabled membranes: materials and beyond. BMC Chem. Eng. 1: 12, https://doi.org/10.1186/s42480-019-0012-x.Search in Google Scholar

Ismail, A.F., Padaki, M., Hilal, N., Matsuura, T., and Lau, W.J. (2015). Thin film composite membrane — recent development and future potential. Desalination 356: 140–148, https://doi.org/10.1016/j.desal.2014.10.042.Search in Google Scholar

Jamali, S.H., Vlught, T.J.H., and Lin, L.-C. (2017). Atomistic understanding of zeolite nanosheets for water desalination. J. Phys. Chem. C 121: 11273–11280, https://doi.org/10.1021/acs.jpcc.7b00214.Search in Google Scholar

Jeon, M.Y., Kim, D., Kumar, P., Lee, P.S., Rangnekar, N., Bai, P., Shete, M., Elyassi, B., Lee, H.S., Narasimharao, K., et al.. (2017). Ultra-selective high-flux membranes from directly synthesized zeolite nanosheets. Nature 543: 690–694, https://doi.org/10.1038/nature21421.Search in Google Scholar PubMed

Jeong, B.-H., Hoek, E.M.V., Yan, Y., Subramani, A., Huang, X., Hurwitz, G., Ghosh, A.K., and Jawor, A. (2007). Interfacial polymerization of thin film nanocomposites: a new concept for reverse osmosis membranes. J. Membr. Sci. 294: 1–7, https://doi.org/10.1016/j.memsci.2007.02.025.Search in Google Scholar

Jian, M., Qiu, R., Xia, Y., Lu, J., Chen, Y., Gu, Q., Liu, R., Hu, C., Qu, J., Wang, H., et al.. (2020). Ultrathin water-stable metal-organic framework membranes for ion separation. Sci. Adv. 6: eaay3998, https://doi.org/10.1126/sciadv.aay3998.Search in Google Scholar PubMed PubMed Central

Jiang, S., Shi, X., Sun, F., and Zhu, G. (2020). Fabrication of crystalline microporous membrane from 2D MOF nanosheets for gas separation. Chem. Asian J. 15: 2371–2378, https://doi.org/10.1002/asia.202000143.Search in Google Scholar PubMed

Joshi, R.K., Alwarappan, S., Yoshimura, M., Sahajwalla, V., and Nishina, Y. (2015). Graphene oxide: the new membrane material. Appl. Mater. Today 1: 1–12, https://doi.org/10.1016/j.apmt.2015.06.002.Search in Google Scholar

Kadja, G.T.M., Azhari, N.J., Mukti, R.R., and Khalil, M. (2021a). A mechanistic investigation of sustainable solvent-free, seed-directed synthesis of ZSM-5 zeolites in the absence of an organic structure-directing agent. ACS Omega 6: 925–933, https://doi.org/10.1021/acsomega.0c05070.Search in Google Scholar PubMed PubMed Central

Kadja, G.T.M., Rukmana, M.D., Mukti, R.R., Mahyuddin, M.H., Saputro, A.G., and Wungu, T.D.K. (2021b). Solvent-free, small organic lactam-assisted synthesis of ZSM-5 zeolites. Mater. Lett. 290: 129501, https://doi.org/10.1016/j.matlet.2021.129501.Search in Google Scholar

Kallo, M.T. and Lennox, M.J. (2020). Understanding CO2/CH4 separation in pristine and defective 2D MOF CuBDC nanosheets via nonequilibrium molecular dynamics. Langmuir 36: 13591–13600, https://doi.org/10.1021/acs.langmuir.0c02434.Search in Google Scholar PubMed PubMed Central

Kandambeth, S., Dey, K., and Banerjee, R. (2019). Covalent organic frameworks: chemistry beyond the structure. J. Am. Chem. Soc. 141: 1807–1822, https://doi.org/10.1021/jacs.8b10334.Search in Google Scholar PubMed

Kandambeth, S., Mallick, A., Lukose, B., Mane, M.V., Heine, T., and Banerjee, R. (2012). Construction of crystalline 2D covalent organic frameworks with remarkable chemical (acid/base) stability via a combined reversible and irreversible route. J. Am. Chem. Soc. 134: 19524–19527, https://doi.org/10.1021/ja308278w.Search in Google Scholar PubMed

Kang, K.M., Kim, D.W., Ren, C.E., Cho, K.M., Kim, S.J., Choi, J.H., Nam, Y.T., Gogotsi, Y., and Jung, H.-T. (2017). Selective molecular separation on Ti3C2Tx–graphene oxide membranes during pressure-driven filtration: comparison with graphene oxide and MXenes. ACS Appl. Mater. Interfaces 9: 44687–44694, https://doi.org/10.1021/acsami.7b10932.Search in Google Scholar PubMed

Kang, Z., Peng, Y., Hu, Z., Qian, Y., Chi, C., Yeo, L.Y., Tee, L., and Zhao, D. (2015). Mixed matrix membranes composed of two-dimensional metal–organic framework nanosheets for pre-combustion CO2 capture: a relationship study of filler morphology versus membrane performance. J. Mater. Chem. A 3: 20801–20810, https://doi.org/10.1039/c5ta03739e.Search in Google Scholar

Kang, Z., Peng, Y., Qian, Y., Yuan, D., Addicoat, M.A., Heine, T., Hu, Z., Tee, L., Guo, Z., and Zhao, D. (2016). Mixed matrix membranes (MMMs) comprising exfoliated 2D covalent organic frameworks (COFs) for efficient CO2 separation. Chem. Mater. 28: 1277–1285, https://doi.org/10.1021/acs.chemmater.5b02902.Search in Google Scholar

Karahan, H.E., Goh, K., Zhang, C. (J)., Yang, E., Yildirim, C., Chuah, C.Y., Ahunbay, M.G., Lee, J., Tantekin-Ersolmaz, Ş.B., Chen, Y., et al.. (2020). MXene materials for designing advanced separation membranes. Adv. Mater. 32: 1906697, https://doi.org/10.1002/adma.201906697.Search in Google Scholar PubMed

Khan, N.A., Yuan, J., Wu, H., Cao, L., Zhang, R., Liu, Y., Li, L., Rahman, A.U., Kasher, R., and Jiang, Z. (2019). Mixed nanosheet membranes assembled from chemically grafted graphene oxide and covalent organic frameworks for ultra-high water flux. ACS Appl. Mater. Interfaces 11: 28978–28986, https://doi.org/10.1021/acsami.9b09945.Search in Google Scholar PubMed

Khayum, M.A., Kandambeth, S., Mitra, S., Nair, S.B., Das, A., Nagane, S.S., Mukherjee, R., and Banerjee, R. (2016). Chemically delaminated free-standing ultrathin covalent organic nanosheets. Angew. Chem. Int. Ed. 55: 15604–15608, https://doi.org/10.1002/anie.201607812.Search in Google Scholar PubMed

Kim, J.H., Park, G.S., Kim, Y.-J., Choi, E., Kang, J., Kwon, O., Kim, S.J., Cho, J.H., and Kim, D.W. (2021). Large-area Ti3C2Tx-MXene coating: toward industrial-scale fabrication an molecular separation. ACS Nano 15: 8860–8869, https://doi.org/10.1021/acsnano.1c01448.Search in Google Scholar PubMed

Kim, S., Wang, H., and Lee, Y.M. (2019). 2D nanosheets and their composite membranes for water, gas, and ion separation. Angew. Chem. Int. Ed. 58: 17512–17527, https://doi.org/10.1002/anie.201814349.Search in Google Scholar PubMed PubMed Central

Kondo, A., Tiew, C.C., Moriguchi, F., and Maeda, K. (2013). Fabrication of metal–organic framework nanosheets and nanorolls with N-donor type bridging ligands. Dalton Trans. 42: 15267–15270, https://doi.org/10.1039/c3dt52130c.Search in Google Scholar PubMed

Korelskiy, D., Ye, P., Zhou, H., Mouzon, J., and Hedlund, J. (2014). An experimental study of micropore defects in MFI membranes. Microporous Mesoporous Mater. 186: 194–200, https://doi.org/10.1016/j.micromeso.2013.12.002.Search in Google Scholar

Kuehl, V.A., Yin, J., Duong, P.H.H., Mastorovich, B., Newell, B., Li-Oakey, K.D., Parkinson, B.A., and Hoberg, J.O. (2018). A highly ordered nanoporous, two-dimensional covalent organic framework with modifiable pores, and its application in water purification and ion sieving. J. Am. Chem. Soc. 140: 18200–18207, https://doi.org/10.1021/jacs.8b11482.Search in Google Scholar PubMed

Kuhn, P., Antonietti, M., and Thomas, A. (2008). Porous, covalent triazine-based frameworks prepared by ionothermal synthesis. Angew. Chem. Int. Ed. 47: 3450–3453, https://doi.org/10.1002/anie.200705710.Search in Google Scholar PubMed

Kunimatsu, M., Nakagawa, K., Yoshioka, T., Shintani, T., Yasui, T., Kamio, E., Tsang, S.C.E., Li, J., and Matsuyama, H. (2020). Design of niobate nanosheet-graphene oxide composite nanofiltration membranes with improved permeability. J. Membr. Sci. 595: 117598, https://doi.org/10.1016/j.memsci.2019.117598.Search in Google Scholar

Lau, W.J., Gray, S., Matsuura, T., Emadzadeh, D., Paul Chen, J., and Ismail, A.F. (2015). A review on polyamide thin film nanocomposite (TFN) membranes: history, applications, challenges and approaches. Water Res. 80: 306–324, https://doi.org/10.1016/j.watres.2015.04.037.Search in Google Scholar PubMed

Le, N.L. and Nunes, S.P. (2016). Materials and membrane technologies for water and energy sustainability. Sustain. Mater. Technol. 7: 1–28, https://doi.org/10.1016/j.susmat.2016.02.001.Search in Google Scholar

Lee, C., Wei, X., Kysar, J.W., and Hone, J. (2008). Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321: 385–388, https://doi.org/10.1126/science.1157996.Search in Google Scholar PubMed

Lee, X.J., Hiew, B.Y.Z., Lai, K.C., Lee, L.Y., Gan, S., Thangalazhy-Gopakumar, S., and Rigby, S. (2019). Review on graphene and its derivatives: synthesis methods and potential industrial implementation. J. Taiwan Inst. Chem. Eng. 98: 163–180, https://doi.org/10.1016/j.jtice.2018.10.028.Search in Google Scholar

Leonowicz, M.E., Lawton, J.A., Lawton, S.L., and Rubin, M.K. (1994). MCM-22: a molecular sieve with two independent multidimensional channel systems. Science 264: 1910, https://doi.org/10.1126/science.264.5167.1910.Search in Google Scholar PubMed

Li, B., Wang, X., Chen, L., Zhou, Y., Dang, W., Chang, J., and Wu, C. (2018). Ultrathin Cu-TCPP MOF nanosheets: a new theragnostic nanoplatform with magnetic resonance/near-infrared thermal imaging for synergistic phototherapy of cancers. Theranostics 8: 4086–4096, https://doi.org/10.7150/thno.25433.Search in Google Scholar PubMed PubMed Central

Li, G., Shi, L., Zeng, G., Zhang, Y., and Sun, Y. (2014). Efficient dehydration of the organic solvents through graphene oxide (GO)/ceramic composite membranes. RSC Adv. 4: 52012–52015, https://doi.org/10.1039/c4ra09062d.Search in Google Scholar

Li, G., Wang, W., Fang, Q., and Liu, F. (2020). Covalent triazine frameworks membrane with highly ordered skeleton nanopores for robust and precise molecule/ion separation. J. Membr. Sci. 595: 117525, https://doi.org/10.1016/j.memsci.2019.117525.Search in Google Scholar

Li, G., Zhang, K., and Tsuru, T. (2017). Two-dimensional covalent organic framework (COF) membranes fabricated via the assembly of exfoliated COF nanosheets. ACS Appl. Mater. Interfaces 9: 8433–8436, https://doi.org/10.1021/acsami.6b15752.Search in Google Scholar PubMed

Li, H., Ding, X., Zhang, Y., and Liu, J. (2017). Porous graphene nanosheets functionalized thin film nanocomposite membrane prepared by interfacial polymerization for CO2/N2 separation. J. Membr. Sci. 543: 58–68, https://doi.org/10.1016/j.memsci.2017.08.046.Search in Google Scholar

Li, P.-Z., Maeda, Y., and Xu, Q. (2011). Top-down fabrication of crystalline metal–organic framework nanosheets. Chem. Commun. 47: 8436–8438, https://doi.org/10.1039/c1cc12510a.Search in Google Scholar PubMed

Li, Y., Lin, L., Tu, M., Nian, P., Howarth, A.J., Farha, O.K., Qiu, J., and Zhang, X. (2018a). Growth of ZnO self-converted 2D nanosheet zeolitic imidazolate framework membranes by an ammonia-assisted strategy. Nano Res. 11: 1850–1860, https://doi.org/10.1007/s12274-017-1803-0.Search in Google Scholar

Li, Y., Liu, H., Wang, H., Qiu, J., and Zhang, X. (2018b). GO-guided direct growth of highly oriented metal–organic framework nanosheet membranes for H2/CO2 separation. Chem. Sci. 9: 4132–4141, https://doi.org/10.1039/c7sc04815g.Search in Google Scholar PubMed PubMed Central

Li, Z.-Q., Qiu, L.-G., Wang, W., Xu, T., Wu, Y., and Jiang, X. (2008). Fabrication of nanosheets of a fluorescent metal–organic framework [Zn (BDC)(H2O)] n (BDC= 1, 4-benzenedicarboxylate): ultrasonic synthesis and sensing of ethylamine. Inorg. Chem. Commun. 11: 1375–1377, https://doi.org/10.1016/j.inoche.2008.09.010.Search in Google Scholar

Liang, B., Zhang, P., Wang, J., Qu, J., Wang, L., Wang, X., Guan, C., and Pan, K. (2016). Membranes with selective laminar nanochannels of modified reduced graphene oxide for water purification. Carbon 103: 94–100, https://doi.org/10.1016/j.carbon.2016.03.001.Search in Google Scholar

Liang, S., Mu, L., Chen, L., Jiang, J., Yang, Y., and Fang, H. (2020). Tuning the interlayer spacings in dry graphene oxide membranes via ions. Chem. Asian J. 15: 2346–2349, https://doi.org/10.1002/asia.202000251.Search in Google Scholar PubMed

Liu, G., Jin, W., and Xu, N. (2016). Two-dimensional-material membranes: a new family of high-performance separation membranes. Angew. Chem. Int. Ed. 55: 13384–13397, https://doi.org/10.1002/anie.201600438.Search in Google Scholar PubMed

Liu, G., Liu, S., Ma, K., Wang, H., Wang, X., Liu, G., and Jin, W. (2020). Polyelectrolite functionalized Ti2CTx MXene membrane for pervaporation dehydration of isopropanol/water mixtures. Ind. Eng. Chem. Res. 59: 4732–4741, https://doi.org/10.1021/acs.iecr.9b06881.Search in Google Scholar

Liu, H., Wang, H., and Zhang, X. (2015). Facile Fabrication of freestanding ultrathin reduced graphene oxide membranes for water purification. Adv. Mater. 27: 249–254, https://doi.org/10.1002/adma.201404054.Search in Google Scholar PubMed

Liu, H.-L., Chang, Y.-J., Fan, T., and Gu, Z.-Y. (2016). Two-dimensional metal–organic framework nanosheets as a matrix for laser desorption/ionization of small molecules and monitoring enzymatic reactions at high salt concentrations. Chem. Commun. 52: 12984–12987, https://doi.org/10.1039/c6cc07371a.Search in Google Scholar PubMed

Liu, M., Gurr, P.A., Fu, Q., Webley, P.A., and Qiao, G.G. (2018). Two-dimensional nanosheet-based gas separation membranes. J. Mater. Chem. A 6: 23169–23196, https://doi.org/10.1039/c8ta09070j.Search in Google Scholar

Liu, X., Zhang, L., and Wang, J. (2021). Design of strategies for MOF-derived porous functional materials: preserving surfaced and nurturing pores. J. Materiomics 7: 440–459, https://doi.org/10.1016/j.jmat.2020.10.008.Search in Google Scholar

Liu, Y. (2019). Beyond graphene oxides: emerging 2D molecular sieve membranes for efficient separation. Chin. J. Chem. Eng. 27: 1257–1271, https://doi.org/10.1016/j.cjche.2018.08.019.Search in Google Scholar

Lu, Z., Wei, Y., Deng, J., Ding, L., Li, Z.-K., and Wang, H. (2019). Self-crosslinked MXene (Ti3C2Tx) membranes with good antiswelling property for monovalent metal ion exclusion. ACS Nano 13: 10535–10544, https://doi.org/10.1021/acsnano.9b04612.Search in Google Scholar PubMed

Luiten-Olieman, M.W.J., Raaijmakers, M.J.T., Nijmeijer, A., and Benes, N.E. (2013). Thin inorganic porous hollow fiber membranes. In: Hoek, E.M.V., and Tarabara, V.V. (Eds.), Encyclopedia of membrane science and technology. Wiley, New Jersey, USA, pp. 1–24.10.1002/9781118522318.emst036Search in Google Scholar

Lyle, S.J., Waller, P.J., and Yaghi, O.M. (2019). Covalent organic frameworks: organic chemistry extended into two and three dimensions. Trends Chem. 1: 172–184, https://doi.org/10.1016/j.trechm.2019.03.001.Search in Google Scholar

Ma, H.-M., Yi, J.-W., Li, S., Jiang, C., Wei, J.-H., Wu, Y.-P., Zhao, J., and Li, D. (2019). Stable bimetal-MOF ultrathin nanosheets for pseudocapacitors with enhanced performance. Inorg. Chem. 58: 9543–9547, https://doi.org/10.1021/acs.inorgchem.9b00937.Search in Google Scholar PubMed

Mahalingam, D.K., Falca, G., Upadhya, L., Abou-Hamad, E., Batra, N., Wang, S., Musteata, V., Costa, P.M.D., and Nunes, S.P. (2020). Spray-coated graphene oxide hollow fibers for nanofiltration. J. Membr. Sci. 606: 118006, https://doi.org/10.1016/j.memsci.2020.118006.Search in Google Scholar

Mahmoud, K.A., Mansoor, B., Mansour, A., and Khraisheh, M. (2015). Functional graphene nanosheets: the next generation membranes for water desalination. Desalination 356: 208–225, https://doi.org/10.1016/j.desal.2014.10.022.Search in Google Scholar

Makertihartha, I.G.B.N., Kencana, K., Dwiputra, T.R., Khoiruddin, K., Lugito, G., Mukti, R.R., and Wenten, I.G. (2020). SAPO-34 zeotype membrane for gas sweetening. Rev. Chem. Eng.: 00010151520190086, https://doi.org/10.1515/revce-2019-0086.Search in Google Scholar

Makiura, R. and Konovalov, O. (2013). Interfacial growth of large-area single-layer metal-organic framework nanosheets. Sci. Rep. 3: 2506, https://doi.org/10.1038/srep02506.Search in Google Scholar PubMed PubMed Central

Marinho, B., Ghislandi, M., Tkalya, E., Koning, C.E., and de With, G. (2012). Electrical conductivity of compacts of graphene, multi-wall carbon nanotubes, carbon black, and graphite powder. Powder Technol. 221: 351–358, https://doi.org/10.1016/j.powtec.2012.01.024.Search in Google Scholar

Mi, B. (2014). Graphene oxide membranes for ionic and molecular sieving. Science 343: 740–742, https://doi.org/10.1126/science.1250247.Search in Google Scholar PubMed

Min, B., Korde, A., Yang, S., Kim, Y., Jones, C.W., and Nair, S. (2020). Separation of C2–C4 hydrocarbons from methane by zeolite MFI hollow fiber membranes fabricated from 2D nanosheets. AIChE J. 67: 1–10, https://doi.org/10.1002/aic.17048.Search in Google Scholar

Min, B., Yang, S., Korde, A., Kwon, Y.H., Jones, C.W., and Nair, S. (2019). Continuous zeolite MFI membranes fabricated from 2D MFI nanosheets on ceramic hollow fibers. Angew. Chem. Int. Ed. 58: 8201–8205, https://doi.org/10.1002/anie.201903554.Search in Google Scholar PubMed

Moghadam, F. and Park, H.B. (2018). Two-dimensional materials: an emerging platform for gas separation membranes. Curr. Opin. Chem. Eng. 20: 28–38, https://doi.org/10.1016/j.coche.2018.02.004.Search in Google Scholar

Naguib, M., Kurtoglu, M., Presse, V., Lu, J., Niu, J., Heon, M., Hultman, L., Gogotsi, Y., and Barsoum, M.W. (2011). Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv. Mater. 23: 4248–4253, https://doi.org/10.1002/adma.201102306.Search in Google Scholar PubMed

Naguib, M., Mashtalir, O., Carle, J., Presser, V., Lu, J., Hultman, L., Gogotsi, Y., and Barsoum, M.W. (2012). Two-dimensional transition metal carbides. ACS Nano 6: 1322–1331, https://doi.org/10.1021/nn204153h.Search in Google Scholar PubMed

Nair, R.R., Wu, H.A., Jayaram, P.N., Grigorieva, V., and Geim, A.K. (2012). Unimpeded permeation of water through helium-leak-tight graphene-based membranes. Science 335: 442–444, https://doi.org/10.1126/science.1211694.Search in Google Scholar PubMed

Nakagawa, K., Sera, T., Kunimatsu, M., Yamashita, H., Yoshioka, T., Shintani, T., Kamio, E., Tsang, S.C.E., and Matsuyama, H. (2019). Two-dimensional niobate nanosheet membranes for water treatment: effect of nanosheet preparation method on membrane performance. Separ. Purif. Technol. 219: 222–229, https://doi.org/10.1016/j.seppur.2019.03.031.Search in Google Scholar

Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V., and Firsov, A.A. (2004). Electric field effect in atomically thin carbon films. Science 306: 666–669, https://doi.org/10.1126/science.1102896.Search in Google Scholar PubMed

Peng, Y., Li, Y., Ban, Y., Jin, H., Jiao, W., Liu, X., and Yang, W. (2014). Metal-organic framework nanosheets as building blocks for molecular sieving membranes. Science 346: 1356–1359, https://doi.org/10.1126/science.1254227.Search in Google Scholar PubMed

Peng, Y., Li, Y., Ban, Y., and Yang, W. (2017). Two-dimensional metal-organic framework nanosheets for membrane-based gas separation. Angew. Chem. Int. Ed. 56: 9757–9761, https://doi.org/10.1002/anie.201703959.Search in Google Scholar PubMed

Petukhov, D.I., Kan, A.S., Chumakov, A.P., Konovalov, O.V., Valeev, R.G., and Eliseev, A.A. (2021). MXene-based gas separation membranes with sorption type selectivity. J. Membr. Sci. 621: 118994, https://doi.org/10.1016/j.memsci.2020.118994.Search in Google Scholar

Pham, T.C.T., Nguyen, T.H., and Yoon, K.B. (2013). Gel-free secondary growth of uniformly oriented silica MFI zeolite films and application for xylene separation. Angew. Chem. Int. Ed. 52: 8693–8698, https://doi.org/10.1002/anie.201301766.Search in Google Scholar PubMed

Prasetya, N., Himma, N.F., Sutrisna, P.D., Wenten, I.G., and Ladewig, B.P. (2020). A review on emerging organic-containing microporous material membranes for carbon capture and separation. Chem. Eng. J. 391: 123575, https://doi.org/10.1016/j.cej.2019.123575.Search in Google Scholar

Pustovarenko, A., Goesten, M.G., Sachdeva, S., Shan, M., Amghouz, Z., Belmabkhout, Y., Dikhtiarenko, A., Rodenas, T., Keskin, D., Voets, I.K., et al.. (2018). Nanosheets of nonlayered aluminum metal–organic frameworks through a surfactant-assisted method. Adv. Mater. 30: 1707234, https://doi.org/10.1002/adma.201707234.Search in Google Scholar PubMed

Ren, C.E., Hatzell, K.B., Alhabeb, M., Ling, Z., Mahmoud, K.A., and Gogotsi, Y. (2015). Charge- and size-selective ion sieving through Ti3C2Tx MXene membranes. J. Phys. Chem. Lett. 6: 4026–4031, https://doi.org/10.1021/acs.jpclett.5b01895.Search in Google Scholar PubMed

Ren, L., Wu, Q., Yang, C., Zhu, L., Li, C., Zhang, P., Zhang, H., Meng, X., and Xiao, F.-S. (2012). Solvent-free synthesis of zeolites from solid raw materials. J. Am. Chem. Soc. 134: 15173–15176, https://doi.org/10.1021/ja3044954.Search in Google Scholar PubMed

Rilyanti, M., Mukti, R.R., Kadja, G.T.M., Ogura, M., Nur, H., and Ismunandar, N.E.-P. (2016). On the drastic reduction of organic structure directing agent in the steam-assisted crystallization of zeolite with hierarchical porosity. Microporous Mesoporous Mater. 230: 30–38, https://doi.org/10.1016/j.micromeso.2016.04.038.Search in Google Scholar

Ritt, C.L., Werber, J.R., Deshmukh, A., and Elimelech, M. (2019). Monte Carlo simulations of framework defects in layered two-dimensional nanomaterial desalination membranes: implications for permeability and selectivity. Environ. Sci. Technol. 53: 6214–6224, https://doi.org/10.1021/acs.est.8b06880.Search in Google Scholar PubMed

Rodenas, T., Luz, I., Prieto, G., Seoane, B., Miro, H., Corma, A., Kapteijn, F., Xanema, F.X.L.I., and Gascon, J. (2015). Metal–organic framework nanosheets in polymer composite materials for gas separation. Nat. Mater. 14: 48–55, https://doi.org/10.1038/nmat4113.Search in Google Scholar PubMed PubMed Central

Rubin, M.K. and Chu, P. (1990). US patent 4954325.Search in Google Scholar

Sabetghadam, A., Liu, X., Gottmer, S., Chu, L., Gascon, J., and Kapteijn, F. (2019). Thin mixed matrix and dual layer membranes containing metal-organic framework nanosheets and polyactive for CO2 capture. J. Membr. Sci. 570–571: 226–235, https://doi.org/10.1016/j.memsci.2018.10.047.Search in Google Scholar

Shen, J., Liu, G., Huang, K., Jin, W., Lee, K.-R., and Xu, N. (2015). Membranes with fast and selective gas-transport channels of laminar graphene oxide for efficient CO2 capture. Angew. Chem. Int. Ed. 54: 578–582, https://doi.org/10.1002/anie.201409563.Search in Google Scholar PubMed

Shen, J., Liu, G., Ji, Y., Liu, Q., Cheng, L., Guan, K., Zhang, M., Liu, G., Xiong, J., Yang, J., et al.. (2018). 2D MXene nanofilms with tunable gas transport channels. Adv. Funct. Mater. 28: 1801511, https://doi.org/10.1002/adfm.201801511.Search in Google Scholar

Shete, M., Kumar, P., Bachman, J.E., Ma, X., Smith, Z.P., Xu, W., and Mkhoyan, K.A. (2018). On the direct synthesis of Cu (BDC) MOF nanosheets and their performance in mixed matrix membranes. J. Membr. Sci. 549: 312–320, https://doi.org/10.1016/j.memsci.2017.12.002.Search in Google Scholar

Shu, L., Xie, L.-H., Meng, Y., Liu, T., Zhao, C., and Li, J.-R. (2020). A thin and high loading two-dimensional MOF nanosheet based mixed-matrix membrane for high permeance nanofiltration. J. Membr. Sci. 603: 118049, https://doi.org/10.1016/j.memsci.2020.118049.Search in Google Scholar

Shuck, C.E. and Gogotsi, Y. (2020). Taking MXenes from the lab to commercial products. Chem. Eng. J. 401: 125786, https://doi.org/10.1016/j.cej.2020.125786.Search in Google Scholar

Siagian, U.W.R., Raksajati, A., Himma, N.F., Khoiruddin, K., and Wenten, I.G. (2019). Membrane-based carbon capture technologies: membrane gas separation versus membrane contactor. J. Nat. Gas Sci. Eng. 67: 172–195, https://doi.org/10.1016/j.jngse.2019.04.008.Search in Google Scholar

Singh, R.K., Kumar, R., and Singh, D.P. (2016). Graphene oxide: strategies for synthesis, reduction and frontier applications. RSC Adv. 6: 64993–65011, https://doi.org/10.1039/c6ra07626b.Search in Google Scholar

Staudenmaier, L. (1898). Verfahren zur darstellung der graphitsäure. Ber. Dtsch. Chem. Ges. 31: 1481, https://doi.org/10.1002/cber.18980310237.Search in Google Scholar

Strunck, A.B., Suri, A., and Boffa, V. (2020). Effect of temperature and branched crosslinkers on supported graphene oxide pervaporation membranes for ethanol dehydration. Nanomaterials 10: 1571, https://doi.org/10.3390/nano10081571.Search in Google Scholar PubMed PubMed Central

Sun, J., Iakunkov, A., Baburin, I.A., Joseph, B., Palermo, V., and Talyzin, A.V. (2020). Covalent organic framework (COF-1) under high pressure. Angew. Chem. Int. Ed. 59: 1087–1092, https://doi.org/10.1002/anie.201907689.Search in Google Scholar PubMed PubMed Central

Sun, J., Li, Q., Chen, G., Duan, J., Liu, G., and Jin, W. (2019). MOF-801 incorporated PEBA mixed-matrix composite membranes for CO2 capture. Separ. Purif. Technol. 217: 229–239, https://doi.org/10.1016/j.seppur.2019.02.036.Search in Google Scholar

Sun, P., Wang, K., and Zhu, H. (2016). Recent developments in graphene-based membranes: structure, mass-transport mechanism and potential applications. Adv. Mater. 28: 2287–2310, https://doi.org/10.1002/adma.201502595.Search in Google Scholar PubMed

Thebo, K.H., Qian, X., Zhang, Q., Chen, L., Cheng, H.-M., and Ren, W. (2018). Highly stable graphene-oxide-based membranes with superior permeability. Nat. Commun. 9: 1–8, https://doi.org/10.1038/s41467-018-03919-0.Search in Google Scholar PubMed PubMed Central

Tian, M., Pei, F., Yao, M., Fu, Z., Lin, L., Wu, G., Xu, G., Kitagawa, H., and Fang, X. (2019). Ultrathin MOF nanosheet assembled highly oriented microporous membrane as an interlayer for lithium-sulfur batteries. Energy Storage Mater. 21: 14–21, https://doi.org/10.1016/j.ensm.2018.12.016.Search in Google Scholar

Tsapatsis, M. (2014). 2-dimensional zeolites. AIChE J. 60: 2374–2381, https://doi.org/10.1002/aic.14462.Search in Google Scholar

Tsou, C.-H., An, Q.-F., Lo, S.-C., De Guzman, M., Hung, W.-S., Hu, C.-C., Lee, K.-R., and Lai, J.-Y (2015). Effect of microstructure of graphene oxide fabricated through different self-assembly techniques on 1-butanol dehydration. Journal of Membrane Science 477: 93–100 doi:https://doi.org/10.1016/j.memsci.2014.12.039.Search in Google Scholar

Uribe-Romo, F.J., Doonan, C.J., Furukawa, H., Oisaki, K., and Yaghi, O.M. (2011). Crystalline covalent organic frameworks with hydrazone linkages. J. Am. Chem. Soc. 133: 11478–11481, https://doi.org/10.1021/ja204728y.Search in Google Scholar PubMed

Varoon, K., Zhang, X., Elyassi, B., Brewer, D.D., Gettel, M., Kumar, S., Lee, J.A., Maheshwari, S., Mittal, A., Sung, C.-Y., et al.. (2011). Dispersible exfoliated zeolite nanosheets and their application as a selective membrane. Science 334: 72–75, https://doi.org/10.1126/science.1208891.Search in Google Scholar PubMed

Wang, B., Gao, F., Zhang, F., Xing, W., and Zhou, R. (2019). Highly permeable and oriented AIPO-18 membranes prepared using directly synthesized nanosheets for CO2/CH4 separation. J. Mater. Chem. A. 7: 13164–13172, https://doi.org/10.1039/c9ta01233h.Search in Google Scholar

Wang, J. and Zhuang, S. (2019). Covalent organic frameworks (COFs) for environmental applications. Coord. Chem. Rev. 400: 213046, https://doi.org/10.1016/j.ccr.2019.213046.Search in Google Scholar

Wang, L., Sahabudeen, H., Zhang, T., and Dong, R. (2018). Liquid-interface-assisted synthesis of covalent-organic and metal-organic two-dimensional crystalline polymers. NPJ 2D Mater. Appl. 2: 26, https://doi.org/10.1038/s41699-018-0071-5.Search in Google Scholar

Wang, M., Quan, K., Zheng, X., Cao, Y., Cui, X., Xue, M., and Pan, F. (2019). Facilitated transport membranes by incorporating self-exfoliated covalent organic nanosheets for CO2/CH4 separation. Separ. Purif. Technol. 237: 116457.10.1016/j.seppur.2019.116457Search in Google Scholar

Wang, X., Chi, C., Zhang, K., Qian, Y., Gupta, K.M., Kang, Z., Jiang, J., and Zhao, D. (2017). Reversed thermo-switchable molecular sieving membranes composed of two-dimensional metal-organic nanosheets for gas separation. Nat. Commun. 8: 14460, https://doi.org/10.1038/ncomms14460.Search in Google Scholar PubMed PubMed Central

Wang, Y., Li, J., Yang, Q., and Zhong, C. (2016a). Two-dimensional covalent triazine framework membrane for helium separation and hydrogen purification. ACS Appl. Mater. Interfaces 8: 8694–8701, https://doi.org/10.1021/acsami.6b00657.Search in Google Scholar PubMed

Wang, Y., Liu, Y., Wang, H., Liu, W., Li, Y., Zhang, J., Hou, H., and Yang, J. (2019). Ultrathin NiCo-MOF nanosheets for high-performance supercapacitor electrodes. ACS Appl. Energy Mater. 2: 2063–2071, https://doi.org/10.1021/acsaem.8b02128.Search in Google Scholar

Wang, Y., Zhao, M., Ping, J., Chen, B., Cao, X., Huang, Y., Tan, C., Ma, Q., Wu, S., Yu, Y., et al.. (2016b). Bioinspired design of ultrathin 2D bimetallic metal-organic-framework nanosheets used as biomimetic enzymes. Adv. Mater. 28: 4149–4155, https://doi.org/10.1002/adma.201600108.Search in Google Scholar PubMed

Wei, N., Peng, X., and Xu, Z. (2014). Understanding water permeation in graphene oxide membranes. ACS Appl. Mater. Interfaces 6: 5877–5883, https://doi.org/10.1021/am500777b.Search in Google Scholar PubMed

Wei, S., Xie, Y., Xing, Y., Wang, L., Ye, H., Xiong, X., Wang, S., and Han, K. (2019). Two-dimensional graphene oxide/MXene composite lamellar membranes for efficient solvent permeation and molecular separation. J. Membr. Sci. 582: 414–422, https://doi.org/10.1016/j.memsci.2019.03.085.Search in Google Scholar

Wenten, I.G., Dharmawijaya, P.T., Aryanti, P.T.P., Mukti, R.R., and Khoiruddin, K. (2017). LTA zeolite membranes: current progress and challenges in pervaporation. RSC Adv. 7: 29520–29539, https://doi.org/10.1039/c7ra03341a.Search in Google Scholar

Wenten, I.G., Friatnasary, D.L., Khoiruddin, K., Setiadi, T., and Boopathy, R. (2020). Extractive membrane bioreactor (EMBR): recent advances and applications. Bioresour. Technol. 297: 122424, https://doi.org/10.1016/j.biortech.2019.122424.Search in Google Scholar PubMed

Wenten, I.G., Khoiruddin, K., Aranti, P.T.P., Victoria, A.V., and Tanukusuma, G. (2018). Membrane-based zero-sludge palm oil mill plant. Rev. Chem. Eng. 36: 237–263, https://doi.org/10.1515/revce-2017-0117.Search in Google Scholar

Wenten, I.G., Khoiruddin, K., Mukti, R.R., Rahmah, W., Wang, Z., and Kawi, S. (2021). Zeolite membrane reactors: from preparation to application in heterogeneous catalytic reactions. React. Chem. Eng. 6: 401–417, https://doi.org/10.1039/d0re00388c.Search in Google Scholar

Xia, S., Ni, M., Zhu, T., Zhao, Y., and Li, N. (2015). Ultrathin graphene oxide nanosheet membranes with various d-spacing assembled using the pressure-assisted filtration method for removing natural organic matter. Desalination 371: 78–87, https://doi.org/10.1016/j.desal.2015.06.005.Search in Google Scholar

Xing, Y., Akonkwa, G., Liu, Z., Ye, H., and Han, K. (2020). Crumpled two-dimensional Ti3C2Tx MXene lamellar membranes for solvent permeation and separation. ACS Appl. Nano Mater. 3: 1526–1534, https://doi.org/10.1021/acsanm.9b02322.Search in Google Scholar

Xu, G., Yamada, T., Otsubo, K., Sakaida, S., and Kitagawa, H. (2012). Facile “modular assembly” for fast construction of a highly oriented crystalline MOF nanofilm. J. Am. Chem. Soc. 134: 16524–16527, https://doi.org/10.1021/ja307953m.Search in Google Scholar PubMed

Xu, L., Shan, B., Gao, C., and Xu, J. (2020). Multifunctional thin-film nanocomposite membranes comprising covalent organic nanosheets with high crystallinity for efficient reverse osmosis desalination. J. Membr. Sci. 593: 117398, https://doi.org/10.1016/j.memsci.2019.117398.Search in Google Scholar

Xu, M., Yuan, S., Chen, X.-Y., Chang, Y.-J., Day, G., Gu, Z.-Y., and Zhou, H.-C. (2017). Two-dimensional metal–organic framework nanosheets as an enzyme inhibitor: modulation of the α-chymotrypsin activity. J. Am. Chem. Soc. 139: 8312–8319, https://doi.org/10.1021/jacs.7b03450.Search in Google Scholar PubMed

Xu, W.L., Fang, C., Zhou, F., Song, Z., Liu, Q., Qiao, R., and Yu, M. (2017). Self-assembly: a facile way of forming ultrathin, high-performance graphene oxide membranes for water purification. Nano Lett. 17: 2928–2933, https://doi.org/10.1021/acs.nanolett.7b00148.Search in Google Scholar PubMed

Xu, Y., Li, B., Zheng, S., Wu, P., Zhan, J., Xue, H., Xu, Q., and Pang, H. (2018). Ultrathin two-dimensional cobalt–organic framework nanosheets for high-performance electrocatalytic oxygen evolution. J. Mater. Chem. A 6: 22070–22076, https://doi.org/10.1039/c8ta03128b.Search in Google Scholar

Yan, R., Zhao, Y., Yang, H., Kang, X.J., Wang, C., Wen, L.L., and Lu, Z.-D. (2018). Ultrasmall Au nanoparticles embedded in 2D mixed-ligand metal–organic framework nanosheets exhibiting highly efficient and size-selective catalysis. Adv. Funct. Mater. 28: 1802021, https://doi.org/10.1002/adfm.201802021.Search in Google Scholar

Yang, E., Alayande, A.B., Kim, C.-M., Song, J.-H., and Kim, I.S. (2018a). Laminar reduced graphene oxide membrane modified with silver nanoparticle-polydopamine for water/ion separation and biofouling resistance enhancement. Desalination 426: 21–31, https://doi.org/10.1016/j.desal.2017.10.023.Search in Google Scholar

Yang, E., Ham, M.-H., Park, H.B., Kim, C.-M., Song, J.-H., and Kim, I.S. (2018b). Tunable semi-permeability of graphene-based membranes by adjusting reduction degree of laminar graphene oxide layer. J. Membr. Sci. 547: 73–79, https://doi.org/10.1016/j.memsci.2017.10.039.Search in Google Scholar

Yang, E., Karahan, H.E., Goh, K., Chuah, C.Y., Wang, R., and Bae, T.-H. (2019). Scalable fabrication of graphene-based laminate membranes for liquid and gas separations by crosslinking-induced gelation and doctor-blade casting. Carbon 155: 129–137, https://doi.org/10.1016/j.carbon.2019.08.058.Search in Google Scholar

Yang, H., Wu, H., Yao, Z., Shi, B., Xu, Z., Cheng, X., Pan, F., Liu, G., Jiang, Z., and Cao, X. (2018). Functionally graded membranes from nanoporous covalent organic frameworks for highly selective water permeation. J. Mater. Chem. A 6: 583–591, https://doi.org/10.1039/c7ta09596a.Search in Google Scholar

Yang, Q., Su, Y., Chi, C., Cherian, C.T., Huang, K., Kravets, V.G., Wang, F.C., Zhang, J.C., Pratt, A., Grigorenko, A.N., et al.. (2017). Ultrathin graphene-based membrane with precise molecular sieving and ultrafast solvent permeation. Nat. Mater. 16: 1198–1202, https://doi.org/10.1038/nmat5025.Search in Google Scholar PubMed

Yang, Y., Goh, K., Wang, R., and Bae, T.-H. (2017). High-performance nanocomposite membranes realized by efficient molecular sieving with CuBDC nanosheets. Chem. Commun. 53: 4254–4257, https://doi.org/10.1039/c7cc00295e.Search in Google Scholar PubMed

Yao, J., Liu, C., Liu, X., Guo, J., Zhang, S., Zheng, J., and Li, S. (2020). Azobenzene-assisted exfoliation of 2D covalent organic frameworks into large-area, few-layer nanosheets for high flux and selective molecular separation membrane. J. Membr. Sci. 601: 117864, https://doi.org/10.1016/j.memsci.2020.117864.Search in Google Scholar

Ye, L., Gao, Y., Cao, S., Chen, H., Yao, Y., Hou, J., and Sun, L. (2018). Assembly of highly efficient photocatalytic CO2 conversion systems with ultrathin two-dimensional metal–organic framework nanosheets. Appl. Catal. B 227: 54–60, https://doi.org/10.1016/j.apcatb.2018.01.028.Search in Google Scholar

Ying, Y., Liu, D., Ma, J., Tong, M., Zhang, W., Huang, H., Yang, Q., and Zhong, C. (2016). A GO-assisted method for the preparation of ultrathin covalent organic framework membranes for gas separation. J. Mater. Chem. A 4: 13444–13449, https://doi.org/10.1039/c6ta04579k.Search in Google Scholar

You, S., Tang, C., Yu, C., Wang, X., Zhang, J., Han, J., Gan, Y., and Ren, N. (2013). Forward osmosis with a novel thin-film inorganic membrane. Environ. Sci. Technol. 47: 8733–8742, https://doi.org/10.1021/es401555x.Search in Google Scholar PubMed

Yu, H., Zhang, B., Bulin, C., Li, R., and Xing, R. (2016). High-efficient synthesis of graphene oxide based on improved hummers method. Sci. Rep. 6: 36143, https://doi.org/10.1038/srep36143.Search in Google Scholar PubMed PubMed Central

Yuan, S., Li, Y., Xia, Y., Selomulya, C., and Zhang, X. (2021). Stable cation-controlled reduced oxide membranes for improved NaCl rejection. J. Membr. Sci. 621: 118995, https://doi.org/10.1016/j.memsci.2020.118995.Search in Google Scholar

Zeng, L., Yu, Z., Sun, Z., Han, Y., Xu, Y., Wu, J., Liang, Z., and Wang, Z. (2020). Fast synthesis of SSZ-13 zeolite by steam-assisted crystallization method. Microporous Mesoporous Mater. 293: 109789, https://doi.org/10.1016/j.micromeso.2019.109789.Search in Google Scholar

Zhan, G., Fan, L., Zhao, F., Huang, Z., Chen, B., Yang, X., and Zhou, S.-F. (2019). Fabrication of ultrathin 2D Cu-BDC nanosheets and the derived integrated MOF nanocomposites. Adv. Funct. Mater. 29: 1806720, https://doi.org/10.1002/adfm.201806720.Search in Google Scholar

Zhang, J., Li, Z., Zhan, K., Sun, R., Sheng, Z., Wang, M., and Hou, X. (2019). Two dimensional nanomaterial-based separation membranes. Electrophoresis 40: 2029–2040, https://doi.org/10.1002/elps.201800529.Search in Google Scholar PubMed

Zhang, W., Ji, J., Qiu, Y., and Pan, K. (2018a). Polydopamine-grafted graphene oxide composite membranes with adjustable nanochannels and separation performance. Adv. Mater. Interfaces 5: 1701386, https://doi.org/10.1002/admi.201701386.Search in Google Scholar

Zhang, W., Zhang, L., Zhao, H., Li, B., and Ma, H. (2018b). A two-dimensional cationic covalent organic framework membrane for selective molecular sieving. J. Mater. Chem. A 6: 13331–13339, https://doi.org/10.1039/c8ta04178d.Search in Google Scholar

Zhang, Y., Zhu, K., Zhou, X., and Yuan, W. (2014). Synthesis of hierarchically porous ZSM-5 zeolites by steam-assisted crystallization of dry gels silanized with short-chain organosilanes. New J. Chem. 38: 5808–5816, https://doi.org/10.1039/c4nj00811a.Search in Google Scholar

Zhang, Z., Yin, C., Yang, G., Xiao, A., Shi, X., Xing, W., and Wang, Y. (2021). Stitching nanosheets of covalent organic frameworks to build aligned nanopores in nanofiltration membranes for precise ion separations. J. Membr. Sci. 618: 118754, https://doi.org/10.1016/j.memsci.2020.118754.Search in Google Scholar

Zhao, L., Dong, B., Li, S., Zhou, L., Lai, L., Wang, Z., Zhao, S., Han, M., Gao, K., Lu, M., et al.. (2017). Interdiffusion reaction-assisted hybridization of two-dimensional metal–organic frameworks and Ti3C2Tx nanosheets for electrocatalytic oxygen evolution. ACS Nano 11: 5800–5807, https://doi.org/10.1021/acsnano.7b01409.Search in Google Scholar PubMed

Zhao, M., Huang, Y., Peng, Y., Huang, Z., Ma, Q., and Zhang, H. (2018). Two-dimensional metal–organic framework nanosheets: synthesis and applications. Chem. Soc. Rev. 47: 6267–6295, https://doi.org/10.1039/c8cs00268a.Search in Google Scholar PubMed

Zhao, M., Lu, Q., Ma, Q., and Zhang, H. (2017). Two-dimensional metal–organic framework nanosheets. Small Methods 1: 1600030, https://doi.org/10.1002/smtd.201600030.Search in Google Scholar

Zhao, M., Wang, Y., Ma, Q., Huang, Y., Zhang, X., Ping, J., Zhang, Z., Lu, Q., Yu, Y., Xu, H., et al.. (2015). Ultrathin 2D metal–organic framework nanosheets. Adv. Mater. 27: 7372–7378, https://doi.org/10.1002/adma.201503648.Search in Google Scholar PubMed

Zhao, S., Wang, Y., Dong, J., He, C.-T., Yin, H., An, P., Zhao, K., Zhang, X., Gao, C., Zhang, L., et al.. (2016). Ultrathin metal–organic framework nanosheets for electrocatalytic oxygen evolution. Nat. Energy 1: 16184, https://doi.org/10.1038/nenergy.2016.184.Search in Google Scholar

Zhao, W., Peng, J., Wang, W., Liu, S., Zhao, Q., and Huang, W. (2018). Ultrathin two-dimensional metal-organic framework nanosheets for functional electronic devices. Coord. Chem. Rev. 377: 44–63, https://doi.org/10.1016/j.ccr.2018.08.023.Search in Google Scholar

Zhao, Y., Liu, P., Ying, Y., Wei, K., Zhao, D., and Liu, D. (2021). Heating-driven assembly of covalent organic framework nanosheets for gas separation. J. Membr. Sci. 623: 19326, https://doi.org/10.1016/j.memsci.2021.119326.Search in Google Scholar

Zhao, Y., Zhou, C., Kong, C., and Chen, L. (2021). Ultrathin reduced graphene oxide/organosilica hybrid membrane for gas separation. JACS Au 1: 328–335, https://doi.org/10.1021/jacsau.0c00073.Search in Google Scholar PubMed PubMed Central

Zheng, S., Tu, Q., Urban, J.J., Li, S., and Mi, B. (2017). Swelling of graphene oxide membranes in aqueous solution: characterization of interlayer spacing and insight into water transport mechanisms. ACS Nano 11: 6440–6450, https://doi.org/10.1021/acsnano.7b02999.Search in Google Scholar PubMed

Zheng, S., Tu, Q., Wang, M., Urban, J.J., and Mi, B. (2020). Correlating interlayer spacing and separation capability of graphene oxide membranes in organic solvent. ACS Nano 14: 6013–6023, https://doi.org/10.1021/acsnano.0c01550.Search in Google Scholar PubMed

Zheng, Z., Grünker, R., and Feng, X. (2016). Synthetic two-dimensional materials: a new paradigm of membranes for ultimate separation. Adv. Mater. 28: 6529–6545, https://doi.org/10.1002/adma.201506237.Search in Google Scholar PubMed

Zhong, Y.L., Tian, Z., Simon, G.P., and Li, D. (2015). Scalable production of graphene via wet chemistry: progress and challenges. Mater. Today 18: 73–78, https://doi.org/10.1016/j.mattod.2014.08.019.Search in Google Scholar

Zhou, K.-G., Vasu, K., Cherian, C., Neek-Amal, M., Zhang, J.C., Ghorbanfekr-Kalashami, H., Huang, K., Marshall, O., Kravets, V., Abraham, J.J., et al.. (2018). Electrically controlled water permeation through graphene oxide membranes. Nature 559: 236–240, https://doi.org/10.1038/s41586-018-0292-y.Search in Google Scholar PubMed

Zhou, M., Korelskiy, D., Ye, P., Grahn, M., and Hedlund, J. (2014). A uniformly oriented MFI membrane for improved CO2 separation. Angew. Chem. Int. Ed. 53: 3492–3495, https://doi.org/10.1002/anie.201311324.Search in Google Scholar PubMed

Zhou, W., Wei, M., Zhang, X., Xu, F., and Wang, Y. (2019). Fast desalination by multilayered covalent organic framework (COF) nanosheets. ACS Appl. Mater. Interfaces 11: 16847–16854, https://doi.org/10.1021/acsami.9b01883.Search in Google Scholar PubMed

Zhu, J., Hou, J., Uliana, A., Zhang, Y., Tian, M., and Van der Bruggen, B. (2018). The rapid emergence of two-dimensional nanomaterials for high-performance separation membranes. J. Mater. Chem. A 6: 3773–3792, https://doi.org/10.1039/c7ta10814a.Search in Google Scholar

Zhu, W., Zhang, C., Li, Q., Xiong, L., Chen, R., Wan, X., Wang, Z., Chen, W., Deng, Z., and Peng, Y. (2018). Selective reduction of CO2 by conductive MOF nanosheets as an efficient co-catalyst under visible light illumination. Appl. Catal. B 238: 339–345, https://doi.org/10.1016/j.apcatb.2018.07.024.Search in Google Scholar

Zhu, X., Tian, C., Do-Thanh, C.-L., and Dai, S. (2017). Two-dimensional materials as prospective scaffolds for mixed-matrix membrane-based CO2 separation. ChemSusChem 10: 3304–3316, https://doi.org/10.1002/cssc.201700801.Search in Google Scholar PubMed

Zhu, Y., Murali, S., Cai, W., Li, X., Suk, J.W., Potts, J.R., and Ruoff, R.S. (2010). Graphene and graphene oxide: synthesis, properties, and applications. Adv. Mater. 22: 3906–3924, https://doi.org/10.1002/adma.201001068.Search in Google Scholar PubMed

Zhuang, J.-L., Kind, M., Grytz, C.M., Farr, F., Diefenbach, M., Tussupbayev, S., Holthausen, M.C., and Terfort, A. (2015). Insight into the oriented growth of surface-attached metal–organic frameworks: surface functionality, deposition temperature, and first layer order. J. Am. Chem. Soc. 137: 8237–8243, https://doi.org/10.1021/jacs.5b03948.Search in Google Scholar PubMed

Received: 2021-01-22
Accepted: 2021-09-12
Published Online: 2021-12-29

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 31.3.2023 from https://www.degruyter.com/document/doi/10.1515/revce-2021-0004/html
Scroll to top button