Abstract
Mixed matrix membranes (MMMs) have been widely developed as an attractive solution to overcome the drawbacks found in most polymer membranes, such as permeability-selectivity trade-off and low physicochemical stability. Numerous fillers based on inorganic, organic, and hybrid materials with various structures including porous or nonporous, and two-dimensional or three-dimensional, have been used. Demanded to further improve the characteristics and performances of the MMMs, the use of dual-filler instead of a single filler has then been proposed, from which multiple effects could be obtained. This article aims to review the recent development of MMMs with dual filler and discuss their performances in diverse potential applications. Challenges in this emerging field and outlook for future research are finally provided.
Funding source: Kementerian Riset, Teknologi dan Pendidikan Tinggi
Acknowledgments
The authors would like to acknowledge Zachary P. Smith and his research group from the Department of Chemical Engineering at Massachusetts Institute of Technology for their assistance to improve the quality of this article.
-
Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
-
Research funding: I G. W. acknowledges the funding from Ministry of Research, Technology and Higher Education of the Republic of Indonesia under World Class University Programme managed by Institute of Technology Bandung.
-
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
References
Abadikhah, H., Kalali, E.N., Behzadi, S., Khan, S.A., Xu, X., Shabestari, M.E., and Agathopoulos, S. (2019). High flux thin film nanocomposite membrane incorporated with functionalized TiO2@ reduced graphene oxide nanohybrids for organic solvent nanofiltration. Chemical Engineering Science. 204, 99–109.10.1016/j.ces.2019.04.022Search in Google Scholar
Ahmad, A.L., Abdulkarim, A.A., Shafie, Z.M., and Ooi, B.S. (2017). Fouling evaluation of PES/ZnO mixed matrix hollow fiber membrane. Desalination 403: 53–63, https://doi.org/10.1016/j.desal.2016.10.008.Search in Google Scholar
Ahmad, A.L., Jawad, Z.A., Low, S.C., and Zein, S.H.S. (2014). A cellulose acetate/multi-walled carbon nanotube mixed matrix membrane for CO2/N2 separation. J. Membr. Sci. 451: 55–66, https://doi.org/10.1016/j.memsci.2013.09.043.Search in Google Scholar
Ahmad, N., Samavati, A., Nordin, N.A.H.M., Jaafar, J., Ismail, A.F., and Malek, N.A.N.N. (2020). Enhanced performance and antibacterial properties of amine-functionalized ZIF-8-decorated GO for ultrafiltration membrane. Separation and Purification Technology. 239, 116554.10.1016/j.seppur.2020.116554Search in Google Scholar
Ahmadi, M., Janakiram, S., Dai, Z., Ansaloni, L., and Deng, L. (2018). Performance of mixed matrix membranes containing porous two-dimensional (2D) and three-dimensional (3D) fillers for CO2 separation: A review. Membranes. 8 (3), 50.10.3390/membranes8030050Search in Google Scholar PubMed PubMed Central
Alkindy, M.B., Naddeo, V., Banat, F., and Hasan, S.W. (2020). Synthesis of polyethersulfone (PES)/GO-SiO2 mixed matrix membranes for oily wastewater treatment. Water Sci. Technol. 81: 1354–1364, https://doi.org/10.2166/wst.2019.347.Search in Google Scholar PubMed
Anastasiou, S., Bhoria, N., Pokhrel, J., Reddy, K.S.K., Srinivasakannan, C., Wang, K., and Karanikolos, G.N. (2018). Metal-organic framework/graphene oxide composite fillers in mixed-matrix membranes for CO2 separation. Materials Chemistry and Physics. 212, 513–522.10.1016/j.matchemphys.2018.03.064Search in Google Scholar
Anjum, M.W., de Clippel, F., Didden, J., Khan, A.L., Couck, S., Baron, G.V., Denayer, J.F., Sels, B.F., and Vankelecom, I.F.J. (2015). Polyimide mixed matrix membranes for CO2 separations using carbon–silica nanocomposite fillers. Journal of Membrane Science. 495, 121–129.10.1016/j.memsci.2015.08.006Search in Google Scholar
Azizi, N., Mohammadi, T., and Behbahani, R.M. (2017). Comparison of permeability performance of PEBAX-1074/TiO2, PEBAX-1074/SiO2 and PEBAX-1074/Al2O3 nanocomposite membranes for CO2/CH4 separation. Chem. Eng. Res. Des. 117: 177–189, https://doi.org/10.1016/j.cherd.2016.10.018.Search in Google Scholar
Baig, M.I., Ingole, P.G., Jeon, J., Hong, S.U., Choi, W.K., and Lee, H.K. (2019). Water vapor transport properties of interfacially polymerized thin film nanocomposite membranes modified with graphene oxide and GO-TiO2 nanofillers. Chemical Engineering Journal. 373, 1190–1202.10.1016/j.cej.2019.05.122Search in Google Scholar
Baker, R.W. (2012). Membrane technology and applications. John Wiley and Sons.10.1002/9781118359686Search in Google Scholar
Bastani, D., Esmaeili, N., and Asadollahi, M. (2013). Polymeric mixed matrix membranes containing zeolites as a filler for gas separation applications: a review. J. Ind. Eng. Chem. 19: 375–393, https://doi.org/10.1016/j.jiec.2012.09.019.Search in Google Scholar
Beltran, A.B., Nisola, G.M., Cho, E., Lee, E.E.D., and Chung, W.-J. (2011). Organosilane modified silica/polydimethylsiloxane mixed matrix membranes for enhanced propylene/nitrogen separation. Applied surface science. 258 (1), 337–345.10.1016/j.apsusc.2011.08.061Search in Google Scholar
Bhat, S.D. and Aminabhavi, T.M. (2009). Pervaporation‐aided dehydration and esterification of acetic acid with ethanol using 4A zeolite‐filled cross‐linked sodium alginate‐mixed matrix membranes. J. Appl. Polym. Sci. 113: 157–168, https://doi.org/10.1002/app.29545.Search in Google Scholar
Bryan, N., Lasseuguette, E., van Dalen, M., Permogorov, N., Amieiro, A., Brandani, S., and Ferrari, M.-C. (2014). Development of mixed matrix membranes containing zeolites for post-combustion carbon capture. Energy Procedia. 63, 160–166.10.1016/j.egypro.2014.11.016Search in Google Scholar
Büchner, C. and Heyde, M. (2017). Two-dimensional silica opens new perspectives. Prog. Surf. Sci. 92: 341–374.10.1016/j.progsurf.2017.09.001Search in Google Scholar
Cao, R., Zhang, X., Wu, H., Wang, J., Liu, X., and Jiang, Z. (2011). Enhanced pervaporative desulfurization by polydimethylsiloxane membranes embedded with silver/silica core–shell microspheres. Journal of hazardous materials. 187 (1–3), 324–332.10.1016/j.jhazmat.2011.01.031Search in Google Scholar PubMed
Castarlenas, S., Téllez, C., and Coronas, J. (2017). Gas separation with mixed matrix membranes obtained from MOF UiO-66-graphite oxide hybrids. J. Membr. Sci. 526: 205–211, https://doi.org/10.1016/j.memsci.2016.12.041.Search in Google Scholar
Cay-Durgun, P. and Lind, M.L. (2018). Nanoporous materials in polymeric membranes for desalination. Curr. Opin. Chem. Eng. 20: 19–27, https://doi.org/10.1016/j.coche.2018.01.001.Search in Google Scholar
Chatterjee, S. and De, S. (2014). Adsorptive removal of fluoride by activated alumina doped cellulose acetate phthalate (CAP) mixed matrix membrane. Separ. Purif. Technol. 125: 223–238, https://doi.org/10.1016/j.seppur.2014.01.055.Search in Google Scholar
Chen, B., Wan, C., Kang, X., Chen, M., Zhang, C., Bai, Y., and Dong, L. (2019). Enhanced CO2 separation of mixed matrix membranes with ZIF-8@ GO composites as fillers: Effect of reaction time of ZIF-8@ GO. Separation and Purification Technology. 223, 113–122.10.1016/j.seppur.2019.04.063Search in Google Scholar
Chen, G., Chen, X., Pan, Y., Ji, Y., Liu, G., and Jin, W. (2021). M-gallate MOF/6FDA-polyimide mixed-matrix membranes for C2H4/C2H6 separation. Journal of Membrane Science. 620, 118852.10.1016/j.memsci.2020.118852Search in Google Scholar
Cheng, Y., Ying, Y., Japip, S., Jiang, S.-D., Chung, T.-S., Zhang, S., and Zhao, D. (2018). Advanced porous materials in mixed matrix membranes. Advanced Materials. 30 (47), 1802401.10.1002/adma.201802401Search in Google Scholar PubMed
Cheng, Y., Ying, Y., Zhai, L., Liu, G., Dong, J., Wang, Y., Christopher, M.P., Long, S., Wang, Y., and Zhao, D. (2019). Mixed matrix membranes containing MOF@ COF hybrid fillers for efficient CO2/CH4 separation. Journal of membrane science. 573, 97–106.10.1016/j.memsci.2018.11.060Search in Google Scholar
Crock, C.A., Rogensues, A.R., Shan, W., and Tarabara, V.V. (2013). Polymer nanocomposites with graphene-based hierarchical fillers as materials for multifunctional water treatment membranes. Water Res. 47: 3984–3996, https://doi.org/10.1016/j.watres.2012.10.057.Search in Google Scholar PubMed
de Clippel, F., Khan, A.L., Cano-Odena, A., Dusselier, M., Vanherck, K., Peng, L., Oswald, S., Giebeler, L., Corthals, S., and Kenens, B. (2013). CO2 reverse selective mixed matrix membranes for H 2 purification by incorporation of carbon–silica fillers. Journal of Materials Chemistry A. 1 (3), 945–953.10.1039/C2TA00098ASearch in Google Scholar
Dai, J., Li, S., Liu, J., He, J., Li, J., Wang, L., and Lei, J. (2019). Fabrication and characterization of a defect-free mixed matrix membrane by facile mixing PPSU with ZIF-8 core–shell microspheres for solvent-resistant nanofiltration. Journal of Membrane Science. 589, 117261.10.1016/j.memsci.2019.117261Search in Google Scholar
Deng, Y., Dang, G., Zhou, H., Rao, X., and Chen, C. (2008). Preparation and characterization of polyimide membranes containing Ag nanoparticles in pores distributing on one side. Materials Letters. 62 (6–7), 1143–1146.10.1016/j.matlet.2007.08.002Search in Google Scholar
Díaz, U. and Corma, A. (2016). Ordered covalent organic frameworks, COFs and PAFs. From preparation to application. Coord. Chem. Rev. 311: 85–124.10.1016/j.ccr.2015.12.010Search in Google Scholar
Dong, L., Chen, M., Li, J., Shi, D., Dong, W., Li, X., and Bai, Y. (2016). Metal-organic framework-graphene oxide composites: A facile method to highly improve the CO2 separation performance of mixed matrix membranes. Journal of membrane science. 520, 801–811.10.1016/j.memsci.2016.08.043Search in Google Scholar
Dong, G., Zhang, X., Zhang, Y., and Tsuru, T. (2018). Enhanced permeation through CO2-stable dual-inorganic composite membranes with tunable nanoarchitectured channels. ACS Sustain. Chem. Eng. 6: 8515–8524, https://doi.org/10.1021/acssuschemeng.8b00792.Search in Google Scholar
Du, J., Tian, Y., Li, N., Zhang, J., and Zuo, W. (2019). Enhanced antifouling performance of ZnS/GO/PVDF hybrid membrane by improving hydrophilicity and photocatalysis. Polymers for Advanced Technologies. 30 (2), 351–359.10.1002/pat.4472Search in Google Scholar
Echaide-Górriz, C., Navarro, M., Téllez, C., and Coronas, J. (2017). Simultaneous use of MOFs MIL-101 (Cr) and ZIF-11 in thin film nanocomposite membranes for organic solvent nanofiltration. Dalton Trans. 46: 6244–6252.10.1039/C7DT00197ESearch in Google Scholar
Feijani, E.A., Mahdavi, H., and Tavassoli, A. (2018). Synthesis and gas permselectivity of CuBTC–GO–PVDF mixed matrix membranes. New J. Chem. 42: 12013–12023, https://doi.org/10.1039/c8nj00796a.Search in Google Scholar
Galve, A., Sieffert, D., Staudt, C., Ferrando, M., Güell, C., Tellez, C., and Coronas, J. (2013). Combination of ordered mesoporous silica MCM-41 and layered titanosilicate JDF-L1 fillers for 6FDA-based copolyimide mixed matrix membranes. Journal of membrane science. 431, 163–170.10.1016/j.memsci.2012.12.046Search in Google Scholar
García-Ivars, J., Corbatón-Báguena, M.-J., and Iborra-Clar, M.-I. (2019). Development of mixed matrix membranes: incorporation of metal nanoparticles in polymeric membranes. In: Nanoscale materials in water purification. Elsevier, pp. 153–178.10.1016/B978-0-12-813926-4.00011-2Search in Google Scholar
Ghalei, B., Sakurai, K., Kinoshita, Y., Wakimoto, K., Isfahani, A.P., Song, Q., Doitomi, K., Furukawa, S., Hirao, H., and Kusuda, H. (2017). Enhanced selectivity in mixed matrix membranes for CO2 capture through efficient dispersion of amine-functionalized MOF nanoparticles. Nature Energy. 2 (7), 17086.10.1038/nenergy.2017.86Search in Google Scholar
Ghosh Chaudhuri, R. and Paria, S. (2012). Core/shell nanoparticles: classes, properties, synthesis mechanisms, characterization, and applications. Chem. Rev. 112: 2373–2433, https://doi.org/10.1021/cr100449n.Search in Google Scholar PubMed
Goh, P.S., Ismail, A.F., Sanip, S.M., Ng, B.C., and Aziz, M. (2011). Recent advances of inorganic fillers in mixed matrix membrane for gas separation. Separation and Purification Technology. 81 (3), 243–264.10.1016/j.seppur.2011.07.042Search in Google Scholar
Gupta, S., Thorat, G.B., and Murthy, Z.V.P. (2020). Mixed matrix PVA-GO-TiO2 membranes for the dehydration of isopropyl alcohol by pervaporation. Macromol. Res.: 1–9.10.1007/s13233-020-8070-8Search in Google Scholar
Haghighat, N., Vatanpour, V., Sheydaei, M., and Nikjavan, Z. (2020). Preparation of a novel polyvinyl chloride (PVC) ultrafiltration membrane modified with Ag/TiO2 nanoparticle with enhanced hydrophilicity and antibacterial activities. Separ. Purif. Technol. 237: 116374, https://doi.org/10.1016/j.seppur.2019.116374.Search in Google Scholar
Hassanajili, S., Khademi, M., and Keshavarz, P. (2014). Influence of various types of silica nanoparticles on permeation properties of polyurethane/silica mixed matrix membranes. J. Membr. Sci. 453: 369–383, https://doi.org/10.1016/j.memsci.2013.10.057.Search in Google Scholar
He, H., Collins, D., Dai, F., Zhao, X., Zhang, G., Ma, H., and Sun, D. (2010). Construction of metal− organic frameworks with 1D chain, 2D grid, and 3D porous framework based on a flexible imidazole ligand and rigid benzenedicarboxylates. Crystal growth, and design. 10 (2), 895–902.10.1021/cg901227hSearch in Google Scholar
He, R., Cong, S., Wang, J., Liu, J., and Zhang, Y. (2019). Porous graphene oxide/porous organic polymer hybrid nanosheets functionalized mixed matrix membrane for efficient CO2 capture. ACS applied materials, and interfaces. 11 (4), 4338–4344.10.1021/acsami.8b17599Search in Google Scholar PubMed
Higginbotham, A.L., Kosynkin, D.V., Sinitskii, A., Sun, Z., and Tour, J.M. (2010). Lower-defect graphene oxide nanoribbons from multiwalled carbon nanotubes. ACS nano. 4 (4), 2059–2069.10.1021/nn100118mSearch in Google Scholar PubMed
Hoseini, S.N., Pirzaman, A.K., Aroon, M.A., and Pirbazari, A.E. (2017). Photocatalytic degradation of 2,4-dichlorophenol by Co-doped TiO2 (Co/TiO2) nanoparticles and Co/TiO2 containing mixed matrix membranes. J. Water Process. Eng. 17: 124–134, https://doi.org/10.1016/j.jwpe.2017.02.015.Search in Google Scholar
Hosseini, S.M., Jashni, E., Amani, S., and Van der Bruggen, B. (2017). Tailoring the electrochemical properties of ED ion exchange membranes based on the synergism of TiO2 nanoparticles-co-GO nanoplates. J. Colloid Interface Sci. 505: 763–775, https://doi.org/10.1016/j.jcis.2017.06.045.Search in Google Scholar PubMed
Hou, J., Li, X., Guo, R., Qin, Y., and Zhang, J. (2018). Improving CO2 separation performance by incorporating MWCNTs@ mSiO2 core@ shell filler in mixed matrix membranes. Polymer Composites. 39 (12), 4486–4495.10.1002/pc.24555Search in Google Scholar
Hou, R., Ghanem, B., Smith, S.J., Doherty, C.M., Setter, C., Wang, H., Pinnau, I., and Hill, M.R. (2020). Highly permeable and selective mixed-matrix membranes for hydrogen separation containing PAF-1. Journal of Materials Chemistry A.10.1039/D0TA05071GSearch in Google Scholar
Hu, H., Zhao, L., Liu, J., Liu, Y., Cheng, J., Luo, J., Liang, Y., Tao, Y., Wang, X., and Zhao, J. (2012). Enhanced dispersion of carbon nanotube in silicone rubber assisted by graphene. Polymer. 53 (15), 3378–3385.10.1016/j.polymer.2012.05.039Search in Google Scholar
Huang, D., Xin, Q., Ni, Y., Shuai, Y., Wang, S., Li, Y., Ye, H., Lin, L., Ding, X., and Zhang, Y. (2018). Synergistic effects of zeolite imidazole framework@ graphene oxide composites in humidified mixed matrix membranes on CO 2 separation. RSC advances. 8 (11), 6099–6109.10.1039/C7RA09794HSearch in Google Scholar PubMed PubMed Central
Huang, F. and Cornelius, C.J. (2017). Polyimide-SiO2-TiO2 nanocomposite structural study probing free volume, physical properties, and gas transport. J. Membr. Sci. 542: 110–122, https://doi.org/10.1016/j.memsci.2017.08.003.Search in Google Scholar
Ingabire, P.B., Pan, X., Haragirimana, A., Li, N., Hu, Z., and Chen, S. (2020). Improved hydroxide conductivity and performance of nanocomposite membrane derived on quaternized polymers incorporated by titanium dioxide modified graphitic carbon nitride for fuel cells. Renewable Energy. 152, 590–600.10.1016/j.renene.2020.01.072Search in Google Scholar
Jamil, N., Othman, N.H., Alias, N.H., Shahruddin, M.Z., Roslan, R.A., Lau, W.J., and Ismail, A.F. (2019) Mixed matrix membranes incorporated with reduced graphene oxide (rGO) and zeolitic imidazole framework-8 (ZIF-8) nanofillers for gas separation. Journal of Solid State Chemistry. 270, 419–427.10.1016/j.jssc.2018.11.028Search in Google Scholar
Janakiram, S., Ahmadi, M., Dai, Z., Ansaloni, L., and Deng, L. (2018). Performance of nanocomposite membranes containing 0D to 2D nanofillers for CO2 separation: A review. Membranes. 8 (2), 24.10.3390/membranes8020024Search in Google Scholar PubMed PubMed Central
Jhaveri, J.H., Patel, C.M., and Murthy, Z.V.P. (2017). Preparation, characterization and application of GO-TiO2/PVC mixed matrix membranes for improvement in performance. J. Ind. Eng. Chem. 52: 138–146, https://doi.org/10.1016/j.jiec.2017.03.035.Search in Google Scholar
Jia, M., Feng, Y., Qiu, J., Zhang, X.-F., and Yao, J. (2019). Amine-functionalized MOFs@ GO as filler in mixed matrix membrane for selective CO2 separation. Separation and Purification Technology. 213, 63–69.10.1016/j.seppur.2018.12.029Search in Google Scholar
Klaysom, C. and Shahid, S. (2019). Zeolite-based mixed matrix membranes for hazardous gas removal. In: Advanced nanomaterials for membrane synthesis and its applications. Elsevier, pp. 127–157.10.1016/B978-0-12-814503-6.00006-9Search in Google Scholar
Kudasheva, A., Sorribas, S., Zornoza, B., Téllez, C., and Coronas, J. (2015). Pervaporation of water/ethanol mixtures through polyimide based mixed matrix membranes containing ZIF‐8, ordered mesoporous silica and ZIF‐8‐silica core‐shell spheres. Journal of Chemical Technology, and Biotechnology. 90 (4), 669–677.10.1002/jctb.4352Search in Google Scholar
Kumar, M., Gholamvand, Z., Morrissey, A., Nolan, K., Ulbricht, M., and Lawler, J. (2016). Preparation and characterization of low fouling novel hybrid ultrafiltration membranes based on the blends of GO− TiO2 nanocomposite and polysulfone for humic acid removal. Journal of membrane science. 506, 38–49.10.1016/j.memsci.2016.02.005Search in Google Scholar
Lan, Y., Yan, N., and Wang, W. (2017). Polydimethylsiloxane (PDMS) membrane filled with biochar core-shell particles for removing ethanol from water. BioResources 12: 6591–6606, https://doi.org/10.15376/biores.12.3.6591-6606.Search in Google Scholar
Lau, C.H., Konstas, K., Thornton, A.W., Liu, A.C., Mudie, S., Kennedy, D.F., Howard, S.C., Hill, A.J., and Hill, M.R. (2015). Gas‐Separation Membranes Loaded with Porous Aromatic Frameworks that Improve with Age. Angewandte Chemie. 127 (9), 2707–2711.10.1002/ange.201410684Search in Google Scholar
Lau, C.H., Nguyen, P.T., Hill, M.R., Thornton, A.W., Konstas, K., Doherty, C.M., Mulder, R.J., Bourgeois, L., Liu, A.C., and Sprouster, D.J. (2014). Ending aging in super glassy polymer membranes. Angewandte Chemie International Edition. 53 (21), 5322–5326.10.1002/anie.201402234Search in Google Scholar PubMed
Lee, T.H., Roh, J.S., Yoo, S.Y., Roh, J.M., Choi, T.H., and Park, H.B. (2019). High-Performance Polyamide Thin-Film Nanocomposite Membranes Containing ZIF-8/CNT Hybrid Nanofillers for Reverse Osmosis Desalination. Industrial, and Engineering Chemistry Research.Search in Google Scholar
Leo, C.P., Kamil, N.A., Junaidi, M.U.M., Kamal, S.N.M., and Ahmad, A.L. (2013). The potential of SAPO-44 zeolite filler in fouling mitigation of polysulfone ultrafiltration membrane. Separation and Purification Technology. 103, 84–91.10.1016/j.seppur.2012.10.019Search in Google Scholar
Li, D., Yan, Y., and Wang, H. (2016). Recent advances in polymer and polymer composite membranes for reverse and forward osmosis processes. Progress in polymer science. 61, 104–155.10.1016/j.progpolymsci.2016.03.003Search in Google Scholar
Li, H., Li, L., Lin, R.-B., Zhou, W., Zhang, Z., Xiang, S., and Chen, B. (2019a). Porous metal-organic frameworks for gas storage and separation: Status and challenges. EnergyChem. 1 (1), 100006.10.1016/j.enchem.2019.100006Search in Google Scholar
Li, Q., Liu, Q., Zhao, J., Hua, Y., Sun, J., Duan, J., and Jin, W. (2017a). High efficient water/ethanol separation by a mixed matrix membrane incorporating MOF filler with high water adsorption capacity. Journal of Membrane Science. 544, 68–78.10.1016/j.memsci.2017.09.021Search in Google Scholar
Li, S., Prasetya, N., and Ladewig, B.P. (2019). Investigation of Azo-COP-2 as a photoresponsive low-energy CO2 adsorbent and porous filler in mixed matrix membranes for CO2/N2 separation. Ind. Eng. Chem. Res. 58: 9959–9969, https://doi.org/10.1021/acs.iecr.9b00762.Search in Google Scholar
Li, W., Chuah, C.Y., Nie, L., and Bae, T.-H. (2019b). Enhanced CO2/CH4 selectivity and mechanical strength of mixed-matrix membrane incorporated with NiDOBDC/GO composite. J. Ind. Eng. Chem. 74: 118–125, https://doi.org/10.1016/j.jiec.2019.02.016.Search in Google Scholar
Li, W., Chuah, C.Y., Yang, Y., and Bae, T.-H. (2018). Nanocomposites formed by in situ growth of NiDOBDC nanoparticles on graphene oxide sheets for enhanced CO2 and H2 storage. Microporous Mesoporous Mater. 265: 35–42, https://doi.org/10.1016/j.micromeso.2018.01.036.Search in Google Scholar
Li, W., Samarasinghe, S.A.S.C., and Bae, T.-H. (2018). Enhancing CO2/CH4 separation performance and mechanical strength of mixed-matrix membrane via combined use of graphene oxide and ZIF-8. J. Ind. Eng. Chem. 67: 156–163, https://doi.org/10.1016/j.jiec.2018.06.026.Search in Google Scholar
Li, X., Ma, L., Zhang, H., Wang, S., Jiang, Z., Guo, R., Wu, H., Cao, X., Yang, J., and Wang, B. (2015a). Synergistic effect of combining carbon nanotubes and graphene oxide in mixed matrix membranes for efficient CO2 separation. Journal of Membrane Science. 479, 1–10.10.1016/j.memsci.2015.01.014Search in Google Scholar
Li, X., Wang, M., Wang, S., Li, Y., Jiang, Z., Guo, R., Wu, H., Cao, X., Yang, J., and Wang, B. (2015b). Constructing CO2 transport passageways in Matrimid® membranes using nanohydrogels for efficient carbon capture. Journal of Membrane Science. 474, 156–166.10.1016/j.memsci.2014.10.003Search in Google Scholar
Li, Y., Li, L., and Yu, J. (2017). Applications of zeolites in sustainable chemistry. Inside Chem. 3: 928–949, https://doi.org/10.1016/j.chempr.2017.10.009.Search in Google Scholar
Li, Z.-K., Lang, W.-Z., Miao, W., Yan, X., and Guo, Y.-J. (2016). Preparation and properties of PVDF/SiO2@ GO nanohybrid membranes via thermally induced phase separation method. Journal of Membrane Science. 511, 151–161.10.1016/j.memsci.2016.03.048Search in Google Scholar
Lin, R., Ge, L., Diao, H., Rudolph, V., and Zhu, Z. (2016). Propylene/propane selective mixed matrix membranes with grape-branched MOF/CNT filler. Journal of Materials Chemistry A. 4 (16), 6084–6090.10.1039/C5TA10553FSearch in Google Scholar
Lin, R., Ge, L., Liu, S., Rudolph, V., and Zhu, Z. (2015). Mixed-matrix membranes with metal–organic framework-decorated CNT fillers for efficient CO2 separation. ACS applied materials, and interfaces. 7 (27), 14750–14757.10.1021/acsami.5b02680Search in Google Scholar PubMed
Lin, R., Hernandez, B.V., Ge, L., and Zhu, Z. (2018). Metal organic framework based mixed matrix membranes: an overview on filler/polymer interfaces. J. Mater. Chem. 6: 293–312, https://doi.org/10.1039/c7ta07294e.Search in Google Scholar
Liu, G., Cadiau, A., Liu, Y., Adil, K., Chernikova, V., Carja, I.-D., Belmabkhout, Y., Karunakaran, M., Shekhah, O., and Zhang, C. (2018a). Enabling fluorinated MOF‐based membranes for simultaneous removal of H2S and CO2 from natural gas. Angewandte Chemie International Edition. 57 (45), 14811–14816.10.1002/anie.201808991Search in Google Scholar PubMed
Liu, G., Chernikova, V., Liu, Y., Zhang, K., Belmabkhout, Y., Shekhah, O., Zhang, C., Yi, S., Eddaoudi, M., and Koros, W.J. (2018b). Mixed matrix formulations with MOF molecular sieving for key energy-intensive separations. Nature materials. 17 (3), 283–289.10.1038/s41563-017-0013-1Search in Google Scholar PubMed
Liu, G., Labreche, Y., Chernikova, V., Shekhah, O., Zhang, C., Belmabkhout, Y., Eddaoudi, M., and Koros, W.J. (2018c). Zeolite-like MOF nanocrystals incorporated 6FDA-polyimide mixed-matrix membranes for CO2/CH4 separation. Journal of Membrane Science. 565, 186–193.10.1016/j.memsci.2018.08.031Search in Google Scholar
Liu, G., Xiangli, F., Wei, W., Liu, S., and Jin, W. (2011). Improved performance of PDMS/ceramic composite pervaporation membranes by ZSM-5 homogeneously dispersed in PDMS via a surface graft/coating approach. Chemical Engineering Journal. 174 (2–3), 495–503.10.1016/j.cej.2011.06.004Search in Google Scholar
López-Cázares, M.I., Pérez-Rodríguez, F., Rangel-Méndez, J.R., Centeno-Sánchez, M., and Cházaro-Ruiz, L.F. (2018). Improved conductivity and anti (bio) fouling of cation exchange membranes by AgNPs-GO nanocomposites. Journal of Membrane Science. 565, 463–479.10.1016/j.memsci.2018.08.036Search in Google Scholar
Ma, J., Guo, X., Ying, Y., Liu, D., and Zhong, C. (2017). Composite ultrafiltration membrane tailored by MOF@ GO with highly improved water purification performance. Chemical Engineering Journal. 313, 890–898.10.1016/j.cej.2016.10.127Search in Google Scholar
Ma, L., Svec, F., Lv, Y., and Tan, T. (2019). Engineering of the Filler/Polymer Interface in Metal–Organic Framework‐Based Mixed‐Matrix Membranes to Enhance Gas Separation. Chemistry–An Asian Journal. 14 (20), 3502–3514.10.1002/asia.201900843Search in Google Scholar PubMed
Mahajan, R. and Koros, W.J. (2000). Factors controlling successful formation of mixed-matrix gas separation materials. Ind. Eng. Chem. Res. 39: 2692–2696, https://doi.org/10.1021/ie990799r.Search in Google Scholar
Mahdavi, H. and Moradi-Garakani, F. (2017). Effect of mixed matrix membranes comprising a novel trinuclear zinc MOF, fumed silica nanoparticles and PES on CO2/CH4 separation. Chem. Eng. Res. Des. 125: 156–165, https://doi.org/10.1016/j.cherd.2017.07.007.Search in Google Scholar
Mallakpour, S. and Naghdi, M. (2018). Polymer/SiO2 nanocomposites: production and applications. Prog. Mater. Sci. 97: 409–447, https://doi.org/10.1016/j.pmatsci.2018.04.002.Search in Google Scholar
Mao, H., Li, S.-H., Zhang, A.-S., Xu, L.-H., Lu, J.-J., and Zhao, Z.-P. (2020). Novel MOF-capped halloysite nanotubes/PDMS mixed matrix membranes for enhanced n-butanol permselective pervaporation. Journal of Membrane Science. 595, 117543.10.1016/j.memsci.2019.117543Search in Google Scholar
Matteucci, S., Kusuma, V.A., Kelman, S.D., and Freeman, B.D. (2008). Gas transport properties of MgO filled poly (1-trimethylsilyl-1-propyne) nanocomposites. Polymer 49: 1659–1675, https://doi.org/10.1016/j.polymer.2008.01.004.Search in Google Scholar
Meier, W.M. (1986). Zeolites and zeolite-like materials. In: Studies in surface science and catalysis. Elsevier, pp. 13–22.10.1016/S0167-2991(09)60851-XSearch in Google Scholar
Moghadam, F., Lee, T.H., Park, I., and Park, H.B. (2020). Thermally annealed polyimide-based mixed matrix membrane containing ZIF-67 decorated porous graphene oxide nanosheets with enhanced propylene/propane selectivity. J. Membr. Sci.: 118019, https://doi.org/10.1016/j.memsci.2020.118019.Search in Google Scholar
Mondal, M., Dutta, M., and De, S. (2017). A novel ultrafiltration grade nickel iron oxide doped hollow fiber mixed matrix membrane: spinning, characterization and application in heavy metal removal. Separ. Purif. Technol. 188: 155–166, https://doi.org/10.1016/j.seppur.2017.07.013.Search in Google Scholar
Mozafari, M., Rahimpour, A., and Abedini, R. (2020). Exploiting the effects of zirconium-based metal organic framework decorated carbon nanofibers to improve CO2/CH4 separation performance of thin film nanocomposite membranes. J. Ind. Eng. Chem.10.1016/j.jiec.2020.01.030Search in Google Scholar
Murugiah, P.S., Oh, P.C., and Lau, K.K. (2019). Collegial effect of carbonaceous hybrid fillers in mixed matrix membrane development. React. Funct. Polym. 135: 8–15, https://doi.org/10.1016/j.reactfunctpolym.2018.11.012.Search in Google Scholar
Naik, P.V., Wee, L.H., Meledina, M., Turner, S., Li, Y., Van Tendeloo, G., Martens, J.A., and Vankelecom, I.F. (2016). PDMS membranes containing ZIF-coated mesoporous silica spheres for efficient ethanol recovery via pervaporation. Journal of Materials Chemistry A. 4 (33), 12790–12798.10.1039/C6TA04700ASearch in Google Scholar
Naseeb, N., Mohammed, A.A., Laoui, T., and Khan, Z. (2019). A novel PAN-GO-SiO2 hybrid membrane for separating oil and water from emulsified mixture. Materials 12: 212, https://doi.org/10.3390/ma12020212.Search in Google Scholar PubMed PubMed Central
Ng, L.Y., Mohammad, A.W., Leo, C.P., and Hilal, N. (2013). Polymeric membranes incorporated with metal/metal oxide nanoparticles: a comprehensive review. Desalination 308: 15–33, https://doi.org/10.1016/j.desal.2010.11.033.Search in Google Scholar
Ngang, H.P., Ooi, B.S., Ahmad, A.L., and Lai, S.O. (2012). Preparation of PVDF–TiO2 mixed-matrix membrane and its evaluation on dye adsorption and UV-cleaning properties. Chem. Eng. J. 197: 359–367, https://doi.org/10.1016/j.cej.2012.05.050.Search in Google Scholar
Nisola, G.M., Beltran, A.B., Sim, D.M., Lee, D., Jung, B., and Chung, W.-J. (2011). Dimethyl silane-modified silica in polydimethylsiloxane as gas permeation mixed matrix membrane. Journal of Polymer Research. 18 (6), 2415–2424.10.1007/s10965-011-9655-xSearch in Google Scholar
Olajire, A.A. (2017). Recent advances in the synthesis of covalent organic frameworks for CO2 capture. J. CO2 Util. 17: 137–161, https://doi.org/10.1016/j.jcou.2016.12.003.Search in Google Scholar
Pang, W.Y., Ahmad, A.L., and Zaulkiflee, N.D. (2019). Antifouling and antibacterial evaluation of ZnO/MWCNT dual nanofiller polyethersulfone mixed matrix membrane. J. Environ. Manag. 249: 109358, https://doi.org/10.1016/j.jenvman.2019.109358.Search in Google Scholar PubMed
Park, C.H., Lee, J.H., Jung, J.P., and Kim, J.H. (2017). Mixed matrix membranes based on dual-functional MgO nanosheets for olefin/paraffin separation. J. Membr. Sci. 533: 48–56, https://doi.org/10.1016/j.memsci.2017.03.023.Search in Google Scholar
Paul, D.R. and Kemp, D.R. (1973). The diffusion time lag in polymer membranes containing adsorptive fillers. In: Journal of polymer science: polymer symposia. Wiley Online Library, pp. 79–93.10.1002/polc.5070410109Search in Google Scholar
Peng, P., Lan, Y., and Luo, J. (2019). Modified silica incorporating into PDMS polymeric membranes for bioethanol selection. Adv. Polym. Technol. https://doi.org/10.1155/2019/5610282.Search in Google Scholar
Prasetya, N., Himma, N.F., Sutrisna, P.D., Wenten, I.G., and Ladewig, B.P. (2019). A review on emerging organic-containing microporous material membranes for carbon capture and separation. Chemical Engineering Journal. 123575.10.1016/j.cej.2019.123575Search in Google Scholar
Prasetya, N. and Ladewig, B.P. (2019). An insight into the effect of azobenzene functionalities studied in UiO-66 frameworks for low energy CO2 capture and CO2/N2 membrane separation. J. Mater. Chem. 7: 15164–15172, https://doi.org/10.1039/c9ta02096a.Search in Google Scholar
Pulido, B.A., Waldron, C., Zolotukhin, M.G., and Nunes, S.P. (2017). Porous polymeric membranes with thermal and solvent resistance. J. Membr. Sci. 539: 187–196, https://doi.org/10.1016/j.memsci.2017.05.070.Search in Google Scholar
Qian, X., Li, N., Wang, Q., and Ji, S. (2018). Chitosan/graphene oxide mixed matrix membrane with enhanced water permeability for high-salinity water desalination by pervaporation. Desalination 438: 83–96, https://doi.org/10.1016/j.desal.2018.03.031.Search in Google Scholar
Rallini, M. and Kenny, J.M. (2017). Nanofillers in polymers. In: Modification of polymer properties. Elsevier, pp. 47–86.10.1016/B978-0-323-44353-1.00003-8Search in Google Scholar
Ranjani, M. and Yoo, D.J. (2018). Sulfonated Fe3O4@ SiO2 nanorods incorporated sPVdF nanocomposite membranes for DMFC applications. J. Membr. Sci. 555: 497–506, https://doi.org/10.1016/j.memsci.2018.03.049.Search in Google Scholar
Ratsch, M., Ye, C., Yang, Y., Zhang, A., Evans, A.M., and Börjesson, K. (2020). All-Carbon-Linked Continuous Three-Dimensional Porous Aromatic Framework Films with Nanometer-Precise Controllable Thickness. Journal of the American Chemical Society. 142 (14), 6548–6553.10.1021/jacs.9b10884Search in Google Scholar PubMed PubMed Central
Robeson, L.M. (2008). The upper bound revisited. J. Membr. Sci. 320: 390–400, https://doi.org/10.1016/j.memsci.2008.04.030.Search in Google Scholar
Rodenas, T., Luz, I., Prieto, G., Seoane, B., Miro, H., Corma, A., Kapteijn, F., i Xamena, F.X.L., and Gascon, J. (2015). Metal–organic framework nanosheets in polymer composite materials for gas separation. Nature materials. 14 (1), 48–55.10.1038/nmat4113Search in Google Scholar PubMed PubMed Central
Roth, W.J., Nachtigall, P., Morris, R.E., Wheatley, P.S., Seymour, V.R., Ashbrook, S.E., Chlubná, P., Grajciar, L., Položij, M., and Zukal, A. (2013). A family of zeolites with controlled pore size prepared using a top-down method. Nature chemistry. 5 (7), 628–633.10.1038/nchem.1662Search in Google Scholar PubMed
Rowe, B.W., Freeman, B.D., and Paul, D.R. (2009). Physical aging of ultrathin glassy polymer films tracked by gas permeability. Polymer 50: 5565–5575, https://doi.org/10.1016/j.polymer.2009.09.037.Search in Google Scholar
Safarpour, M., Arefi-Oskoui, S., and Khataee, A. (2020). A review on two-dimensional metal oxide and metal hydroxide nanosheets for modification of polymeric membranes. J. Ind. Eng. Chem. 82: 31–41.10.1016/j.jiec.2019.11.002Search in Google Scholar
Safarpour, M., Khataee, A., and Vatanpour, V. (2014). Preparation of a novel polyvinylidene fluoride (PVDF) ultrafiltration membrane modified with reduced graphene oxide/titanium dioxide (TiO2) nanocomposite with enhanced hydrophilicity and antifouling properties. Ind. Eng. Chem. Res. 53: 13370–13382, https://doi.org/10.1021/ie502407g.Search in Google Scholar
Safarpour, M., Khataee, A., and Vatanpour, V. (2015a). Effect of reduced graphene oxide/TiO2 nanocomposite with different molar ratios on the performance of PVDF ultrafiltration membranes. Separ. Purif. Technol. 140: 32–42, https://doi.org/10.1016/j.seppur.2014.11.010.Search in Google Scholar
Safarpour, M., Khataee, A., and Vatanpour, V. (2015b). Thin film nanocomposite reverse osmosis membrane modified by reduced graphene oxide/TiO2 with improved desalination performance. J. Membr. Sci. 489: 43–54, https://doi.org/10.1016/j.memsci.2015.04.010.Search in Google Scholar
Safarpour, M., Vatanpour, V., and Khataee, A. (2016). Preparation and characterization of graphene oxide/TiO2 blended PES nanofiltration membrane with improved antifouling and separation performance. Desalination 393: 65–78, https://doi.org/10.1016/j.desal.2015.07.003.Search in Google Scholar
Safarpour, M., Vatanpour, V., Khataee, A., and Esmaeili, M. (2015c). Development of a novel high flux and fouling-resistant thin film composite nanofiltration membrane by embedding reduced graphene oxide/TiO2. Separ. Purif. Technol. 154: 96–107, https://doi.org/10.1016/j.seppur.2015.09.039.Search in Google Scholar
Samarasinghe, S., Chuah, C.Y., Li, W., Sethunga, G., Wang, R., and Bae, T.-H. (2019). Incorporation of CoIII acetylacetonate and SNW-1 nanoparticles to tailor O2/N2 separation performance of mixed-matrix membrane. Separation and Purification Technology. 223, 133–141.10.1016/j.seppur.2019.04.075Search in Google Scholar
Samarasinghe, S., Chuah, C.Y., Yang, Y., and Bae, T.-H. (2018). Tailoring CO2/CH4 separation properties of mixed-matrix membranes via combined use of two-and three-dimensional metal-organic frameworks. J. Membr. Sci. 557: 30–37, https://doi.org/10.1016/j.memsci.2018.04.025.Search in Google Scholar
Sanaeepur, H., Ahmadi, R., Amooghin, A.E., and Ghanbari, D. (2019). A novel ternary mixed matrix membrane containing glycerol-modified poly (ether-block-amide)(Pebax 1657)/copper nanoparticles for CO2 separation. J. Membr. Sci. 573: 234–246, https://doi.org/10.1016/j.memsci.2018.12.012.Search in Google Scholar
Sang, W.Y., Ching, O.P., and Keong, L.K. (2018). Synergistic effect of binary fillers (MCM-41/C20) hybrid membrane for CO2/CH4 separation. IOP Conference Series: Materials Science and Engineering, 2018. IOP Publishing, pp. 012014.10.1088/1757-899X/458/1/012014Search in Google Scholar
Sarfraz, M. and Ba-Shammakh, M. (2018). Harmonious interaction of incorporating CNTs and zeolitic imidazole frameworks into polysulfone to prepare high performance MMMs for CO2 separation from humidified post combustion gases. Braz. J. Chem. Eng. 35: 217–228, https://doi.org/10.1590/0104-6632.20180351s20150595.Search in Google Scholar
Sarfraz, M. and Ba-Shammakh, M. (2016). Synergistic effect of incorporating ZIF-302 and graphene oxide to polysulfone to develop highly selective mixed-matrix membranes for carbon dioxide separation from wet post-combustion flue gases. J. Ind. Eng. Chem. 36: 154–162, https://doi.org/10.1016/j.jiec.2016.01.032.Search in Google Scholar
Setiawan, W.K. and Chiang, K.-Y. (2019). Silica applied as mixed matrix membrane inorganic filler for gas separation: a review. Sustain. Environ. Res. 29: 32, https://doi.org/10.1186/s42834-019-0028-1.Search in Google Scholar
Shahrin, S., Lau, W.-J., Goh, P.-S., Ismail, A.F., and Jaafar, J. (2019). Adsorptive mixed matrix membrane incorporating graphene oxide-manganese ferrite (GMF) hybrid nanomaterial for efficient As (V) ions removal. Composites Part B: Engineering. 175, 107150.10.1016/j.compositesb.2019.107150Search in Google Scholar
Shamsabadi, A.A., Seidi, F., Salehi, E., Nozari, M., Rahimpour, A., and Soroush, M. (2017). Efficient CO 2-removal using novel mixed-matrix membranes with modified TiO 2 nanoparticles. Journal of Materials Chemistry A. 5 (8), 4011–4025.10.1039/C6TA09990DSearch in Google Scholar
Shan, M., Seoane, B., Pustovarenko, A., Wang, X., Liu, X., Yarulina, I., Abou-Hamad, E., Kapteijn, F., and Gascon, J. (2018). Benzimidazole linked polymers (BILPs) in mixed-matrix membranes: Influence of filler porosity on the CO2/N2 separation performance. Journal of Membrane Science. 566, 213–222.10.1016/j.memsci.2018.08.023Search in Google Scholar
Shan, M., Seoane, B., Rozhko, E., Dikhtiarenko, A., Clet, G., Kapteijn, F., and Gascon, J. (2016). Azine‐linked covalent organic framework (COF)‐based mixed‐matrix membranes for CO2/CH4 Separation. Chemistry–A European Journal. 22 (41), 14467–14470.10.1002/chem.201602999Search in Google Scholar PubMed
Sheikh, M., Pazirofteh, M., Dehghani, M., Asghari, M., Rezakazemi, M., Valderrama, C., and Cortina, J.-L. (2019). Application of ZnO nanostructures in ceramic and polymeric membranes for water and wastewater technologies: a review. Chem. Eng. J. 123475.10.1016/j.cej.2019.123475Search in Google Scholar
Shen, J., Liu, G., Huang, K., Jin, W., Lee, K.-R., and Xu, N. (2015). Membranes with fast and selective gas‐transport channels of laminar graphene oxide for efficient CO2 capture. Angewandte Chemie. 127 (2), 588–592.10.1002/ange.201409563Search in Google Scholar
Shi, F., Sun, J., Wang, J., Liu, M., Wang, S., Cao, X., Yan, Z., Li, Y., and Nunes, S.P. (2020). Exploration of the synergy between 2D nanosheets and a non-2D filler in mixed matrix membranes for gas separation. Frontiers in chemistry. 8, 58.10.3389/fchem.2020.00058Search in Google Scholar PubMed PubMed Central
Shu, Z., Tian, Y., and Cao, H. (2019). Synthesis of two-dimensional porous aromatic frameworks via triple condensation reaction. Mater. Today Adv. 2: 100013, https://doi.org/10.1016/j.mtadv.2019.100013.Search in Google Scholar
Sirinupong, T., Youravong, W., Tirawat, D., Lau, W.J., Lai, G.S., and Ismail, A.F. (2018). Synthesis and characterization of thin film composite membranes made of PSF-TiO2/GO nanocomposite substrate for forward osmosis applications. Arabian Journal of Chemistry. 11 (7), 1144–1153.10.1016/j.arabjc.2017.05.006Search in Google Scholar
Smith, S.J., Hou, R., Konstas, K., Akram, A., Lau, C.H., and Hill, M.R. (2020). Control of Physical Aging in Super-Glassy Polymer Mixed Matrix Membranes. Accounts of Chemical Research.10.1021/acs.accounts.0c00256Search in Google Scholar PubMed
Song, Z., Qiu, F., Zaia, E.W., Wang, Z., Kunz, M., Guo, J., Brady, M., Mi, B., and Urban, J.J. (2017). Dual-channel, molecular-sieving core/shell ZIF@ MOF architectures as engineered fillers in hybrid membranes for highly selective CO2 separation. Nano letters. 17 (11), 6752–6758.10.1021/acs.nanolett.7b02910Search in Google Scholar PubMed
Sorribas, S., Kudasheva, A., Almendro, E., Zornoza, B., de la Iglesia, Ó., Téllez, C., and Coronas, J. (2015). Pervaporation and membrane reactor performance of polyimide based mixed matrix membranes containing MOF HKUST-1. Chemical Engineering Science. 124, 37–44.10.1016/j.ces.2014.07.046Search in Google Scholar
Sorribas, S., Zornoza, B., Téllez, C., and Coronas, J. (2014). Mixed matrix membranes comprising silica-(ZIF-8) core–shell spheres with ordered meso–microporosity for natural- and bio-gas upgrading. J. Membr. Sci. 452: 184–192, https://doi.org/10.1016/j.memsci.2013.10.043.Search in Google Scholar
Swaidan, R., Ghanem, B., Litwiller, E., and Pinnau, I. (2015). Physical aging, plasticization and their effects on gas permeation in “rigid” polymers of intrinsic microporosity. Macromolecules 48: 6553–6561, https://doi.org/10.1021/acs.macromol.5b01581.Search in Google Scholar
Swain, S.S., Unnikrishnan, L., Mohanty, S., and Nayak, S.K. (2018). Hybridization of MWCNTs and reduced graphene oxide on random and electrically aligned nanocomposite membrane for selective separation of O2/N2 gas pair. J. Mater. Sci. 53: 15442–15464, https://doi.org/10.1007/s10853-018-2651-3.Search in Google Scholar
Swain, S.S., Unnikrishnan, L., Mohanty, S., and Nayak, S.K. (2019). Synergistic influence of anisotropic 3D carbon nanotube-graphene hybrid mixed matrix membranes on stability and gas permeation characteristics. J. Taiwan Inst. Chem. Eng. 105: 150–165, https://doi.org/10.1016/j.jtice.2019.09.027.Search in Google Scholar
Tang, C., Xiang, L., Su, J., Wang, K., Yang, C., Zhang, Q., and Fu, Q. (2008). Largely improved tensile properties of chitosan film via unique synergistic reinforcing effect of carbon nanotube and clay. The Journal of Physical Chemistry B. 112 (13), 3876–3881.10.1021/jp709977mSearch in Google Scholar PubMed
Tanh Jeazet, H.B., Sorribas, S., Román‐Marín, J.M., Zornoza, B., Téllez, C., Coronas, J., and Janiak, C. (2016). Increased Selectivity in CO2/CH4 Separation with Mixed‐Matrix Membranes of Polysulfone and Mixed‐MOFs MIL‐101 (Cr) and ZIF‐8. European Journal of Inorganic Chemistry. 2016 (27), 4363–4367.10.1002/ejic.201600190Search in Google Scholar
Teow, Y.H., Ooi, B.S., and Ahmad, A.L. (2017). Fouling behaviours of PVDF-TiO2 mixed-matrix membrane applied to humic acid treatment. J. Water Process. Eng. 15: 89–98, https://doi.org/10.1016/j.jwpe.2016.03.005.Search in Google Scholar
Tian, Y. and Zhu, G. (2020). Porous aromatic frameworks (PAFs). Chem. Rev. https://doi.org/10.1021/acs.chemrev.9b00687.Search in Google Scholar PubMed
Tul Muntha, S., Kausar, A., and Siddiq, M. (2016). Progress in applications of polymer-based membranes in gas separation technology. Polym. Plast. Technol. Eng. 55: 1282–1298, https://doi.org/10.1080/03602559.2016.1163592.Search in Google Scholar
Valero, M., Zornoza, B., Téllez, C., and Coronas, J. (2014). Mixed matrix membranes for gas separation by combination of silica MCM-41 and MOF NH2-MIL-53 (Al) in glassy polymers. Microporous Mesoporous Mater. 192: 23–28, https://doi.org/10.1016/j.micromeso.2013.09.018.Search in Google Scholar
Van Speybroeck, V., Hemelsoet, K., Joos, L., Waroquier, M., Bell, R.G., and Catlow, C.R.A. (2015). Advances in theory and their application within the field of zeolite chemistry. Chemical Society Reviews. 44 (20), 7044–7111.10.1039/C5CS00029GSearch in Google Scholar
Vatanpour, V., Madaeni, S.S., Moradian, R., Zinadini, S., and Astinchap, B. (2012). Novel antibifouling nanofiltration polyethersulfone membrane fabricated from embedding TiO2 coated multiwalled carbon nanotubes. Separation and purification technology. 90, 69–82.10.1016/j.seppur.2012.02.014Search in Google Scholar
Vatanpour, V., Shockravi, A., Zarrabi, H., Nikjavan, Z., and Javadi, A. (2015). Fabrication and characterization of anti-fouling and anti-bacterial Ag-loaded graphene oxide/polyethersulfone mixed matrix membrane. Journal of Industrial and Engineering Chemistry. 30, 342–352.10.1016/j.jiec.2015.06.004Search in Google Scholar
Vinh-Thang, H. and Kaliaguine, S. (2013). Predictive models for mixed-matrix membrane performance: a review. Chem. Rev. 113: 4980–5028, https://doi.org/10.1021/cr3003888.Search in Google Scholar
Vu, D.Q., Koros, W.J., and Miller, S.J. (2003). Mixed matrix membranes using carbon molecular sieves: I. Preparation and experimental results. J. Membr. Sci. 211: 311–334, https://doi.org/10.1016/s0376-7388(02)00429-5.Search in Google Scholar
Wang, J., Wang, Y., Zhu, J., Zhang, Y., Liu, J., and Van der Bruggen, B. (2017a). Construction of TiO2@ graphene oxide incorporated antifouling nanofiltration membrane with elevated filtration performance. Journal of Membrane Science. 533, 279–288.10.1016/j.memsci.2017.03.040Search in Google Scholar
Wang, J. and Zhuang, S. (2019). Covalent organic frameworks (COFs) for environmental applications. Coord. Chem. Rev. 400: 213046, https://doi.org/10.1016/j.ccr.2019.213046.Search in Google Scholar
Wang, M., Wang, Z., Zhao, S., Wang, J., and Wang, S. (2017b). Recent advances on mixed matrix membranes for CO2 separation. Chinese journal of chemical engineering. 25 (11), 1581–1597.10.1016/j.cjche.2017.07.006Search in Google Scholar
Wolińska-Grabczyk, A., Wójtowicz, M., Jankowski, A., Grabiec, E., Kubica, P., Musioł, M., and Sobota, M. (2018). Synthesis, characterization, and gas permeation properties of thermally rearranged poly (hydroxyimide) s filled with mesoporous MCM-41 silica. Polymer. 158, 32–45.10.1016/j.polymer.2018.10.033Search in Google Scholar
Wong, K.C., Goh, P.S., Taniguchi, T., Ismail, A.F., and Zahri, K. (2019). The role of geometrically different carbon-based fillers on the formation and gas separation performance of nanocomposite membranes. Carbon. 149, 33–44.10.1016/j.carbon.2019.04.031Search in Google Scholar
Wu, H., Inada, T., Wang, Z.-M., and Endo, T. (2020). Photocatalytic TiO2@ CS-embedded cellulose nanofiber mixed matrix membrane. Appl. Catal. B Environ. 276, https://www.sciencedirect.com/science/article/abs/pii/S0926337320305269.10.1016/j.apcatb.2020.119111Search in Google Scholar
Wu, H., Tang, B., and Wu, P. (2014). Development of novel SiO2–GO nanohybrid/polysulfone membrane with enhanced performance. J. Membr. Sci. 451: 94–102, https://doi.org/10.1016/j.memsci.2013.09.018.Search in Google Scholar
Wu, L., Zhang, X., Wang, T., Du, C., and Yang, C. (2019). Enhanced performance of polyvinylidene fluoride ultrafiltration membranes by incorporating TiO2/graphene oxide. Chemical Engineering Research and Design. 141, 492–501.10.1016/j.cherd.2018.11.025Search in Google Scholar
Xu, H., Ding, M., Chen, W., Li, Y., and Wang, K. (2018). Nitrogen–doped GO/TiO2 nanocomposite ultrafiltration membranes for improved photocatalytic performance. Separation and Purification Technology. 195, 70–82.10.1016/j.seppur.2017.12.003Search in Google Scholar
Xu, H.-S., Luo, Y., Li, X., See, P.Z., Chen, Z., Ma, T., Liang, L., Leng, K., Abdelwahab, I., and Wang, L. (2020). Single crystal of a one-dimensional metallo-covalent organic framework. Nature communications. 11 (1), 1–6.10.1038/s41467-020-15281-1Search in Google Scholar PubMed PubMed Central
Xu, L., Xu, J., Shan, B., Wang, X., and Gao, C. (2017). TpPa-2-incorporated mixed matrix membranes for efficient water purification. Journal of Membrane Science. 526, 355–366.10.1016/j.memsci.2016.12.039Search in Google Scholar
Xu, Z., Wu, T., Shi, J., Teng, K., Wang, W., Ma, M., Li, J., Qian, X., Li, C., and Fan, J. (2016). Photocatalytic antifouling PVDF ultrafiltration membranes based on synergy of graphene oxide and TiO2 for water treatment. Journal of Membrane Science. 520, 281–293.10.1016/j.memsci.2016.07.060Search in Google Scholar
Xue, Q., Pan, X., Li, X., Zhang, J., and Guo, Q. (2017). Effective enhancement of gas separation performance in mixed matrix membranes using core/shell structured multi-walled carbon nanotube/graphene oxide nanoribbons. Nanotechnology. 28 (6), 065702.10.1088/1361-6528/aa510dSearch in Google Scholar PubMed
Yang, K., Dai, Y., Ruan, X., Zheng, W., Yang, X., Ding, R., and He, G. (2020). Stretched ZIF-8@ GO flake-like fillers via pre-Zn (II)-doping strategy to enhance CO2 permeation in mixed matrix membranes. Journal of Membrane Science. 601, 117934.10.1016/j.memsci.2020.117934Search in Google Scholar
Yang, K., Dai, Y., Zheng, W., Ruan, X., Li, H., and He, G. (2019a). ZIFs-modified GO plates for enhanced CO2 separation performance of ethyl cellulose based mixed matrix membranesf. Separation and Purification Technology. 214, 87–94.10.1016/j.seppur.2018.04.080Search in Google Scholar
Yang, L., Liu, L., and Wang, Z. (2017). Preparation of PVDF/GOSiO2 hybrid microfiltration membrane towards enhanced perm-selectivity and anti-fouling property. J. Taiwan Inst. Chem. Eng. 78: 500–509, https://doi.org/10.1016/j.jtice.2017.06.018.Search in Google Scholar
Yang, S., Zou, Q., Wang, T., and Zhang, L. (2019b). Effects of GO and MOF@ GO on the permeation and antifouling properties of cellulose acetate ultrafiltration membrane. J. Membr. Sci. 569: 48–59, https://doi.org/10.1016/j.memsci.2018.09.068.Search in Google Scholar
Yu, G., Li, Y., Wang, Z., Liu, T.X., Zhu, G., and Zou, X. (2019). Mixed matrix membranes derived from nanoscale porous organic frameworks for permeable and selective CO2 separation. Journal of Membrane Science. 591, 117343.10.1016/j.memsci.2019.117343Search in Google Scholar
Yuan, S.H., Isfahani, A.P., Yamamoto, T., Muchtar, A., Wu, C.Y., Huang, G., You, Y.C., Sivaniah, E., Chang, B.K., and Ghalei, B. (2020). Nanosized Core–Shell Zeolitic Imidazolate Frameworks‐Based Membranes for Gas Separation. Small Methods. 2000021.10.1002/smtd.202000021Search in Google Scholar
Zangeneh, H., Zinatizadeh, A.A., and Zinadini, S. (2020). Self-cleaning properties of L-Histidine doped TiO2-CdS/PES nanocomposite membrane: fabrication, characterization and performance. Separ. Purif. Technol. 240: 116591, https://doi.org/10.1016/j.seppur.2020.116591.Search in Google Scholar
Zarshenas, K., Raisi, A., and Aroujalian, A. (2016). Mixed matrix membrane of nano-zeolite NaX/poly (ether-block-amide) for gas separation applications. J. Membr. Sci. 510: 270–283, https://doi.org/10.1016/j.memsci.2016.02.059.Search in Google Scholar
Zeng, X., Yu, S., Sun, R., and Xu, J. (2015). Mechanical reinforcement while remaining electrical insulation of glass fibre/polymer composites using core–shell CNT@ SiO2 hybrids as fillers. Compos. Appl. Sci. Manuf. 73: 260–268, https://doi.org/10.1016/j.compositesa.2015.03.015.Search in Google Scholar
Zhang, L., Xin, Q., Lou, L., Li, X., Zhang, L., Wang, S., Li, Y., Zhang, Y., Wu, H., and Jiang, Z. (2019). Mixed matrix membrane contactor containing core-shell hierarchical Cu@ 4A filler for efficient SO2 capture. Journal of hazardous materials. 376, 160–169.10.1016/j.jhazmat.2019.05.038Search in Google Scholar PubMed
Zhang, N., Wu, H., Li, F., Dong, S., Yang, L., Ren, Y., Wu, Y., Wu, X., Jiang, Z., and Cao, X. (2018). Heterostructured filler in mixed matrix membranes to coordinate physical and chemical selectivities for enhanced CO2 separation. Journal of membrane science. 567, 272–280.10.1016/j.memsci.2018.09.044Search in Google Scholar
Zhao, J., Wang, Z., Wang, J., and Wang, S. (2012). High-performance membranes comprising polyaniline nanoparticles incorporated into polyvinylamine matrix for CO2/N2 separation. J. Membr. Sci. 403: 203–215, https://doi.org/10.1016/j.memsci.2012.02.048.Search in Google Scholar
Zhu, Z., Jiang, J., Wang, X., Huo, X., Xu, Y., Li, Q., and Wang, L. (2017). Improving the hydrophilic and antifouling properties of polyvinylidene fluoride membrane by incorporation of novel nanohybrid GO@ SiO2 particles. Chemical Engineering Journal. 314, 266–276.10.1016/j.cej.2016.12.038Search in Google Scholar
Zornoza, B., Martinez-Joaristi, A., Serra-Crespo, P., Tellez, C., Coronas, J., Gascon, J., and Kapteijn, F. (2011a). Functionalized flexible MOFs as fillers in mixed matrix membranes for highly selective separation of CO 2 from CH 4 at elevated pressures. Chemical communications. 47 (33), 9522–9524.10.1039/c1cc13431kSearch in Google Scholar PubMed
Zornoza, B., Seoane, B., Zamaro, J.M., Téllez, C., and Coronas, J. (2011b). Combination of MOFs and zeolites for mixed‐matrix membranes. ChemPhysChem. 12 (15), 2781–2785.10.1002/cphc.201100583Search in Google Scholar PubMed
Zornoza, B., Téllez, C., and Coronas, J. (2011). Mixed matrix membranes comprising glassy polymers and dispersed mesoporous silica spheres for gas separation. J. Membr. Sci. 368: 100–109, https://doi.org/10.1016/j.memsci.2010.11.027.Search in Google Scholar
© 2021 Walter de Gruyter GmbH, Berlin/Boston